Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
Biomaterials ; 313: 122768, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39232332

ABSTRACT

As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).


Subject(s)
Fertility Preservation , Hydrogels , Ischemia , Neovascularization, Physiologic , Ovary , Female , Animals , Fertility Preservation/methods , Neovascularization, Physiologic/drug effects , Ovary/drug effects , Hydrogels/chemistry , Ischemia/therapy , Humans , Fibrin/chemistry , Platelet-Rich Plasma/metabolism
2.
Clin Chim Acta ; 564: 119901, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39134218

ABSTRACT

BACKGROUND: Platelet contains growth factors that enhance tissue repair mechanisms, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF-AA and -AB), and transforming growth factor (TGF)-ß. Autologous platelet-rich plasma (PRP) has been shown to significantly improve the treatment of tendon injuries compared with hyaluronic acid and placebo. The topic of agreement between platelet concentrations and growth factors has been covered in some previous studies, but growth factor levels did not correlate well with platelet concentrations. METHOD: In this study, autologous PRP was prepared by concentrating platelets through a J6-MI centrifuge. The automatic hematology analyzer Sysmex XN-20 was used to analyze the platelet concentration in PRP, and the PRP growth factors were determined by ELISA, including PDGF, transforming growth factor- ß1 (TGF-ß1), and EGF. Statistical analysis was conducted on data from 107 patients who received autologous PRP using Pearson correlation analysis. RESULTS: Pearson correlation analysis revealed PDGF, TGF, and EGF had a strong positive correlation with the platelet concentration of the final PRP product (r = 0.697, p < 0.0001; r = 0.488, p < 0.0001; r = 0.572, p < 0.0001, respectively) CONCLUSIONS: There was a strong positive correlation between the concentration of platelets in the final PRP product and the levels of PDGF-AB, TGF-ß, and EGF. These results suggested straightforward and cost-effective growth factor tests can provide valuable information about platelet content in PRP.


Subject(s)
Intercellular Signaling Peptides and Proteins , Platelet-Rich Plasma , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Intercellular Signaling Peptides and Proteins/blood , Platelet Count , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry
3.
Int J Mol Sci ; 25(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273289

ABSTRACT

Platelet-rich plasma (PRP) has become an important regenerative therapy. However, the preparation method of PRP has not been standardized, and the optimal platelet concentration for PRP used in skin wound repair is unclear, leading to inconsistent clinical efficacy of PRP. Therefore, the development of standardized preparation methods for PRP and the investigation of the dose-response relationship between PRP with different platelet concentrations and tissue regeneration plays an important role in the development and clinical application of PRP technology. This study has developed an integrated blood collection device from blood drawing to centrifugation. Response surface methodology was employed to optimize the preparation conditions, ultimately achieving a platelet recovery rate as high as 95.74% for PRP (with optimal parameters: centrifugation force 1730× g, centrifugation time 10 min, and serum separation gel dosage 1.4 g). Both in vitro and in vivo experimental results indicate that PRP with a (2×) enrichment ratio is the most effective in promoting fibroblast proliferation and skin wound healing, with a cell proliferation rate of over 150% and a wound healing rate of 78% on day 7.


Subject(s)
Cell Proliferation , Platelet-Rich Plasma , Skin , Wound Healing , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Animals , Skin/injuries , Skin/metabolism , Humans , Fibroblasts/cytology , Mice , Male , Blood Platelets/metabolism
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273351

ABSTRACT

Hyaluronic acid (HA) is the main component of the temporomandibular joint (TMJ) synovial fluid. Arthritis in temporomandibular disorders (TMDs) disrupts HA metabolism, resulting in shorter polymeric chain predominance and increased friction. Intra-articular injections of HA supplement the larger molecules of this glycosaminoglycan, and the platelet-rich plasma (PRP) delivered in this way releases growth factors, suppressing inflammation. This PRISMA-compliant PROSPERO-registered (CRD42024564382) systematic review aimed to assess the validity of mixing HA with PRP in the injectable treatment of TMJ disorders. We searched the medical literature for eligible randomized clinical trials using BASE, Google Scholar, PubMed and Scopus engines on 9 May 2024, with no time frame limit. Selected reports were assessed for risk of bias using the Cochrane RoB2 tool. Numerical data were collected on articular pain and mandibular mobility. We provided mean differences from baseline and between study and control groups at each observation point. The efficacy of TMD treatment with HA/PRP versus HA or PRP alone was assessed meta-analytically. Of 171 identified records, we selected 6 studies. In the 6-month follow-up, the mean advantage of PRP supplementation with HA was 2.52 (SE = 2.44; d = 0.83) mm and the benefit of adding PRP to HA was 1.47 (SE = 2.68; d = 0.34) mm in mandibular abduction. The pain-improvement scores were -1.33 (SE = 1.02; d = -1.05) and -1.18 (SE = 0.92; d = 0.80), respectively. Presumably, the HA/PRP range of therapeutic efficiency includes cases non-respondent to HA or PRP alone.


Subject(s)
Hyaluronic Acid , Platelet-Rich Plasma , Temporomandibular Joint Disorders , Temporomandibular Joint , Platelet-Rich Plasma/metabolism , Humans , Hyaluronic Acid/administration & dosage , Temporomandibular Joint Disorders/therapy , Temporomandibular Joint Disorders/drug therapy , Injections, Intra-Articular , Biomechanical Phenomena
5.
Cells ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39195210

ABSTRACT

For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.


Subject(s)
Platelet-Rich Plasma , Skin , Telocytes , Wound Healing , Humans , Platelet-Rich Plasma/metabolism , Skin/pathology , Telocytes/metabolism , Animals
6.
Biomolecules ; 14(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39199309

ABSTRACT

Mesh-augmented hernia repair is the gold standard in abdominal wall and hiatal/diaphragmatic hernia management and ranks among the most common procedures performed by general surgeons. However, it is associated with a series of drawbacks, including recurrence, mesh infection, and adhesion formation. To address these weaknesses, numerous biomaterials have been investigated for mesh coating. Platelet-rich plasma (PRP) is an autologous agent that promotes tissue healing through numerous cytokines and growth factors. In addition, many reports highlight its contribution to better integration of different types of coated meshes, compared to conventional uncoated meshes. The use of PRP-coated meshes for hernia repair has been reported in the literature, but a review of technical aspects and outcomes is missing. The aim of this comprehensive review is to report the experimental studies investigating the synergistic use of PRP and mesh implants in hernia animal models. A comprehensive literature search was conducted across PubMed/Medline, Web of Science, and Scopus without chronological constraints. In total, fourteen experimental and three clinical studies have been included. Among experimental trials, synthetic, biologic, and composite meshes were used in four, nine, and one study, respectively. In synthetic meshes, PRP-coating leads to increased antioxidant levels and collaged deposition, reduced oxidative stress, and improved inflammatory response, while studies on biological meshes revealed increased neovascularization and tissue integration, reduced inflammation, adhesion severity, and mechanical failure rates. Finally, PRP-coating of composite meshes results in reduced adhesions and improved mechanical strength. Despite the abundance of preclinical data, there is a scarcity of clinical studies, mainly due to the absence of an established protocol regarding PRP preparation and application. To this point in time, PRP has been used as a coating agent for the repair of abdominal and diaphragmatic hernias, as well as for mesh fixation. Clinical application of conclusions drawn from experimental studies may lead to improved results in hernia repair.


Subject(s)
Herniorrhaphy , Platelet-Rich Plasma , Surgical Mesh , Herniorrhaphy/methods , Herniorrhaphy/instrumentation , Platelet-Rich Plasma/metabolism , Humans , Animals , Wound Healing
7.
Reproduction ; 168(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38995815

ABSTRACT

In brief: Since available therapeutic approaches for chemotherapy-induced non-obstructive azoospermia (NOA) patients are not enough efficient, an urgent need for treatment alternatives is felt. This study shows that adipose tissue-derived mesenchymal stem cells-derived exosome (AD-Exo) treatment is more effective in ameliorating busulfan-induced NOA rat models compared to platelet-rich plasma (PRP). Abstract: Patients with non-obstructive azoospermia (NOA) are unable to have their children. Therefore, there is an urgent need for additional treatment alternatives for these patients. Recently, novel treatments based on the exosomes derived from mesenchymal stem cells (MSCs) as the agents responsible for exerting the paracrine effects and consequently biological functions of MSCs are proposed. Besides, platelet-rich plasma (PRP) as a significant blood byproduct has been therapeutically applied in several male infertility studies. In this study, we compared the effects of PRP and exosome treatment on spermatogenesis restoration in NOA rat models. Exosomes and PRP were isolated from the adipose tissue-derived MSCs (AD-MSCs) collected from conditioned medium and peripheral blood of human volunteers, respectively. Non-obstructive azoospermia (NOA) induction was done through two doses of busulfan at a 21-day interval. Thirty-five days after NOA induction, intratesticular injection of AD-MSCs-derived exosome (AD-Exo), PRP, and PBS was performed. The control group did not receive any treatment. Two months later, the rats were euthanized for further analysis. Our results revealed that both AD-Exo and PRP treatments improved the size and weight of testis, modulated the expression level of Dazl, Ddx4, Stra8, Pwil1, and Ccna1, and ameliorated the serum level of LDH, SOD, and GR enzymes in NOA rats. Moreover, the AD-Exo group showed improved testosterone, GPx, MAD, and CAT serum levels, sperm motility, and protein levels of DAZL and DDX4. This investigation verified the more efficient effects of AD-Exo treatment in comparison to PRP in ameliorating busulfan-induced NOA rat models.


Subject(s)
Azoospermia , Busulfan , Disease Models, Animal , Exosomes , Mesenchymal Stem Cells , Platelet-Rich Plasma , Spermatogenesis , Male , Animals , Exosomes/metabolism , Exosomes/transplantation , Azoospermia/therapy , Azoospermia/pathology , Azoospermia/chemically induced , Spermatogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Rats , Busulfan/pharmacology , Platelet-Rich Plasma/metabolism , Humans , Testis/metabolism , Testis/pathology , Rats, Sprague-Dawley
8.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063156

ABSTRACT

Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.


Subject(s)
Platelet-Rich Plasma , Wound Healing , Humans , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Regeneration , Animals , Blood Platelets/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
9.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063199

ABSTRACT

The positive effect of platelet-rich plasma (PRP) on tendon metabolism has been extensively investigated and proven in vitro. Additionally, in vivo animal studies have correlated the application of PRP with the enhancement of tenocyte anabolic activity in the setting of tendon degeneration. However, less is known about its in vivo effect on human tendon biology. The purpose of the current prospective randomized comparative study was to evaluate the effect of PRP on torn human supraspinatus tendon. Twenty consecutive eligible patients with painful and magnetic resonance imaging (MRI)-confirmed degenerative supraspinatus tendon tears were randomized in a one-to-one ratio into two groups. The patients in the experimental group (n = 10) underwent an ultrasound-guided autologous PRP injection in the subacromial space 6 weeks before the scheduled operation. In the control group (n = 10), no injection was made prior to surgery. Supraspinatus tendon specimens were harvested from the lateral end of the torn tendon during shoulder arthroscopy and were evaluated under optical and electron microscopy. In the control group, a mixed cell population of oval and rounded tenocytes within disorganized collagen and sites of accumulated inflammatory cells was detected. In contrast, the experimental group yielded abundant oval-shaped cells with multiple cytoplasmic processes within mainly parallel collagen fibers and less marked inflammation, simulating the intact tendon structure. These findings indicate that PRP can induce microscopic changes in the ruptured tendon by stimulating the healing process and can facilitate a more effective recovery.


Subject(s)
Platelet-Rich Plasma , Rotator Cuff Injuries , Platelet-Rich Plasma/metabolism , Humans , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/pathology , Female , Male , Middle Aged , Prospective Studies , Aged , Rotator Cuff/pathology , Rotator Cuff/metabolism , Adult , Magnetic Resonance Imaging
10.
Biomolecules ; 14(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39062477

ABSTRACT

Atopic dermatitis, psoriasis and lichen sclerosus are among the most challenging conditions treated by dermatologists worldwide, with potentially significant physical, social and psychological impacts. Emerging evidence suggests that autologous-platelet-rich plasma could be used to manage skin inflammation. However, the presence of soluble autoimmune components could hinder their therapeutic potential. The aim of this study was to analyze the proteomic profile of plasma rich in growth factors (PRGFs) obtained from donors with inflammatory skin conditions to evaluate the impact of skin health status on the composition and bioactivity of PRGF-based treatments. Venous blood from healthy volunteers and patients with psoriasis, lichen sclerosus and atopic dermatitis was processed to produce PRGF supernatant. Half of the samples were subjected to an additional thermal treatment (56 °C) to inactivate inflammatory and immune molecules. Proteomic analysis was performed to assess the protein profile of PRGFs from healthy and non-healthy patients and the effect of Immunosafe treatment. Differential abundance patterns of several proteins related to key biological processes have been identified, including complement activation, blood coagulation, and glycolysis- and gluconeogenesis-related genes. These results also demonstrate that the thermal treatment (Immunosafe) contributes to the inactivation of the complement system and, as a consequence, reduction in the immunogenic potential of PRGF products.


Subject(s)
Hot Temperature , Intercellular Signaling Peptides and Proteins , Proteomics , Humans , Proteomics/methods , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/blood , Adult , Male , Female , Health Status , Middle Aged , Skin Diseases/metabolism , Skin Diseases/blood , Proteome/metabolism , Platelet-Rich Plasma/metabolism , Inflammation/metabolism
11.
J Nanobiotechnology ; 22(1): 456, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085856

ABSTRACT

Spinal cord injury (SCI) compromises the blood-spinal cord barrier (BSCB) and induces neuroinflammation, potentially exacerbating neuronal damage. This underscores the importance of maintaining BSCB integrity and mitigating neuroinflammation in SCI treatment. Our study explores an innovative approach to treating SCI by utilizing platelet-rich plasma-derived exosomes (PRP-Exos) to stabilize BSCB function and alleviate neuroinflammation. We successfully isolated exosomes from platelet-rich plasma and conducted both in vivo and in vitro experiments to assess the therapeutic effects of PRP-Exos and explore their potential mechanisms in stabilizing the BSCB, reducing neuroinflammation, and promoting neural functional recovery.In vitro results demonstrate that PRP-Exos significantly reduce the permeability of bEnd.3 cells under hypoxic-hypoglycemic conditions, thereby restoring the integrity of tight junctions. Additionally, our study elucidates the critical role of the NF-κB signaling pathway in the amelioration of neuroinflammation by PRP-Exos. In the SCI model, local injection of hydrogel-encapsulated PRP-Exos reduced Evans blue dye leakage, enhanced the expression of tight junction proteins, alleviated the inflammatory environment in the damaged area, and improved neural functional recovery. In conclusion, PRP-Exos presents a promising and effective treatment option for SCI.


Subject(s)
Exosomes , Neuroinflammatory Diseases , Platelet-Rich Plasma , Spinal Cord Injuries , Spinal Cord , Spinal Cord Injuries/therapy , Exosomes/metabolism , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Animals , Mice , Spinal Cord/metabolism , Cell Line , Male , Mice, Inbred C57BL , Blood-Brain Barrier/metabolism , NF-kappa B/metabolism , Tight Junctions/metabolism , Inflammation , Signal Transduction , Female
12.
Stem Cell Res Ther ; 15(1): 212, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39020391

ABSTRACT

BACKGROUND: Sciatic nerve repair becomes a focus of research in neurological aspect to restore the normal physical ability of the animal to stand and walk. Tissue engineered nerve grafts (TENGs) provide a promising alternative therapy for regeneration of large gap defects. The present study investigates the regenerative capacity of PRP, ADSCs, and PRP mixed ADSCs on a long sciatic nerve defect (40-mm) bridged by a polyglycolic polypropylene (PGA-PRL) mesh which acts as a neural scaffold. MATERIALS AND METHODS: The study was conducted on 12 adult male mongrel dogs that were randomly divided into 4 groups: Group I (scaffold group); where the sciatic defect was bridged by a (PGA-PRL) mesh only while the mesh was injected with ADSCs in Group II (ADSCs group), PRP in Group III (PRP group). Mixture of PRP and ADSCs was allocated in Group IV (PRP + ADSCs group). Monthly, all animals were monitored for improvement in their gait and a numerical lameness score was recorded for all groups. 6 months-post surgery, the structural and functional recovery of sciatic nerve was evaluated electrophysiologically, and on the level of gene expression, and both sciatic nerve and the gastrocnemius muscle were evaluated morphometrically, histopathologically. RESULTS: Numerical lameness score showed improvement in the motor activities of both Group II and Group III followed by Group IV and the scaffold group showed mild improvement even after 6 months. Histopathologically, all treated groups showed axonal sprouting and numerous regenerated fascicles with obvious angiogenesis in proximal cut, and distal portion where Group IV exhibited a significant remyelination with the MCOOL technique. The regenerative ratio of gastrocnemius muscle was 23.81%, 56.68%, 52.06% and 40.69% for Group I, II, III and IV; respectively. The expression of NGF showed significant up regulation in the proximal portion for both Group III and Group IV (P ≤ 0.0001) while Group II showed no significant difference. PDGF-A, and VEGF expressions were up-regulated in Group II, III, and IV whereas Group I showed significant down-regulation for NGF, PDGF-A, and VEGF (P ≤ 0.0001). CONCLUSION: ADSCs have a great role in restoring the damaged nerve fibers by secreting several types of growth factors like NGF that have a proliferative effect on Schwann cells and their migration. In addition, PRP therapy potentiates the effect of ADSCs by synthesis another growth factors such as PDGF-A, VEGF, NGF for better healing of large sciatic gap defects.


Subject(s)
Nerve Regeneration , Polypropylenes , Sciatic Nerve , Animals , Dogs , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Male , Polypropylenes/chemistry , Platelet-Rich Plasma/metabolism , Adipose Tissue/cytology , Polyglycolic Acid/chemistry , Stem Cells/cytology , Stem Cells/metabolism , Disease Models, Animal , Tissue Scaffolds/chemistry , Stem Cell Transplantation/methods , Tissue Engineering/methods
13.
Stem Cell Res Ther ; 15(1): 159, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831361

ABSTRACT

INTRODUCTION: Intra-articular injection of adipose-derived mesenchymal stromal cells (ASCs) and/or platelet-rich plasma (PRP) have been reported to independently and synergistically improve healing of osteochondral lesions in animal models. However, their independent and combined effects when localized to an osteochondral lesion by encapsulation within a photocrosslinkable methacrylated gelatin hydrogel (GelMA) have not been explored. Herein we investigated a unique combination of allogeneic ASCs and PRP embedded in GelMA as a single-stage treatment for osteochondral regeneration in a rabbit model. METHODS: Thirty mature rabbits were divided into six experimental groups: (1) Sham; (2) Defect; (3) GelMA; (4) GelMA + ASCs; (5) GelMA + PRP; and (6) GelMA + ASCs + PRP.At 12 weeks following surgical repair, osteochondral regeneration was assessed on the basis of gross appearance, biomechanical properties, histological and immunohistochemical characteristics, and subchondral bone volume. RESULTS: In terms of mechanical property reflecting the ability of neotissue to bear stress, PRP only group were significantly lower than the Sham group (p = 0.0098). On the other hand, ASCs only and ASCs combined with PRP groups did not exhibit significantly difference, which suggesting that incorporation of ASCs assists in restoring the ability of the neotissue to bear stresses similarly to native tissue (p = 0.346, p = 0.40, respectively). Safranin O in ASCs combined with PRP group was significantly higher than the Defect and GelMA only groups (p = 0.0009, p = 0.0017, respectively). Additionally, ASCs only and ASCs combined with PRP groups presented especially strong staining for collagen type II. Surprisingly, PRP only and PRP + ASCs groups tended to exhibit higher collagen type I and collagen type X staining compared to ASCs only group, suggesting a potential PRP-mediated hypertrophic effect. CONCLUSION: Regeneration of a focal osteochondral defect in a rabbit model was improved by a single-stage treatment of a photocrosslinked hydrogel containing allogenic ASCs and autologous PRP, with the combination of ASCs and PRP producing superior benefit than either alone. No experimental construct fully restored all properties of the native, healthy osteochondral unit, which may require longer follow-up or further modification of PRP and/or ASCs characteristics.


Subject(s)
Adipose Tissue , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Platelet-Rich Plasma , Animals , Rabbits , Platelet-Rich Plasma/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Hydrogels/chemistry , Hydrogels/pharmacology
14.
Sci Rep ; 14(1): 13612, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871929

ABSTRACT

One of the most prevalent disorders of the urinary system is urinary tract infection, which is mostly brought on by uropathogenic Escherichia coli (UPEC). The objective of this study was to evaluate the regenerative therapeutic and antibacterial efficacy of PRP for induced bacterial cystitis in dogs in comparison to conventional antibiotics. 25 healthy male mongrel dogs were divided into 5 groups (n = 5). Control negative group that received neither induced infection nor treatments. 20 dogs were randomized into 4 groups after two weeks of induction of UPEC cystitis into; Group 1 (control positive; G1) received weekly intravesicular instillation of sodium chloride 0.9%. Group 2 (syst/PRP; G2), treated with both systemic intramuscular antibiotic and weekly intravesicular instillation of PRP; Group 3 (PRP; G3), treated with weekly intravesicular instillation of PRP, and Group 4 (syst; G4) treated with an intramuscular systemic antibiotic. Animals were subjected to weekly clinical, ultrasonographic evaluation, urinary microbiological analysis, and redox status biomarkers estimation. Urinary matrix metalloproteinases (MMP-2, MMP-9) and urinary gene expression for platelet-derived growth factor -B (PDGF-B), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were measured. At the end of the study, dogs were euthanized, and the bladder tissues were examined macroscopically, histologically, and immunohistochemically for NF-κB P65 and Cox-2. The PRP-treated group showed significant improvement for all the clinical, Doppler parameters, and the urinary redox status (p < 0.05). The urinary MMPs activity was significantly decreased in the PRP-treated group and the expression level of urinary NGF and VEGF were downregulated while PDGFB was significantly upregulated (p < 0.05). Meanwhile, the urinary viable cell count was significantly reduced in all treatments (P < 0.05). Gross examination of bladder tissue showed marked improvement for the PRP-treated group, expressed in the histopathological findings. Immunohistochemical analysis revealed a marked increase in Cox-2 and NF-κB P65 in the PRP-treated group (P < 0.05). autologous CaCl2-activated PRP was able to overcome the bacterial infection, generating an inflammatory environment to overcome the old one and initiate tissue healing. Hence, PRP is a promising alternative therapeutic for UPEC cystitis instead of conventional antibiotics.


Subject(s)
Cystitis , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nerve Growth Factor , Platelet-Rich Plasma , Vascular Endothelial Growth Factor A , Animals , Dogs , Nerve Growth Factor/metabolism , Platelet-Rich Plasma/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cystitis/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Disease Models, Animal , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections , Down-Regulation , Urinary Tract Infections/drug therapy
15.
Sci Rep ; 14(1): 14109, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898080

ABSTRACT

Developing a reliable method to predict thrombocytopenia is imperative in drug discovery. Here, we establish an assay using a microphysiological system (MPS) to recapitulate the in-vivo mechanisms of platelet aggregation and adhesion. This assay highlights the role of shear stress on platelet aggregation and their interactions with vascular endothelial cells. Platelet aggregation induced by soluble collagen was detected under agitated, but not static, conditions using a plate shaker and gravity-driven flow using MPS. Notably, aggregates adhered on vascular endothelial cells under gravity-driven flow in the MPS, and this incident increased in a concentration-dependent manner. Upon comparing the soluble collagen-induced aggregation activity in platelet-rich plasma (PRP) and whole blood, remarkable platelet aggregate formation was observed at concentrations of 30 µg/mL and 3 µg/mL in PRP and whole blood, respectively. Moreover, ODN2395, an oligonucleotide, induced platelet aggregation and adhesion to vascular endothelial cells. SYK inhibition, which mediated thrombogenic activity via glycoprotein VI on platelets, ameliorated platelet aggregation in the system, demonstrating that the mechanism of platelet aggregation was induced by soluble collagen and oligonucleotide. Our evaluation system partially recapitulated the aggregation mechanisms in blood vessels and can contribute to the discovery of safe drugs to mitigate the risk of thrombocytopenia.


Subject(s)
Blood Platelets , Platelet Aggregation , Thrombocytopenia , Platelet Aggregation/drug effects , Humans , Thrombocytopenia/chemically induced , Blood Platelets/drug effects , Blood Platelets/metabolism , Collagen/metabolism , Collagen/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Platelet Adhesiveness/drug effects , Syk Kinase/metabolism , Syk Kinase/antagonists & inhibitors , Platelet-Rich Plasma/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Microphysiological Systems
16.
Bull Exp Biol Med ; 176(6): 747-750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38888651

ABSTRACT

In in vitro model of short-term therapeutic inhalation of Xe/O2 mixture, xenon in millimolar concentrations led to a pronounced decrease in induced platelet aggregation in the platelet-enriched blood plasma. The maximum and statistically significant decrease occurred in response to induction by collagen (by ≈30%, p≤0.01) and ADP (by ≈25%, p≤0.01). A slightly weaker but statistically significant reduction in aggregation appeared in response to ristocetin (by ≈12%, p≤0.01) and epinephrine (by ≈9%, p≤0.01). It should be noted that the spontaneous aggregation exceeded the reference values in the control group. Nevertheless, even at minimal absolute values, spontaneous platelet aggregation decreased by 2 times in response to xenon (p≤0.01). The reasons for the decrease of spontaneous and induced aggregation are xenon accumulation in the lipid bilayer of the membrane with subsequent nonspecific (mechanical) disassociation of membrane platelet structures and specific block of its distinct from neuronal NMDA receptor.


Subject(s)
Platelet Aggregation , Xenon , Xenon/pharmacology , Platelet Aggregation/drug effects , Humans , Blood Platelets/drug effects , Blood Platelets/metabolism , Adenosine Diphosphate/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Platelet-Rich Plasma/metabolism , Epinephrine/pharmacology , Epinephrine/blood , Collagen/metabolism
17.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891792

ABSTRACT

Bioproducts derived from platelets have been extensively used across various medical fields, with a recent notable surge in their application in dermatology and aesthetic procedures. These products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), play crucial roles in inducing blood vessel proliferation through growth factors derived from peripheral blood. PRP and PRF, in particular, facilitate fibrin polymerization, creating a robust structure that serves as a reservoir for numerous growth factors. These factors contribute to tissue regeneration by promoting cell proliferation, differentiation, and migration and collagen/elastin production. Aesthetic medicine harnesses these effects for diverse purposes, including hair restoration, scar treatment, striae management, and wound healing. Furthermore, these biological products can act as adjuvants with other treatment modalities, such as laser therapy, radiofrequency, and microneedling. This review synthesizes the existing evidence, offering insights into the applications and benefits of biological products in aesthetic medicine.


Subject(s)
Platelet-Rich Fibrin , Platelet-Rich Plasma , Regenerative Medicine , Humans , Platelet-Rich Plasma/metabolism , Platelet-Rich Plasma/chemistry , Regenerative Medicine/methods , Platelet-Rich Fibrin/metabolism , Wound Healing , Blood Platelets/metabolism , Animals , Regeneration , Cell Proliferation
18.
BMC Genomics ; 25(1): 564, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840037

ABSTRACT

Mesenchymal Stem Cells are ideal seed cells for tissue repair and cell therapy and have promising applications in regenerative medicine and tissue engineering. Using Platelet-Rich Plasma as an adjuvant to create and improve the microenvironment for Mesenchymal Stem Cells growth can enhance the biological properties of Mesenchymal Stem Cells and improve the efficacy of cell therapy. However, the mechanism by which Platelet-Rich Plasma improves the biological performance of Mesenchymal Stem Cells is still unknown. In this study, by examining the effects of Platelet-Rich Plasma on the biological performance of Mesenchymal Stem Cells, combined with multiomics analysis (Transcriptomics, Proteomics and Metabolomics) and related tests, we analyzed the specific pathways, related mechanisms and metabolic pathways of Platelet-Rich Plasma to improve the biological performance of Mesenchymal Stem Cells. In an in vitro cell culture system, the biological performance of Mesenchymal Stem Cells was significantly improved after replacing Foetal Bovine Serum with Platelet-Rich Plasma, and the genes (ESM1, PDGFB, CLEC7A, CCR1 and ITGA6 et al.) related to cell proliferation, adhesion, growth, migration and signal transduction were significantly upregulated. Platelet-Rich Plasma can enhance the secretion function of MSC exosomes, significantly upregulate many proteins related to tissue repair, immune regulation and anti-infection, and enhance the repair effect of exosomes on skin injury. After replacing Foetal Bovine Serum with Platelet-Rich Plasma, Mesenchymal Stem Cells underwent metabolic reprogramming, the metabolism of amino acids and fatty acids and various signaling pathways were changed, the anabolic pathways of various proteins were enhanced. These results provide a theoretical and technical reference for optimizing the Mesenchymal Stem Cells culture system, improving the biological characteristics and clinical application effects of Mesenchymal Stem Cells.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Platelet-Rich Plasma , Proteomics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Platelet-Rich Plasma/metabolism , Humans , Metabolomics , Animals , Cells, Cultured , Gene Expression Profiling , Exosomes/metabolism , Multiomics
19.
J Ovarian Res ; 17(1): 104, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760869

ABSTRACT

INTRODUCTION: The incidence of infertility caused by diminished ovarian reserve has become a significant problem worldwide. The beneficial effect of PRP treatment of the ovaries has already been described, but the high-level evidence of its effectiveness has not yet been proven. MATERIALS AND METHODS: A systematic search was performed in five databases, until March 12th, 2024. Both randomized and non-randomized studies that compared PRP treatment of the ovaries to self-control among women with diminished ovarian reserve were eligible for inclusion. Hormonal levels (Anti-Müllerian hormone (AMH), Follicle stimulating hormone (FSH), Luteinizing hormone (LH), Estradiol (E2), In-vitro fertilization parameters (Antral follicle count, oocyte, and embryo count), biochemical and spontaneous pregnancy and livebirth were measured. RESULTS: 38 eligible studies were identified reporting on 2256 women. The level of AMH rised, the level of FSH decreased significantly after the PRP treatment. AMH 1 month MD 0.20 (n = 856, p > 0.001, 95% CI: [0.12;0.28]), 2 months MD 0.26 (n = 910, p = 0.013, 95% CI: [0.07;0.44]), 3 months MD 0.36 (n = 881, p = 0.002,95% CI: [0.20;0.52]). FSH 1 month MD -10.20 (n = 796, p > 0.039, 95% CI: [-19.80;-0.61]), 2 months MD -7.02 (n = 910, p = 0.017, 95% CI: [-12.48; -1.57]), 3 months MD -8.87 (n = 809, p = 0.010, 95% CI: [-14.19; -3.55]). The antral follicle count elevated significantly MD 1.60 (n = 1418, p = < 0.001, 95% CI: [0.92; 2.27]). Significant improvement was observed in the number of retrieved oocytes MD 0.81 (n = 802, p = 0.002, 95% CI: [0.36; 1.26]), and embryos created MD 0.91 (n = 616, p = 0.001, 95% CI: [0.45;1.36]). The incidence of spontaneous pregnancy following PRP treatment showed a rate with a proportion of 0.07 (n = 1370, 95% CI: 0.04-0.12), the rate of biochemical pregnancy was 0.18 (n = 1800, 95% CI: 0.15-0.22), livebirth was 0.11 (n = 1482, 95% CI: 0.07-0.15). CONCLUSIONS: Our meta-analysis showed that based on protocolized analysis of the widest scientific literature search to date, containing predominantly observational studies, PRP treatment resulted in a statistically significant improvement in the main fertility parameters of diminished ovarian reserve women. Further multicenter, randomized trials, with large patient numbers and a longer follow-up period are needed to certify our results and develop the most effective treatment protocol.


Subject(s)
Ovarian Reserve , Platelet-Rich Plasma , Humans , Female , Platelet-Rich Plasma/metabolism , Pregnancy , Ovary/physiopathology , Fertility , Anti-Mullerian Hormone/blood , Fertilization in Vitro/methods , Infertility, Female/therapy , Infertility, Female/blood , Treatment Outcome , Follicle Stimulating Hormone/blood
20.
Sci Rep ; 14(1): 12019, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797743

ABSTRACT

Novel wound dressings with therapeutic effects are being continually designed to improve the wound healing process. In this study, the structural, chemical, physical, and biological properties of an electrospun poly glycerol sebacate/poly lactide acid/platelet-rich plasma (PGS/PLA-PRP) nanofibers were evaluated to determine its impacts on in vitro wound healing. Results revealed desirable cell viability in the Fibroblast (L929) and macrophage (RAW-264.7) cell lines as well as human umbilical vein endothelial cells (HUVEC). Cell migration was evident in the scratch assay (L929 cell line) so that it promoted scratch contraction to accelerate in vitro wound healing. Moreover, addition of PRP to the fiber structure led to enhanced collagen deposition (~ 2 times) in comparison with PGS/PLA scaffolds. While by addition PRP to PGS/PLA fibers not only decreased the expression levels of pro-inflammatory cytokines (IL-6 and TNF-α) in RAW-264.7 cells but also led to significantly increased levels of cytokine (IL-10) and the growth factor (TGF-ß), which are related to the anti-inflammatory phase (M2 phenotype). Finally, PGS/PLA-PRP was found to induce a significant level of angiogenesis by forming branching points, loops, and tubes. Based on the results obtained, the PGS/PLA-PRP dressing developed might be a promising evolution in skin tissue engineering ensuring improved wound healing and tissue regeneration.


Subject(s)
Bandages , Glycerol , Human Umbilical Vein Endothelial Cells , Platelet-Rich Plasma , Polyesters , Polymers , Wound Healing , Platelet-Rich Plasma/metabolism , Wound Healing/drug effects , Humans , Polyesters/chemistry , Animals , Mice , Glycerol/chemistry , Glycerol/analogs & derivatives , Polymers/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Decanoates/chemistry , Nanofibers/chemistry , Cell Movement/drug effects , Cell Line , Cell Survival/drug effects , RAW 264.7 Cells , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL