Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.942
Filter
1.
Drug Deliv ; 31(1): 2385376, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39101224

ABSTRACT

Targeting, safety, scalability, and storage stability of vectors are still challenges in the field of nucleic acid delivery for gene therapy. Silica-based nanoparticles have been widely studied as gene carriers, exhibiting key features such as biocompatibility, simplistic synthesis, and enabling easy surface modifications for targeting. However, the ability of the formulation to incorporate DNA is limited, which restricts the number of DNA molecules that can be incorporated into the particle, thereby reducing gene expression. Here we use polymerase chain reaction (PCR)-generated linear DNA molecules to augment the coding sequences of gene-carrying nanoparticles, thereby maximizing nucleic acid loading and minimizing the size of these nanocarriers. This approach results in a remarkable 16-fold increase in protein expression six days post-transfection in cells transfected with particles carrying the linear DNA compared with particles bearing circular plasmid DNA. The study also showed that the use of linear DNA entrapped in DNA@SiO2 resulted in a much more efficient level of gene expression compared to standard transfection reagents. The system developed in this study features simplicity, scalability, and increased transfection efficiency and gene expression over existing approaches, enabled by improved embedment capabilities for linear DNA, compared to conventional methods such as lipids or polymers, which generally show greater transfection efficiency with plasmid DNA. Therefore, this novel methodology can find applications not only in gene therapy but also in research settings for high-throughput gene expression screenings.


Subject(s)
DNA , Gene Transfer Techniques , Nanoparticles , Plasmids , Silicon Dioxide , Transfection , Silicon Dioxide/chemistry , Nanoparticles/chemistry , DNA/administration & dosage , DNA/genetics , DNA/chemistry , Transfection/methods , Humans , Plasmids/administration & dosage , Genetic Therapy/methods , Particle Size
2.
Biomater Sci ; 12(15): 3947-3955, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38949480

ABSTRACT

Zwitterionic carboxyalkyl poly(1-vinylimidazole) (CA-PVIm) polymers with imidazolium cations and carboxylate anions have been synthesized as a carrier for the in vivo delivery of plasmid DNA (pDNA) to skeletal muscle. From differential scanning calorimetry measurements, resulting CA-PVIm had intermediate water in hydration water as a biocompatible polymer. Notably, when the pDNA and resulting CA-PVIm were mixed, slight retarded bands of the pDNA were observed in agarose gel electrophoresis, suggesting the polyion complex (PIC) formation between the pDNA and CA-PVIm despite zwitterionic polymers. Resulting PICs maintained the higher-order structure of the pDNA. Using resulting pDNA PICs, the highest pDNA expression by intramuscular injection was achieved in the PIC with 7 mol% carboxymethylated PVIm, that is, CA1(7)-PVIm, observed in a widespread area by in vivo imaging system. These results suggest that the CA1(7)-PVIm/pDNA PIC is effective for the diffusive delivery of the pDNA into skeletal muscle for the treatment of serious muscle diseases.


Subject(s)
DNA , Imidazoles , Muscle, Skeletal , Plasmids , Polyvinyls , Plasmids/administration & dosage , Plasmids/chemistry , Muscle, Skeletal/metabolism , Animals , Imidazoles/chemistry , Imidazoles/administration & dosage , DNA/administration & dosage , DNA/chemistry , Polyvinyls/chemistry , Mice , Diffusion , Gene Transfer Techniques
3.
J Vis Exp ; (208)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38912770

ABSTRACT

Transgenesis in Drosophila is an essential approach to studying gene function at the organism level. Embryo microinjection is a crucial step for the construction of transgenic flies. Microinjection requires some types of equipment, including a microinjector, a micromanipulator, an inverted microscope, and a stereo microscope. Plasmids isolated with a plasmid miniprep kit are qualified for microinjection. Embryos at the pre-blastoderm or syncytial blastoderm stage, where nuclei share a common cytoplasm, are subjected to microinjection. A cell strainer eases the process of dechorionating embryos. The optimal time for dechorionation and desiccation of embryos needs to be determined experimentally. To increase the efficiency of embryo microinjection, needles prepared by a puller need to be beveled by a needle grinder. In the process of grinding needles, we utilize a foot air pump with a pressure gauge to avoid the capillary effect of the needle tip. We routinely inject 120-140 embryos for each plasmid and obtain at least one transgenic line for around 85% of plasmids. This article takes the phiC31 integrase-mediated transgenesis in Drosophila as an example and presents a detailed protocol for embryo microinjection for transgenesis in Drosophila.


Subject(s)
Drosophila , Gene Transfer Techniques , Microinjections , Animals , Microinjections/methods , Gene Transfer Techniques/instrumentation , Drosophila/genetics , Drosophila/embryology , Plasmids/genetics , Plasmids/administration & dosage , Embryo, Nonmammalian , Animals, Genetically Modified , Integrases/genetics
4.
Eur J Pharm Biopharm ; 201: 114385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945408

ABSTRACT

In the current "era of lipid carriers," numerous strategies have been developed to manufacture lipid nanoparticles (LNPs). Nevertheless, the potential impact of various preparation methods on the characteristics, use, and/or stability of these LNPs remains unclear. In this work, we attempted to compare the effects of three different preparation methods: microfluidics (MF), reverse phase evaporation (RV), and ouzo (OZ) on lipid-peptide NPs (LPNPs) as plasmid DNA delivery carriers. These LPNPs had the same components, namely DOTMA cationic lipid, DSPC, cholesterol, and protamine. Subsequently, we compared the LPNPs in terms of their physicochemical features, functionality as gene delivery vehicles in two distinct cell lines (NT2 and D1-MSCs), and finally, their storage stability over a six-month period. It was clear that all three LPNP formulations worked to deliver EGFP-pDNA while keeping cells alive, and their physicochemical stability was high for 6 months. However, the preparation technique had a significant impact on their physicochemical characteristics. The MF produced LPNPs with a lesser size, polydispersity index, and zeta potential than the other synthesis methods. Additionally, their DNA entrapment efficiency, cell viability, and functional stability profiles were generally superior. These findings provide new insights for comparing different manufacturing methods to create LPNPs with the desired characteristics for effective and safe gene delivery.


Subject(s)
DNA , Gene Transfer Techniques , Lipids , Microfluidics , Nanoparticles , Peptides , Plasmids , Nanoparticles/chemistry , Plasmids/administration & dosage , Humans , Lipids/chemistry , DNA/administration & dosage , DNA/chemistry , Microfluidics/methods , Peptides/chemistry , Cell Line , Transfection/methods , Particle Size , Cell Survival/drug effects
5.
Bioconjug Chem ; 35(7): 897-911, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38924453

ABSTRACT

Cationic polymers offer an alternative to viral vectors in nucleic acid delivery. However, the development of polymer vehicles capable of high transfection efficiency and minimal toxicity has remained elusive, and continued exploration of the vast design space is required. Traditional single polymer syntheses with large monomer bases are very time-intensive, limiting the speed at which new formulations are identified. In this work, we present an experimental method for the quick probing of the design space, utilizing a combinatorial set of 90 polymer blends, derived from 6 statistical copolymers, to deliver pDNA. This workflow facilitated rapid screening of polyplex compositions, successfully tailoring polyplex hydrophobicity, particle size, and payload binding affinity. This workflow identified blended polyplexes with high levels of transfection efficiency and cell viability relative to single copolymer controls and commercial JetPEI, indicating synergistic benefits from copolymer blending. Polyplex composition was coupled with biological outputs to guide the synthesis of single terpolymer vehicles, with high-performing polymers P10 and M20, providing superior transfection of HEK293T cells in serum-free and serum-containing media, respectively. Machine learning coupled with SHapley Additive exPlanations (SHAP) was used to identify polymer/polyplex attributes that most impact transfection efficiency, viability, and overall effective efficiency. Subsequent transfections on ARPE-19 and HDFn cells found that P10 and M20 were surpassed in performance by M10, contrasting with results in HEK293T cells. This cell type dependency reinforced the need to evaluate transfection conditions with multiple cell models to potentially identify moieties more beneficial to delivery in certain tissues. Overall, the workflow employed can be used to expedite the exploration of the polymer design space, bypassing extensive synthesis, and to develop improved polymer delivery vehicles more readily for nucleic acid therapies.


Subject(s)
DNA , Machine Learning , Plasmids , Polymers , Humans , Polymers/chemistry , HEK293 Cells , DNA/administration & dosage , Plasmids/administration & dosage , Plasmids/genetics , Transfection/methods , Gene Transfer Techniques , Cell Survival/drug effects
6.
Int J Nanomedicine ; 19: 4235-4251, 2024.
Article in English | MEDLINE | ID: mdl-38766661

ABSTRACT

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.


Subject(s)
Cations , DNA , Plasmids , Plasmids/administration & dosage , Plasmids/chemistry , Humans , Cations/chemistry , DNA/chemistry , DNA/administration & dosage , Genetic Therapy/methods , Microfluidics/methods , Particle Size , Nanomedicine , COVID-19/prevention & control , Liposomes/chemistry , Transfection/methods , Nanoparticles/chemistry , SARS-CoV-2 , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Quaternary Ammonium Compounds/chemistry , Fatty Acids, Monounsaturated
7.
Biomaterials ; 308: 122559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583366

ABSTRACT

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Subject(s)
Gene Editing , Lipids , Liver , Nanoparticles , Animals , Gene Editing/methods , Liver/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Mice , Plasmids/genetics , Plasmids/administration & dosage , Gene Transfer Techniques , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , DNA/administration & dosage , DNA/genetics , Duodenum/metabolism
8.
Eur J Pharm Biopharm ; 199: 114297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641228

ABSTRACT

Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a âˆ¼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.


Subject(s)
DNA , Nanoparticles , Polyethyleneimine , RNA, Small Interfering , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Nanoparticles/chemistry , Polyethyleneimine/chemistry , DNA/administration & dosage , DNA/chemistry , Humans , Gene Transfer Techniques , Spray Drying , Transfection/methods , Polypropylenes/chemistry , Excipients/chemistry , Particle Size , Plasmids/administration & dosage , Desiccation/methods , Polyvinyl Alcohol/chemistry
9.
Eur J Pharm Biopharm ; 199: 114299, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643953

ABSTRACT

Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.


Subject(s)
DNA , Nanoparticles , Plasmids , Transfection , Humans , Animals , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Plasmids/administration & dosage , Transfection/methods , HEK293 Cells , Mice , DNA/administration & dosage , DNA/chemistry , Lipids/chemistry , Polymers/chemistry , Solubility , Particle Size , Polyethylene Glycols/chemistry , Red Fluorescent Protein , Polymethacrylic Acids/chemistry , Male , Acrylates
10.
Curr Eye Res ; 49(8): 879-887, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38666493

ABSTRACT

PURPOSE: To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS: The experimental Libechov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS: Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS: This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.


Subject(s)
Feasibility Studies , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors , Swine, Miniature , Vitrectomy , Animals , Vitrectomy/methods , Swine , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Pilot Projects , Retina , Injections, Intraocular , Plasmids/administration & dosage , Disease Models, Animal , Green Fluorescent Proteins/genetics
11.
J Control Release ; 369: 251-265, 2024 May.
Article in English | MEDLINE | ID: mdl-38493950

ABSTRACT

Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.


Subject(s)
DNA , Immunotherapy , Mice, Inbred C57BL , Nanoparticles , Plasmids , RNA, Small Interfering , Animals , Immunotherapy/methods , RNA, Small Interfering/administration & dosage , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Plasmids/administration & dosage , DNA/administration & dosage , DNA/immunology , Mice , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Female , Cell Line, Tumor , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Lipids/chemistry , Lipids/administration & dosage , Drug Carriers/chemistry
12.
Adv Sci (Weinh) ; 8(24): e2102989, 2021 12.
Article in English | MEDLINE | ID: mdl-34708576

ABSTRACT

Mechanistic understanding of how living systems sense, transduce, and respond to mechanical cues has important implications in development, physiology, and therapy. Here, the authors use an integrated atomic force microscope (AFM) and brightfield/epifluorescent microscope platform to precisely simulate living single cells or groups of cells under physiological conditions, in real time, concomitantly measuring the single-cell autophagic response and its transmission to neighboring cells. Dual-color fluorescence monitoring of the cellular autophagic response reveals the dynamics of autophagosome formation, degradation, and induction in neighboring contacting and noncontacting cells. Autophagosome formation is dependent on both the applied force and contact area of the AFM tip. More importantly, the enhancement of the autophagic responses in neighboring cells via a gap junction-dependent mechanism is observed. This AFM-based nanoacupuncture platform can serve as a tool for elucidating the primary mechanism underlying mechanical stimulation of living systems and other biomechanical therapeutics.


Subject(s)
Autophagy/physiology , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force/methods , Nanotechnology/methods , Plasmids/administration & dosage , Cells, Cultured , Fluorescence , Microscopy, Fluorescence
13.
EBioMedicine ; 73: 103624, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34688033

ABSTRACT

Immune checkpoints are regulatory molecules responsible for determining the magnitude and nature of the immune response. The aim of immune checkpoint targeting immunotherapy is to manipulate these interactions, engaging the immune system in treatment of cancer. Clinically, the use of monoclonal antibodies to block immunosuppressive interactions has proven itself to be a highly effective immunotherapeutic intervention. Within the literature there are numerous candidates for next generation of immune checkpoint targeting strategies. One such example is the use of nucleic acid to alter expression levels of immune checkpoint molecules, either as antisense oligo nucleotides/siRNA, to downregulate inhibitory molecules, or mRNA/DNA, to express co-stimulatory molecules. A significant component of nucleic acid delivery is its formulation within a nanoparticulate system. In this review we discuss the progress of the preclinical application of nucleic acid-based immunotherapies to target a selection of co-inhibitory/co-stimulatory molecules. Furthermore, we identify the potential and current gaps within the literature which may form the basis of future work.


Subject(s)
Drug Delivery Systems , Gene Expression Regulation , Immune Checkpoint Proteins/genetics , Nanoparticles , Nucleic Acids/administration & dosage , Theranostic Nanomedicine , Animals , Clinical Studies as Topic , Drug Evaluation, Preclinical , Humans , Immune Checkpoint Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/etiology , Neoplasms/pathology , Nucleic Acids/genetics , Plasmids/administration & dosage , Plasmids/chemistry , RNA Interference , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Treatment Outcome
14.
Sci Rep ; 11(1): 20083, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34635698

ABSTRACT

Human papillomavirus (HPV) infection is the major etiological factor for cervical cancer. HPV prophylactic vaccines based on L1 virus-like particles have been considered as an effective prevention method. However, existing recombination vaccines are too expensive for developing countries. DNA vaccines might be a lower-cost and effective alternative. In this study, a plasmid (pcDNA3.1-HPV16-L1) and a co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) carried by attenuated Salmonella were constructed and their prevention and treatment effect on cervical cancer were observed, respectively. The results showed that pcDNA3.1-HPV16-L1 carried by attenuated Salmonella could induce the production of HPV16-L1 antibodies, IL-2 and INF-γ in mice serum, which presented its prevention effect on HPV. Subsequently, E6 and E7 gene silencing by pCG-siE6 inhibited the growth of cervical cancer both in vitro and in vivo. Furthermore, L1 up-regulation and E6/E7 down-regulation caused by co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) contributed to a significant anti-tumor effect on the mice. This study suggests that pcDNA3.1-HPV16-L1-siE6 carried by attenuated Salmonella has a synergistic effect of immune regulation and RNA interference in cervical cancer treatment.


Subject(s)
Capsid Proteins/genetics , Human papillomavirus 16/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/antagonists & inhibitors , Plasmids/administration & dosage , RNA, Small Interfering/genetics , Salmonella typhimurium/genetics , Uterine Cervical Neoplasms/therapy , Animals , Apoptosis , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/virology , Plasmids/genetics , Tumor Cells, Cultured , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Xenograft Model Antitumor Assays
15.
Growth Horm IGF Res ; 60-61: 101429, 2021.
Article in English | MEDLINE | ID: mdl-34507253

ABSTRACT

The hormone secretion of GHRH-GH-IGF-1 axis in animals was decreased as aging. These hormones play an important role in maintaining bone mass and bone structure, and also affect the normal structure and function of the skin. We used plasmid-based technology to deliver growth hormone releasing hormone (GHRH) to elderly mice. In the current study, 80 and 120 µg/kg pVAX-GHRH plasmid expression plasmid were injected into old mice, the serum GHRH and insulin-like growth factor-1(IGF-1) content were increased within three weeks (P < 0.05). In the groups of 80 and 120 µg/kg plasmid, the content of procollagen type I N-terminal pro-peptide (PINP) in the serum was increased(P < 0.05), and the content of C-terminal telopeptides of type I collagen (CTX-1) in the serum was reduced significantly (P < 0.05). Furthermore, the expression of osteoprotegerin (OPG) and osteocalcin (OCN) in the femur also was increased(P < 0.05). The bone mineral density(BMD)、trabecular bone volume (BV/TV) and trabecular number(Tb.N) of mouse femur were increased significantly (P < 0.05) and trabecular separation(Tb.Sp) was decreased(P < 0.05). There were more trabecular bones in the bone marrow cavity and the trabecular bones are thicker in the groups of 80 and 120 µg/kg plasmid relative to control. The superoxide dismutase (SOD) content in the skin was increased(P < 0.05), and the malondialdehyde (MDA) content was reduced significantly (P < 0.05). Meanwhile, the skin moisture content also increased significantly(P < 0.05). Moreover, the expression of matrix metalloproteinase 3(MMP3) and matrix metalloproteinase 9(MMP9) was decreased in the skin(P < 0.05). The thickness of the dermis and epidermis of the skin had increased significantly(P < 0.05). Skin structure is more dense and complete in the two groups. These results indicate that 80 and 120 µg/kg plasmid-mediated GHRH supplementation can improve osteoporosis and skin aging in aged mice.


Subject(s)
Growth Hormone-Releasing Hormone/administration & dosage , Hormones/administration & dosage , Osteoporosis/drug therapy , Plasmids/administration & dosage , Skin Diseases/prevention & control , Animals , Bone Density , Female , Growth Hormone-Releasing Hormone/genetics , Growth Hormone-Releasing Hormone/metabolism , Hormones/genetics , Hormones/metabolism , Mice , Mice, Inbred C57BL , Osteoporosis/metabolism , Osteoporosis/pathology , Plasmids/genetics
16.
Curr Opin Allergy Clin Immunol ; 21(6): 569-575, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34387280

ABSTRACT

PURPOSE OF REVIEW: Molecular forms of allergen-specific immunotherapy (AIT) are continuously emerging to improve the efficacy of the treatment, to shorten the duration of protocols and to prevent any side effects. The present review covers the recent progress in the development of AIT based on nucleic acid encoding allergens or CpG oligodeoxynucleotides (CpG-ODN). RECENT FINDINGS: Therapeutic vaccinations with plasmid deoxyribonucleic acid (DNA) encoding major shrimp Met e 1 or insect For t 2 allergen were effective for the treatment of food or insect bite allergy in respective animal models. DNA expressing hypoallergenic shrimp tropomyosin activated Foxp3+ T regulatory (Treg) cells whereas DNA encoding For t 2 down-regulated the expression of pruritus-inducing IL-31. Co-administrations of major cat allergen Fel d 1 with high doses of CpG-ODN reduced Th2 airway inflammation through tolerance induction mediated by GATA3+ Foxp3hi Treg cells as well as early anti-inflammatory TNF/TNFR2 signaling cascade. Non-canonical CpG-ODN derived from Cryptococcus neoformans as well as methylated CpG sites present in the genomic DNA from Bifidobacterium infantis mediated Th1 or Treg cell differentiation respectively. SUMMARY: Recent studies on plasmid DNA encoding allergens evidenced their therapeutic potential for the treatment of food allergy and atopic dermatitis. Unmethylated or methylated CpG-ODNs were shown to activate dose-dependent Treg/Th1 responses. Large clinical trials need to be conducted to confirm these promising preclinical data. Moreover, tremendous success of messenger ribonucleic acid (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 must encourage as well the re-exploration of mRNA vaccine platform for innovative AIT.


Subject(s)
Desensitization, Immunologic/methods , Hypersensitivity, Immediate/therapy , Oligodeoxyribonucleotides/administration & dosage , Vaccines, DNA/administration & dosage , Vaccines, Synthetic/administration & dosage , Allergens/administration & dosage , Allergens/genetics , Allergens/immunology , Animals , Clinical Trials as Topic , Desensitization, Immunologic/trends , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Hypersensitivity, Immediate/immunology , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/immunology , Plasmids/administration & dosage , Plasmids/genetics , Plasmids/immunology , Treatment Outcome , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines
17.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: mdl-34282051

ABSTRACT

CRISPR/Cas9 is a promising technology for gene editing. To date, intracellular delivery vehicles for CRISPR/Cas9 are limited by issues of immunogenicity, restricted packaging capacity, and low tolerance. Here, we report an alternative, nonviral delivery system for CRISPR/Cas9 based on engineered exosomes. We show that non-autologous exosomes can encapsulate CRISPR/Cas9 plasmid DNA via commonly available transfection reagents and can be delivered to recipient cancer cells to induce targeted gene deletion. As a proof-of-principle, we demonstrate that exosomes loaded with CRISPR/Cas9 can target the mutant Kras G12D oncogenic allele in pancreatic cancer cells to suppress proliferation and inhibit tumor growth in syngeneic subcutaneous and orthotopic models of pancreatic cancer. Exosomes may thus be a promising delivery platform for CRISPR/Cas9 gene editing for targeted therapies.


Subject(s)
CRISPR-Cas Systems , Exosomes/metabolism , Gene Editing , Gene Targeting , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Alleles , Allografts , Animals , Biological Transport , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Gene Editing/methods , Gene Expression Regulation, Neoplastic , Gene Targeting/methods , Gene Transfer Techniques , Genes, Reporter , MAP Kinase Signaling System , Mice , Oncogenes , Plasmids/administration & dosage , Plasmids/genetics
18.
Int J Mol Sci ; 22(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201240

ABSTRACT

Infectious viroid clones consist of dimeric cDNAs used to generate transcripts which mimic the longer-than-unit replication intermediates. These transcripts can be either generated in vitro or produced in vivo by agro-inoculation. We have designed a new plasmid, which allows both inoculation methods, and we have compared them by infecting Solanum lycopersicum and Solanum melongena with clones of Citrus exocortis virod (CEVd), Tomato chlorotic dwarf viroid (TCDVd), and Potato spindle tuber viroid (PSTVd). Our results showed more uniform and severe symptoms in agro-inoculated plants. Viroid accumulation and the proportion of circular and linear forms were different depending on the host and the inoculation method and did not correlate with the symptoms, which correlated with an increase in PR1 induction, accumulation of the defensive signal molecules salicylic (SA) and gentisic (GA) acids, and ribosomal stress in tomato plants. The alteration in ribosome biogenesis was evidenced by both the upregulation of the tomato ribosomal stress marker SlNAC082 and the impairment in 18S rRNA processing, pointing out ribosomal stress as a novel signature of the pathogenesis of nuclear-replicating viroids. In conclusion, this updated binary vector has turned out to be an efficient and reproducible method that will facilitate the studies of viroid-host interactions.


Subject(s)
Plant Diseases/virology , Plasmids/administration & dosage , RNA, Viral/genetics , Ribosomes/metabolism , Solanum lycopersicum/virology , Viroids/classification , Viroids/isolation & purification , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Diseases/genetics , Plasmids/genetics , Ribosomes/genetics , Viroids/pathogenicity
19.
Methods Mol Biol ; 2314: 273-284, 2021.
Article in English | MEDLINE | ID: mdl-34235658

ABSTRACT

The introduction of DNA into bacterial cells is one of the foundational methods of bacterial genetics. Transformation of mycobacterial species is complicated due to the structure of the cell wall, which has a complex outer layer with low permeability. Electroporation has become a routine procedure in genetic studies. In this process, cells are subjected to a brief high-voltage electrical impulse which allows the entry of DNA. It can be used to introduce plasmid DNA, phage DNA, or oligonucleotides. This chapter presents methods for introducing DNA into a representative slow-growing species, M. tuberculosis, and a representative fast-growing species, M. smegmatis. Other mycobacteria can be transformed using variations of these methods, although the efficiency of transformation will vary.


Subject(s)
DNA/administration & dosage , Electroporation/methods , Mycobacterium/genetics , Plasmids/administration & dosage , Transformation, Bacterial , DNA/genetics , Plasmids/genetics
20.
Int J Med Sci ; 18(11): 2355-2365, 2021.
Article in English | MEDLINE | ID: mdl-33967612

ABSTRACT

The majority of patients diagnosed with nasopharyngeal carcinoma (NPC) present with advanced-stage disease. The main treatment for these patients is concurrent chemoradiotherapy, which has various side effects. To improve the therapeutic effects and reduce the side effects of NPC chemoradiotherapy, we constructed a multifunctional folic acid (FA)-targeted magnetic nanocomposite codelivering tissue factor pathway inhibitor-2 (TFPI-2) and cisplatin (CDDP). This novel nanocomposite (FA-MNP/CDDP/TFPI-2) was obtained by amidation and electrostatic adsorption between FA-methoxypolyethylene glycol-polyethyleneimine (FA-MPEG-PEI) containing the TFPI-2 plasmid and magnetic nanoparticles modified by aldehyde sodium alginate loaded with CDDP. Transmission electron microscopy (TEM) images showed that the size of the individual magnetite particle core was approximately 11.5 nm. The structure and composition of the nanocomposites were identified and examined by 1H nuclear magnetic resonance (NMR) spectroscopy and ultraviolet (UV) spectrophotometry. The fluorescence analysis, Prussian blue iron staining, magnetic resonance (MR) imaging and whole-body fluorescence imaging results demonstrated that FA-MNP/CDDP/TFPI-2 showed high gene transfection efficiency and could target tumor cells via folate receptor (FR)-mediated delivery. The codelivery analysis showed that the obtained FA-MNP/CDDP/TFPI-2 composite could cause significantly more apoptosis than treatment with CDDP or TFPI-2 alone. The results showed that the FA-MNP/CDDP/TFPI-2 composites were successfully synthesized and indicated to be a specific molecular target for the FR with significant inhibitory effects on the growth of HNE-1 cells.


Subject(s)
Cisplatin/administration & dosage , Drug Carriers/chemistry , Glycoproteins/genetics , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Neoplasms/therapy , Animals , Cell Line, Tumor , Drug Carriers/pharmacology , Drug Compounding/methods , Female , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/chemistry , Folic Acid/pharmacology , Humans , Magnetite Nanoparticles/chemistry , Mice , Molecular Targeted Therapy/methods , Nanocomposites/chemistry , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Plasmids/administration & dosage , Plasmids/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL