Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.884
Filter
1.
J Agric Food Chem ; 72(25): 14126-14140, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38861684

ABSTRACT

This study confirmed a field population of American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) that developed simultaneously high levels of resistance (resistance index >10) to three divergent modes of action herbicides: fenoxaprop-P-ethyl, mesosulfuron-methyl, and isoproturon. The resistance phenotype observed in this population was not attributed to target-site alterations; rather, the resistant plants exhibited a significant increase in the activity of cytochrome P450s (P450s) and enhanced metabolism rates for all three herbicides. RNA sequencing revealed significant upregulation of two P450s, CYP709B1 and CYP704C1, in the resistant plants both before and after herbicide treatments. Molecular docking predicted that the homology models of these P450s should exhibit a binding affinity for a range of herbicides. The heterologous expression of the identified P450s in yeast cells indicated improved growth in the presence of all three of the aforementioned herbicides. Collectively, the increased expression of CYP709B1 and CYP704C1 likely contributed to the P450s-mediated enhanced metabolism, thereby conferring multiple herbicide resistance in B. syzigachne.


Subject(s)
Cytochrome P-450 Enzyme System , Herbicide Resistance , Herbicides , Plant Proteins , Herbicide Resistance/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Herbicides/pharmacology , Herbicides/metabolism , Herbicides/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Molecular Docking Simulation , Poaceae/genetics , Poaceae/metabolism , Poaceae/enzymology , Poaceae/drug effects , Poaceae/chemistry
2.
Int J Biol Macromol ; 272(Pt 1): 132847, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834115

ABSTRACT

This study explored the impact of sodium hydroxide and benzoylation treatment on the production of cellulose nanocrystals from Semantan bamboo (Gigantochloa scortechinii). Bamboo cellulose nanocrystals (BCNs) were obtained via acid hydrolysis, with the effectiveness of an isolation method and chemical treatments demonstrated in removing non-cellulosic constituents. X-ray diffraction analysis revealed a crystalline cellulose II structure for benzoylated BCN (B) and a crystalline cellulose I structure for NaOH-treated BCN (S), with BCN (S) exhibiting a higher crystallinity index (80.55 %) compared to BCN (B) (67.87 %). The yield of BCN (B) (23.68 ± 1.10 %) was higher than BCN (S) (20.65 ± 2.21 %). Transmission electron microscopy images showed a mean diameter of 7.95 ± 2.79 nm for BCN (S) and 9.22 ± 3.38 nm for BCN (B). Thermogravimetric analysis indicated lower thermal stability for BCN (B) compared to BCN (S), with charcoal residues at 600 °C of 31.06 % and 22 %, respectively. Zeta potential values were -41.60 ± 1.97 mV for BCN (S) and -21.80 ± 2.54 mV for BCN (B). Gigantochloa scortechinii holds significant potential for sustainable and eco-friendly applications in the construction, furniture, and renewable energy industries. These findings highlight the versatility and potential of BCNs derived from Gigantochloa scortechinii for various applications.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Nanoparticles/chemistry , Poaceae/chemistry , Hydrolysis , X-Ray Diffraction
3.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884222

ABSTRACT

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Subject(s)
Carbon Isotopes , Ecosystem , Nitrogen Isotopes , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Tibet , China , Forests , Altitude , Trees/growth & development , Trees/metabolism , Trees/chemistry , Tracheophyta/growth & development , Tracheophyta/chemistry , Tracheophyta/metabolism , Grassland , Poaceae/growth & development , Poaceae/chemistry , Poaceae/metabolism
4.
J Agric Food Chem ; 72(22): 12859-12870, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780458

ABSTRACT

Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.


Subject(s)
Chlorophyll , Light , Photosynthesis , Plant Proteins , Poaceae , Proteomics , Photosynthesis/radiation effects , Plant Proteins/metabolism , Plant Proteins/genetics , Chlorophyll/metabolism , Poaceae/metabolism , Poaceae/radiation effects , Poaceae/chemistry , Poaceae/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/chemistry , Plant Leaves/growth & development , Red Light
5.
Bioresour Technol ; 402: 130804, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718904

ABSTRACT

Lignin, a complex phenolic polymer crucial for plant structure, is mostly used as fuel but it can be harnessed for environmentally friendly applications. This article explores ozonation as a green method for lignin extraction from lignocellulosic biomass, aiming to uncover the benefits of the extracted lignin. A pilot-scale ozonation reactor was employed to extract lignin from Miscanthus giganteus (a grass variety) and vine shoots (a woody biomass). The study examined the lignin extraction and modification of the fractions and identified the generation of phenolic and organic acids. About 48 % of lignin was successfully extracted from both biomass types. Phenolic monomers were produced, vine shoots yielding fewer monomers than Miscanthus giganteus. Ozonation generated homogeneous lignin oligomers, although their molecular weight decreased during ozonation, with vine shoot oligomers exhibiting greater resistance to ozone. Extracted fractions were stable at 200 °C, despite the low molecular weight, outlining the potential of these phenolic fractions.


Subject(s)
Lignin , Ozone , Plant Shoots , Poaceae , Lignin/chemistry , Poaceae/chemistry , Ozone/chemistry , Ozone/pharmacology , Pilot Projects , Plant Shoots/chemistry , Biomass , Bioreactors , Molecular Weight , Phenols
6.
Food Chem ; 452: 139524, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703742

ABSTRACT

Chinese wild rice (CWR) is a nutritious and healthy whole grain, worth developing. To develop and use its value, a new type of huangjiu was brewed with CWR, and the flavour characteristics, sensory quality, functional and bioactive components were evaluated. CWR (67 flavour substances) and glutinous rice (GR)-CWR huangjiu (62 flavour substances) had a better flavour than GR huangjiu (54 flavour substances), and the overall style of GR-CWR huangjiu was more skewed towards GR. The fruity, honey, caramel-like, herb and smoky aroma attributes of CWR huangjiu were higher than those of GR huangjiu (P < 0.05), while only the alcoholic was weaker (P < 0.05) due to the lower alcohol content. The huangjiu brewed using CWR had a better taste than that brewed using only GR. Furthermore, CWR huangjiu had the highest content of total dietary fiber (732.0 ± 15.2 mg/100 g), followed by GR-CWR (307.0 ± 8.5 mg/100 g), and GR (127.0 ± 2.3 mg/100 g). CWR huangjiu also had the highest total phenolic compounds (3.32 ± 0.05 mg/100 g/%vol) and total saponins (2.46 ± 0.03 mg/100 g/%vol) contents, followed by GR-CWR and GR. This study provides guidance for exploring further possibilities for CWR in the future.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Oryza , Taste , Humans , Odorants/analysis , Oryza/chemistry , Oryza/metabolism , Flavoring Agents/chemistry , Flavoring Agents/analysis , Adult , Female , Male , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , Young Adult , Poaceae/chemistry , Poaceae/metabolism , East Asian People
7.
Bioresour Technol ; 400: 130666, 2024 May.
Article in English | MEDLINE | ID: mdl-38583673

ABSTRACT

Applications of deep eutectic solvent (DES) systems to separate lignocellulosic components are of interest to develop environmentally friendly processes and achieve efficient utilization of biomass. To enhance the performance of a binary neutral DES (glycerol:guanidine hydrochloride), various Lewis acids (e.g., AlCl3·6H2O, FeCl3·6H2O, etc.) were introduced to synthesize a series of ternary DES systems; these were coupled with microwave heating and applied to moso bamboo. Among the ternary DES systems evaluated, the FeCl3-based DES effectively removed lignin (81.17%) and xylan (85.42%), significantly improving enzymatic digestibility of the residual glucan and xylan (90.15% and 99.51%, respectively). Furthermore, 50.74% of the lignin, with high purity and a well-preserved structure, was recovered. A recyclability experiment showed that the pretreatment performance of the FeCl3-based DES was still basically maintained after five cycles. Overall, the microwave-assisted ternary DES pretreatment approach proposed in this study appears to be a promising option for sustainable biorefinery operations.


Subject(s)
Deep Eutectic Solvents , Ferric Compounds , Lignin , Microwaves , Lignin/chemistry , Hydrolysis , Deep Eutectic Solvents/chemistry , Chlorides/chemistry , Cellulase/metabolism , Cellulase/chemistry , Glycerol/chemistry , Solvents/chemistry , Sasa/chemistry , Poaceae/chemistry
8.
J Agric Food Chem ; 72(18): 10206-10217, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38597965

ABSTRACT

Bamboo is a promising biomass resource. However, the complex multilayered structure and chemical composition of bamboo cell walls create a unique anti-depolymerization barrier, which increases the difficulty of separation and utilization of bamboo. In this study, the relationship between the connections of lignin-carbohydrate complexes (LCCs) within bamboo cell walls and their multilayered structural compositions was investigated. The chemical composition, structural properties, dissolution processes, and migration mechanisms of LCCs were analyzed. Alkali-stabilized LCC bonds were found to be predominantly characterized by phenyl glycoside (PhGlc) bonds along with numerous p-coumaric acid (PCA) linkage structures. As demonstrated by the NMR and CLSM results, the dissolution of the LCC during the alkaline pretreatment process was observed to migrate from the inner secondary wall (S-layer) of the bamboo fiber cell walls to the cell corner middle lamella (CCML) and compound middle lamella (CML), ultimately leading to its release from the bamboo. Furthermore, the presence of H-type lignin-FA-arabinoxylan linkage structures within the bamboo LCC was identified with their primary dissolution observed in the S-layer of the bamboo fiber cell walls. The study results provided a clear target for breaking down the anti-depolymerization barrier in bamboo, signifying a major advancement in achieving the comprehensive separation of bamboo components.


Subject(s)
Carbohydrates , Cell Wall , Lignin , Lignin/chemistry , Cell Wall/chemistry , Carbohydrates/chemistry , Alkalies/chemistry , Sasa/chemistry , Solubility , Poaceae/chemistry , Xylans/chemistry , Magnetic Resonance Spectroscopy
9.
Int J Biol Macromol ; 267(Pt 2): 131595, 2024 May.
Article in English | MEDLINE | ID: mdl-38621564

ABSTRACT

The development of modern construction and transportation industries demands increasingly high requirements for thin, lightweight, high-strength, and highly tough composite materials, such as metal carbides and concrete. Bamboo is a green, low-carbon, fast-growing, renewable, and biodegradable material with high strength and toughness. However, the density of its inner layer is low due to the functional gradient (the volume fraction of vascular bundles decreases from the outer layer to the inner layer), resulting in low performance, high compressibility, and significant amounts of bamboo waste. We utilized chemical and mechanical treatments of bamboo's low-density, low-strength inner layers to create lightweight, ultra-thin, high-strength, and high-toughness composites. The treatment included the partial removal of lignin and hemicellulose to alter the chemical components, followed by mechanical drying and hot pressing. The treated bamboo had 100.8 % higher tensile strength (150.35 MPa), 47.7 % higher flexural strength (97.67 MPa), and 132.0 % higher water resistance and was approximately 68.9 % thinner than the natural bamboo. The excellent physical and mechanical properties of the treated bamboo are attributed to the contraction of parenchyma cells during delignification, the interlocking due to the collapse of parenchyma cells during mechanical drying, and an increase in the density of hydrogen bonds between cellulose molecular chains during hot pressing. Our research provides a new strategy for obtaining sustainable, ultra-thin, lightweight, high-strength, and high-toughness composite materials from bamboo for construction and transportation applications.


Subject(s)
Lignin , Polysaccharides , Sasa , Lignin/chemistry , Polysaccharides/chemistry , Sasa/chemistry , Tensile Strength , Poaceae/chemistry
10.
Arch Anim Nutr ; 78(1): 60-77, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38488818

ABSTRACT

This study was performed to investigate the nitrogen (N) and carbohydrate digestive traits of grazing heifers. The experiment was carried out at the Federal University of Lavras. The treatments were a Marandu palisadegrass (Urochloa brizantha [Syn, Brachiaria brizantha] Stapf. A. Rich. cv. Marandu) monoculture fertilised with 150 kg N/[ha ∙ year] (FP) or Marandu palisadegrass mixed pasture with forage peanut (MP). The pastures were grazed by six rumen-cannulated zebu heifers. A double cross-over design was used in four periods. Nutritive value, intake and apparent digestibility of forage, ruminal traits and kinetics and N balance were evaluated. Apparent total-tract digestibility of dry matter (DM) and neutral detergent fibre (NDF) were greater for FP than for MP. There was no effect in apparent total-tract digestibility of N. The estimated intestinal digestibility of nutrients was greater on MP than FP. Even though N intake and faecal N output were greater on MP than FP, there was no effect in urine N output. The N balance tended to be greater on MP than FP. The forage peanut, which contains condensed tannins, decreased ruminal fibre degradation, apparent digestibility and ruminal protein degradation, increased N flow from the rumen. Inclusion of forage peanut in the mixed pasture decreased the ruminal fibre degradability but increased N retention by the animals.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Rumen , Animals , Cattle/physiology , Digestion/physiology , Animal Feed/analysis , Female , Diet/veterinary , Rumen/physiology , Rumen/metabolism , Nitrogen/metabolism , Dietary Proteins/metabolism , Cross-Over Studies , Fertilizers/analysis , Nutritive Value , Arachis/chemistry , Dietary Carbohydrates/analysis , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Brachiaria/chemistry , Brachiaria/physiology , Poaceae/chemistry
11.
Environ Res ; 247: 118127, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38220075

ABSTRACT

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Subject(s)
Ecosystem , Ecotype , Climate Change , Poaceae/chemistry , Poaceae/metabolism , Biomass , Antioxidants/metabolism
12.
J Sci Food Agric ; 104(5): 2937-2946, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38057938

ABSTRACT

BACKGROUND: Megathyrsus maximus is a forage grass native to Africa but widely cultivated in tropical and subtropical regions of the world where it is part of the grazing food chain. This study aimed to evaluate five M. maximus genotypes for the effect of maturity on their morpho-agronomic traits, nutritional composition and digestibility, and to correlate their leaf blade and stem anatomy with their nutritional value. RESULTS: The proportion of sclerenchyma tissues increased as maturity was reached, while lignin accumulation was differentiated between genotypes. Gatton Panic, Green Panic and Mutale genotypes maintained their acid detergent lignin (ADL) values for leaf blades in the three cuts evaluated. In sacco ruminal dry matter disappearance was lower in Green Panic genotype at the vegetative stage for stems, but not for leaf blades. Significant positive correlations were found between dry matter disappearance and mesophyll tissues, and the latter were negatively correlated with neutral detergent fiber (NDF) and ADL. CONCLUSION: Our results strongly indicate that cutting age and genotype affected the nutritional value of M. maximus leaf blades and stems, with a more pronounced loss of quality in stems than in leaf blades. We recommend increasing the frequency of grazing at early stage or anticipating the stage of stem elongation in Green Panic to produce forage with better nutritional value. © 2023 Society of Chemical Industry.


Subject(s)
Dietary Fiber , Lignin , Dietary Fiber/analysis , Detergents , Digestion , Poaceae/chemistry , Nutritive Value , Plant Leaves/genetics , Plant Leaves/chemistry , Animal Feed
13.
Appl Radiat Isot ; 205: 111170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160568

ABSTRACT

The levels of naturally occurring radionuclides in soil, grass, and milk were measured in this study in order to calculate the transfer factor of radionuclides from soil to grass and grass to milk obtained from Erbil governorate in Iraq. High efficiency gamma spectrometry used for the measurement. It has been determined that the mean activity concentrations of 232Th, 226Ra, and 40K are 3.08, 8.37, and 253 BqKg-1 in soil, 0.5, 0.39, and 203.05 BqKg-1, in grass, and 0.29, 0.084, and 29.69 BqL-1, in milk, respectively. For soil to grass, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.18, 0.052, and 0.84, respectively, for soil to grass. For grass to milk, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.45, 0.166, and 0.11 dayL-1, respectively. The average transfer factor for 232Th, 226Ra, and 40K in all samples were lower than the world average value.


Subject(s)
Radiation Monitoring , Radioactivity , Soil Pollutants, Radioactive , Animals , Soil/chemistry , Poaceae/chemistry , Transfer Factor/analysis , Milk/chemistry , Iraq , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Radioisotopes/analysis
14.
Adv Respir Med ; 91(6): 486-503, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37987298

ABSTRACT

Allergic diseases are a global public health problem that affects up to 30% of the population in industrialized societies. More than 40% of allergic patients suffer from grass pollen allergy. Grass pollen allergens of group 1 and group 5 are the major allergens, since they induce allergic reactions in patients at high rates. In this study, we used immunoinformatic approaches to design an effective epitope-based vaccine against the grass group 1 allergens. After the alignment of all known pollen T-cell and B-cell epitopes from pollen allergens available in the public databases, the epitope GTKSEVEDVIPEGWKADTSY was identified as the most suitable for further analyses. The target sequence was subjected to immunoinformatics analyses to predict antigenic T-cell and B-cell epitopes. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. The selected T-cell epitopes (VEDVIPEGW and TKSEVEDVIPEGWKA) covered 78.87% and 98.20% of the global population and 84.57% and 99.86% of the population of Europe. Selected CD8+, CD4+ T-cell and B-cell epitopes have been validated by molecular docking analysis. CD8+ and CD4+ T-cell epitopes showed a very strong binding affinity to major histocompatibility complex (MHC) class I (MHC I) molecules and MHC class II (MHC II) molecules with global energy scores of -72.1 kcal/mol and -89.59 kcal/mol, respectively. The human IgE-Fc (PDB ID 4J4P) showed a lower affinity with B-cell epitope (ΔG = -34.4 kcal/mol), while the Phl p 2-specific human IgE Fab (PDB ID 2VXQ) had the lowest binding with the B-cell epitope (ΔG = -29.9 kcal/mol). Our immunoinformatics results demonstrated that the peptide GTKSEVEDVIPEGWKADTSY could stimulate the immune system and we performed ex vivo tests showed that the investigated epitope activates T cells isolated from patients with grass pollen allergy, but it is not recognized by IgE antibodies specific for grass pollen allergens. This confirms the importance of such studies to establish universal epitopes to serve as a basis for developing an effective vaccine against a particular group of allergens. Further in vivo studies are needed to validate the effectiveness of such a vaccine against grass pollen allergens.


Subject(s)
Hypersensitivity , Rhinitis, Allergic, Seasonal , Vaccines , Humans , Allergens , Poaceae/chemistry , Poaceae/metabolism , Epitopes, B-Lymphocyte/chemistry , Rhinitis, Allergic, Seasonal/prevention & control , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Amino Acid Sequence , Plant Proteins/chemistry , Plant Proteins/metabolism , Immunoglobulin E/chemistry , Immunoglobulin E/metabolism
15.
Food Chem ; 423: 136312, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37182491

ABSTRACT

Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed. Notably, tritordeum had significantly higher contents of protein, some minerals (magnesium and iron), total phenolics and methyl donors. Tritordeum also had higher levels of total amino acids (but not asparagine) and total sugars, including raffinose. By contrast, bread wheat and tritordeum had similar contents of the two major dietary fibre components in white flour, arabinoxylan and ß-glucan, with significantly lower contents in durum wheat.


Subject(s)
Bread , Triticum , Triticum/chemistry , Bread/analysis , Poaceae/chemistry , Edible Grain/chemistry , Flour/analysis
16.
Environ Res ; 228: 115846, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37024027

ABSTRACT

Leersia hexandra Swartz (L. hexandra) is a promising hyperaccumulator for Cr pollution remediation, but whether its Cr phytoextraction is subject to the root surface-attached iron plaque (IP) remains unclear. In this research, the natural and artificial IPs were proven to be comprised of small amounts of exchangeable Fe as well as carbonate Fe, and dominantly Fe minerals involving amorphous two-line ferrihydrite (Fh), poorly crystalline lepidocrocite (Le) and highly crystalline goethite (Go). The Fe content in the artificial IPs augmented with increasing induced Fe(II) concentration, and the 50 mg/L Fe(II) led to the identical Fe content and different component proportions of artificial IP (Fe50) and natural IP. Fh was consisted of highly aggregated nanoparticles, and the aging of Fh caused its phase conversion to rod-like Le and Go. The Cr(VI) adsorption results of Fe minerals corroborated the coordination of Cr(VI) onto the Fh surface and the significantly greater equilibrium Cr(VI) adsorption amount of Fh over Le and Go. The greatest Cr(VI) reduction capacity of Fh among three Fe minerals was found to be related to its most abundant surface-adsorbed Fe(II) content. The results of hydroponic experiment of L. hexandra showed that the presence of IP facilitated the Cr(VI) removal by L. hexandra during the cultivation period of 10-45 days, and consequently, compared to the Fe0 group (without IP), around 60% of increase in the Cr accumulation of shoots was achieved by Fe50 group. The findings of this work are conductive to furthering our understanding of IP-regulated Cr phytoextraction of L. hexandra.


Subject(s)
Chromium , Iron , Chromium/chemistry , Poaceae/chemistry , Ferrous Compounds , Oxidation-Reduction
17.
Int J Biol Macromol ; 241: 124461, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37086759

ABSTRACT

Bamboo (Phyllostachys pubescens) is an attractive biomass block to develop biorefining industry, however, less emphasis has been placed on elucidating the chemical linkage variations of lignin and LCC between different bamboo cell walls. Here, purified milled wood lignin (MWLp) and lignin-carbohydrate complex (LCC) were isolated from bamboo (Phyllostachys pubescens) fibers (BF) and parenchyma cells (PC), respectively. The variations of structure features and chemical linkages of lignin and LCC were investigated via FT-IR, 2D HSQC NMR, and 31P NMR techniques. 2D HSQC NMR revealed that ß-O-4 alkyl-aryl ether linkages and resinol (ß-ß) substructure were the main substructures in BF-MWLp and PC-MWLp. ß-1 linkages existed in the PC-MWLp (3.18/100 Ar), but not in BF-MWLp. Moreover, tricin, as a flavonoid compound, was only detected in the BF-MWLp. The amount of the syringyl (S) units of PC-MWLp was higher than BF-MWLp. The results indicated that phenyl glycoside (PhGlc) bonds (mainly lignin and xylan) were the predominant chemical linkage type of LCC bonds in BF-LCC and PC-LCC, and the high contents of PhGlc bonds (45.53/100 Ar) were presented in PC. Our finding can provide a reference for the structural variations of lignin and LCC between the different bamboo cell walls.


Subject(s)
Cardiac Glycosides , Lignin , Lignin/chemistry , Spectroscopy, Fourier Transform Infrared , Poaceae/chemistry , Magnetic Resonance Spectroscopy , Glycosides , Xylans/chemistry
18.
Environ Res ; 227: 115749, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36965787

ABSTRACT

Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.


Subject(s)
Metals, Heavy , Soil Pollutants , Lead/analysis , Soil Pollutants/analysis , Metals, Heavy/analysis , Zinc/analysis , Poaceae/chemistry , Poaceae/metabolism , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Soil
19.
Bioorg Chem ; 133: 106414, 2023 04.
Article in English | MEDLINE | ID: mdl-36774691

ABSTRACT

The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 µg/mL against S. aureus and 125 µg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 µg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 µg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.


Subject(s)
Biological Products , Metal Nanoparticles , Nanoparticles , Poaceae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Copper/pharmacology , Copper/chemistry , Dihydropteroate Synthase , Escherichia coli , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Nanoparticles/chemistry , Oxides/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus , Biological Products/chemistry , Poaceae/chemistry , Poaceae/metabolism
20.
J Nat Med ; 77(2): 379-386, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637708

ABSTRACT

ABSTRUCT: n-Hexane extract of rhizomes of Imperata cylindrica var. koenigii f. pallida yielded five novel skeletal triterpenoids, designed as impallidin (1), impallidol (2), impallidin ozonide (3a, 3b), trisnorimpallidin aldehyde (4), tetranorimpallidin aldehyde (5). Structures of novel compounds were elucidated by mainly 2D NMR and other spectroscopic analysis and chemical correlations. Alternatively, compound 3a, 3b was derivatized from 1 under ozone oxidation condition.


Subject(s)
Triterpenes , Triterpenes/chemistry , Poaceae/chemistry , Rhizome/chemistry , Magnetic Resonance Spectroscopy , Skeleton
SELECTION OF CITATIONS
SEARCH DETAIL
...