Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
1.
Toxins (Basel) ; 16(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38922168

ABSTRACT

Claviceptaceous endophytic fungi in the genus Epichloë mostly form a symbiotic relationship with cool-season grasses. Epichloë spp. are capable of producing bioactive alkaloids such as peramines, lolines, ergot alkaloids, and indole-diterpenes, which protect the host plant from herbivory by animals, insects, and nematodes. The host also benefits from enhanced tolerance to abiotic stresses, such as salt, drought, waterlogging, cold, heavy metals, and low nitrogen stress. The bioactive alkaloids produced can have both direct and indirect effects towards plant parasitic nematodes. Direct interaction with nematodes' motile stages can cause paralysis (nematostatic effect) or death (nematicidal effect). Indirectly, the metabolites may induce host immunity which inhibits feeding and subsequent nematode development. This review highlights the different mechanisms through which this interaction and the metabolites produced have been explored in the suppression of plant parasitic nematodes and also how the specific interactions between different grass genotypes and endophyte strains result in variable suppression of different nematode species. An understanding of the different grass-endophyte interactions and their successes and failures in suppressing various nematode species is essential to enable the proper selection of grass-endophyte combinations to identify the alkaloids produced, concentrations required, and determine which nematodes are sensitive to which specific alkaloids.


Subject(s)
Alkaloids , Endophytes , Nematoda , Poaceae , Animals , Alkaloids/pharmacology , Endophytes/metabolism , Poaceae/parasitology , Nematoda/drug effects , Epichloe/metabolism , Plant Diseases/parasitology , Plant Diseases/microbiology
2.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705354

ABSTRACT

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Subject(s)
Pest Control, Biological , Rhabditida , Animals , Rhabditida/physiology , Poaceae/parasitology , Moths/parasitology , Weevils/parasitology , New Jersey
3.
J Econ Entomol ; 117(3): 858-864, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38520739

ABSTRACT

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a major pest of wheat (Triticum aestivum L., Poales: Poaceae) across the northern Great Plains of North America. Cephus cinctus has a wide host range, attacking numerous wild grasses and cultivated cereals in crop and grassland habitats, where it is, in turn, attacked by 2 native braconid parasitoids. Quantitative assessments of C. cinctus infestation and parasitism levels in different grass species across the full spectrum of available hosts are important in assessing the extent to which grasslands, or specific constituent grass species, may be reservoirs of pests or parasitoids moving into wheat. We quantified infestation and parasitism levels in over 25,000 stems collected from 17 grass species and wheat spanning 35 sites in central Montana, United States, over 2 yr. Infestation levels in 5 grass species, primarily wheatgrasses, were high (38%-65%) and similar to the levels observed in wheat (55%). In contrast, the majority of grass species (12 of 17) had significantly lower levels of infestation (<10%), suggesting that most grasses are not important reservoirs of C. cinctus. Parasitism levels in highly infested wheatgrasses were, on average, 3 times higher than those in cultivated wheat, suggesting that these grasses could provide important conservation habitat for parasitoids. Future work examining the relative performance of pests and parasitoids in these grasses will be important in gauging their relative value as plant materials to bolster parasitoid conservation in reseeded grassland habitats.


Subject(s)
Hymenoptera , Poaceae , Animals , Hymenoptera/physiology , Poaceae/parasitology , Montana , Grassland , Wasps/physiology , Triticum/parasitology , Pest Control, Biological , Host-Parasite Interactions
4.
PLoS One ; 16(2): e0246855, 2021.
Article in English | MEDLINE | ID: mdl-33592028

ABSTRACT

Precision agriculture (PA) is the application of management decisions based on identifying, quantifying, and responding to space-time variability. However, knowledge of crop pest responses to within-field environmental variability, and the spatial distribution of their natural enemies, is limited. Quantitative methods providing insights on how pest-predator relationships vary within fields are potentially important tools. In this study, phloem feeders and their natural enemies, were observed over two years across 81 locations within a field of the perennial feedstock grass in Georgia, USA. Geographically weighted regression (GWR) was used to spatially correlate their abundance with environmental factors. Variables included distance to forest edge, Normalized Difference of Vegetation Index (NDVI), slope, aspect, elevation, soil particle size distribution, and weather values. GWR methods were compared with generalized linear regression methods that do not account for spatial information. Non-spatial models indicated positive relationships between phloem-feeder abundance and wind speed, but negative relationships between elevation, proportions of silt and sand, and NDVI. With data partitioned into three seasonal groups, terrain and soil variables remained significant, and natural enemies and spiders became relevant. Results from GWR indicated that magnitudes and directions of responses varied within the field, and that relationships differed among seasons. Strong negative relationships between response and explanatory factors occurred: with NDVI during mid-season; with percent silt, during mid-, and late seasons; and with spider abundance during early and late seasons. In GWR models, slope, elevation, and aspect were mostly positive indicating further that associations with elevation depended on whether models incorporated spatial information or not. By using spatially explicit models, the analysis provided a complex, nuanced understanding of within-field relationships between phloem feeders and environmental covariates. This approach provides an opportunity to learn about the variability within agricultural fields and, with further analysis, has potential to inform and improve PA and habitat management decisions.


Subject(s)
Crops, Agricultural , Herbivory , Insecta/physiology , Models, Biological , Poaceae , Agriculture , Animals , Crops, Agricultural/growth & development , Crops, Agricultural/parasitology , Georgia , Poaceae/growth & development , Poaceae/parasitology
5.
Parasit Vectors ; 13(1): 458, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912326

ABSTRACT

BACKGROUND: The ability of infective larvae of cattle gastrointestinal nematode (GIN) species to overwinter on pastures in northerly climatic zones with very cold dry winters is poorly understood. This is an important knowledge gap with critical implications for parasite risk assessment and control. METHODS: Infective third-stage larvae (L3) were quantified in samples of fecal pats, together with adjacent grass and soil, before and after winter on three farms in southern, central and northern Alberta. Nemabiome ITS2 metabarcoding was then performed on the harvested L3 populations to determine the species composition. Finally, parasite-free tracer calves were used to investigate if the L3 surviving the winter could infect calves and develop to adult worms in spring. RESULTS: Farm level monitoring, using solar powered weather stations, revealed that ground temperatures were consistently higher, and less variable, than the air temperatures; minimum winter air and ground temperatures were - 32.5 °C and - 24.7 °C respectively. In spite of the extremely low minimum temperatures reached, L3 were recovered from fecal pats and grass before and after winter with only a 38% and 61% overall reduction over the winter, respectively. Nemabiome ITS2 metabarcoding assay revealed that the proportion of L3 surviving the winter was high for both Cooperia oncophora and Ostertagia ostertagi although survival of the former species was statistically significantly higher than the latter. Nematodirus helvetinaus and Trichostrongylus axei could be detected after winter whereas Haemonchus placei L3 could not overwinter at all. Adult C. oncophora, O. ostertagi and N. helvetianus could be recovered from tracer calves grazing after the winter. CONCLUSIONS: The largest proportion of L3 were recovered from fecal pats suggesting this is important refuge for L3 survival. Results also show that L3 of several GIN parasite species can survive relatively efficiently on pastures even in the extreme winter conditions in western Canada. Tracer calf experiments confirmed that overwintered L3 of both C. oncophora and O. ostertagi were capable of establishing a patent infection in the following spring. These results have important implications for the epidemiology, risk of production impact and the design of effective control strategies. The work also illustrates the value of applying ITS2 nemabiome metabarcoding to environmental samples.


Subject(s)
Cattle Diseases/parasitology , DNA, Intergenic/genetics , Gastrointestinal Tract/parasitology , Larva/growth & development , Nematoda/genetics , Nematode Infections/veterinary , Animals , Canada , Cattle , Cattle Diseases/physiopathology , DNA, Helminth/genetics , DNA, Ribosomal/genetics , Feces/parasitology , Female , Larva/classification , Larva/genetics , Male , Nematoda/classification , Nematoda/growth & development , Nematoda/isolation & purification , Nematode Infections/parasitology , Nematode Infections/physiopathology , Poaceae/parasitology , Seasons , Soil/parasitology
6.
Vet Parasitol ; 285: 109218, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32841785

ABSTRACT

The parasitic liver fluke, Fasciola hepatica, has a detrimental impact on food security and poses a welfare concern to ruminant livestock. F. hepatica metacercariae, shed from an intermediate mud snail host, encyst on vegetation and present a source of infection to grazing livestock. Feeding grass silage to ruminants is a common practice, however the role it plays in the transmission of F. hepatica remains largely unknown. Our current understanding relies on historical studies that are not representative of current silage production and did not apply molecular methods to detect F. hepatica DNA persistence within silages. This study determined the impact of specific fermentation factors, including grass dry matter (DM) content (20, 30 & 40 %), length of ensiling period and maintaining an anaerobic environment on F. hepatica metacercariae viability. In vitro excystment assays demonstrated that regardless of grass DM content, metacercariae ensiled under anaerobic conditions were not viable from two weeks post-sealing. Metacercariae recovered from ensiled grass of 20 % DM content subjected to aerobic spoilage, remained viable for up to 10 weeks. DNA of F. hepatica remained detectable for up to 10 weeks in both anaerobic and spoiled silages. This study highlights i) the importance of maintaining an anaerobic ensiling environment to eliminate the risk of F. hepatica transmission from silage and ii) an inverse relationship between grass DM content and duration of metacercariae survival within spoiled silages. Improving our understanding of trematode metacercariae survival rates within silages, especially of highly pathogenic species such as F. hepatica, allows farmers to make informed decisions regarding on-farm parasite control.


Subject(s)
Fasciola hepatica/physiology , Fascioliasis/veterinary , Fermentation , Metacercariae/physiology , Poaceae/metabolism , Poaceae/parasitology , Silage/parasitology , Anaerobiosis , Animals , Fascioliasis/prevention & control
7.
PLoS One ; 14(10): e0224482, 2019.
Article in English | MEDLINE | ID: mdl-31665151

ABSTRACT

Climate change is affecting interactions among species, including host-parasite interactions. The effects of warming are of particular interest for interactions in which parasite and host physiology are intertwined, such as those between parasitic plants and their hosts. However, little is known about how warming will affect plant parasitic interactions, hindering our ability to predict how host and parasite species will respond to climate change. Here, we test how warming affects aboveground and belowground biomass of a hemiparasitic species (Castilleja sulphurea) and its host (Bouteloua gracilis), asking whether the effects of warming depend on the interaction between these species. We also measured how warming affected the number of haustorial connections between parasite and host. We grew each species alone and together under ambient and warmed conditions. Hosts produced more belowground biomass under warming. However, host biomass was reduced when plants were grown with a hemiparasite. Thus, parasitism negated the benefit of warming on belowground growth of the host. Host resource allocation to roots versus shoots also changed in response to both interaction with the parasite and warming, with hosts producing more root biomass relative to shoot biomass when grown with a parasite and when warmed. As expected, hemiparasite biomass was greater when grown with a host. Warmed parasites had lower root:shoot ratios but only when grown with a host. Under elevated temperatures, hemiparasite aboveground biomass was marginally greater, and plants produced significantly more haustoria. These findings indicate that warming can influence biomass production, both by modifying the interaction between host plants and hemiparasites and by affecting the growth of each species directly. To predict how species will be affected, it is important to understand not only the direct effects of warming but also the indirect effects that are mediated by species interactions. Ultimately, understanding how climate change will affect species interactions is key to understanding how it will affect individual species.


Subject(s)
Climate Change , Orobanchaceae/physiology , Poaceae/parasitology , Biomass , Global Warming , Host-Parasite Interactions , Plant Roots/growth & development , Poaceae/growth & development , Temperature
8.
Rev Bras Parasitol Vet ; 28(3): 528-532, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31483029

ABSTRACT

The nematicidal effect of different organic materials was evaluated in order to develop a non-chemical alternative soil treatment for control of the free-living stages of small ruminant gastrointestinal nematodes. The selected organic materials were residues from the juice industry of acerola, cashew, grape, guava, papaya and pineapple, as well as castor residue from the biodiesel industry. LC90 results showed that pineapple residue was the most efficient inhibitor of larval development, followed by castor, grape, cashew, acerola, guava and papaya. Castor residue was also a good source of nitrogen and was used in a greenhouse experiment to prevent larval development in contaminated goat faeces that was deposited in pots containing the grasses Brachiaria brizantha (var. Paiaguás) or Megathyrsus maximus x M. infestum (var. Massai). Castor residue caused a significant (P < 0.05) reduction (85.04%) in Paiaguás grass contamination (L3.dry mass-1) and a reduction of 17.35% in Massai grass contamination (P > 0.05), with an increase in the biomass production of Massai (251.43%, P < 0.05) and Paiaguás (109.19%, P > 0.05) grasses. This strategy, called Econemat®, with good results in vitro shows to be promising on pasture increasing phytomass production.


Subject(s)
Crop Production , Fruit and Vegetable Juices , Nematoda/drug effects , Plant Oils/pharmacology , Poaceae/parasitology , Refuse Disposal , Ricinus/chemistry , Animals , Ruminants
9.
Naturwissenschaften ; 106(9-10): 50, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31456022

ABSTRACT

The cavities of bamboos (Poaceae) are used by various animals. Most of the animals access these cavities either by existing cracks or by excavating bamboos with soft walls or small, thin-walled bamboos. Only a few animals excavate into the cavities of large and thick- and hard-walled internodes of mature bamboos. We studied two lizard beetle species (Coleoptera: Erotylidae: Languriinae), Doubledaya ruficollis and Oxylanguria acutipennis, that excavate into large internode cavities of recently dead mature bamboos and have morphological modifications. We observed that females of D. ruficollis used their mandibles to bore oviposition holes on Schizostachyum sp. (mean wall thickness = 3.00 mm) and O. acutipennis did so on Dendrocalamus sp. (3.37 mm) bamboos. Previous studies suggested that the markedly asymmetrical mandibles and needle-like ovipositors of females in the genus Doubledaya are adaptive traits for excavating hard-walled bamboos for oviposition. Therefore, we measured their mandibular lengths and ovipositor lengths. D. ruficollis females had greater asymmetry in the mandibles and shorter and less-sclerotized ovipositors than females of congeners using small bamboos. In contrast, O. acutipennis females had slightly asymmetrical mandibles and elongated, well-sclerotized ovipositors. Oviposition holes of D. ruficollis were cone-shaped (evenly tapering), whereas those of O. acutipennis were funnel-shaped (tube-like at the internal apex). This suggests that D. ruficollis females excavate oviposition holes using the mandibles only, and O. acutipennis females use both the mandibles and ovipositors. These differences suggest different oviposition-associated morphological specialization for using large bamboos: the extremely asymmetrical mandibles in D. ruficollis and elongated, needle-like ovipositors in O. acutipennis.


Subject(s)
Coleoptera/anatomy & histology , Coleoptera/physiology , Animal Structures/anatomy & histology , Animals , Behavior, Animal/physiology , Female , Organ Size/physiology , Poaceae/anatomy & histology , Poaceae/parasitology
10.
Sci Rep ; 9(1): 10284, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311958

ABSTRACT

Several herbivorous insects utilize plant chemical cues to identify hosts for feeding. The role of smell in host plant detection by Mahanarva spectabilis (Distant) remains largely unknown. In this study, assays were applied to assess M. spectabilis olfactory responses to forage grasses (Pennisetum purpureum cvs. Roxo Botucatu and Pioneiro; Panicum maximum cvs. Makueni and Tanzânia; Hyparrhenia rufa cv. Jaraguá; Melinis minutiflora; Cynodon dactylon cv. Tifton; Brachiaria brizantha cv. Marandú; and Brachiaria decumbens cv. Basilisk). Bioassays were performed using a Y-olfactometer to evaluate the behavior of adult M. spectabilis to forage damaged and undamaged by insects. M. spectabilis preferred volatiles of undamaged Basilisk and Pioneiro. Repellent behavior by M. spectabilis to cospecifics was recorded for plant volatiles from damaged Marandú. The mixture of volatiles from undamaged forage grasses differed from that of forage grasses damaged by insects. Forage grasses showed a greater diversity of compounds after damage, including menthone, eucalyptol and camphor, which are compounds likely to cause loss of attractiveness or repellence. Our results demonstrate that M. spectabilis employs plant chemical cues in its choice of hosts. This fact may contribute to strategies of integrated management against this pest.


Subject(s)
Hemiptera/physiology , Poaceae/chemistry , Smell/drug effects , Volatile Organic Compounds/pharmacology , Animals , Behavior, Animal/drug effects , Hemiptera/drug effects , Herbivory , Host-Parasite Interactions , Insect Repellents/pharmacology , Olfactory Perception , Plant Extracts/pharmacology , Poaceae/parasitology
11.
Rev. bras. parasitol. vet ; 28(3): 528-532, July-Sept. 2019. tab, graf
Article in English | LILACS | ID: biblio-1042537

ABSTRACT

Abstract The nematicidal effect of different organic materials was evaluated in order to develop a non-chemical alternative soil treatment for control of the free-living stages of small ruminant gastrointestinal nematodes. The selected organic materials were residues from the juice industry of acerola, cashew, grape, guava, papaya and pineapple, as well as castor residue from the biodiesel industry. LC90 results showed that pineapple residue was the most efficient inhibitor of larval development, followed by castor, grape, cashew, acerola, guava and papaya. Castor residue was also a good source of nitrogen and was used in a greenhouse experiment to prevent larval development in contaminated goat faeces that was deposited in pots containing the grasses Brachiaria brizantha (var. Paiaguás) or Megathyrsus maximus x M. infestum (var. Massai). Castor residue caused a significant (P < 0.05) reduction (85.04%) in Paiaguás grass contamination (L3.dry mass-1) and a reduction of 17.35% in Massai grass contamination (P > 0.05), with an increase in the biomass production of Massai (251.43%, P < 0.05) and Paiaguás (109.19%, P > 0.05) grasses. This strategy, called Econemat®, with good results in vitro shows to be promising on pasture increasing phytomass production.


Resumo O efeito nematicida de diferentes materiais orgânicos foi avaliado, com o objetivo de desenvolver um tratamento alternativo não químico do solo para o controle dos estágios de vida livre de nematoides gastrintestinais de pequenos ruminantes. Os materiais orgânicos selecionados foram resíduos da indústria de suco de acerola, caju, uva, goiaba, mamão e abacaxi, além do resíduo de mamona da indústria de biodiesel. Os resultados da LC90 mostraram que o resíduo de abacaxi foi o mais eficiente inibidor do desenvolvimento larval, seguido pela mamona, uva, caju, acerola, goiaba e mamão. O resíduo de mamona também se mostrou uma boa fonte de nitrogênio, sendo usado em experimento em casa de vegetação para prevenir o desenvolvimento larval em fezes contaminadas, depositadas em vasos, contendo as gramíneas Brachiaria brizantha (var. Paiaguás) ou Megathyrsus maximus x M. infestum (var. Massai). O resíduo de mamona reduziu (85,04%) significativamente (P < 0,05) a contaminação no capim-Paiaguás (L3.dry massa-1), 17,35% no capim Massai (P> 0,05), e aumentou a produção de biomassa das gramíneas Massai (251,43%, P <0,05) e Paiaguás (109,19%, P> 0,05). Essa estratégia, chamada Econemat®, com bons resultados in vitro, mostra-se promissora nas pastagens aumentando a produção de fitomassa.


Subject(s)
Animals , Ricinus/chemistry , Plant Oils/poisoning , Refuse Disposal , Fruit and Vegetable Juices , Crop Production , Poaceae/parasitology , Nematoda/drug effects , Ruminants
12.
Arch Insect Biochem Physiol ; 100(4): e21537, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30666693

ABSTRACT

Planthoppers are highly destructive pests that damage rice plants by feeding and transmitting viruses. They feed on phloem sap using specialized mouthparts and secrete saliva during feeding. Over the past decade, genomic, transcriptomic, and proteomic approaches have greatly improved our understanding of the complexity of planthopper saliva, and have provided a glimpse of planthopper-plant interactions. Here we focus on a few recent advances in planthopper saliva and discuss how salivary components influence planthopper performance. Understanding the molecular basis of saliva in planthopper-plant interactions will provide evolutionary insights, and promote the development of novel strategies for controlling agricultural pests.


Subject(s)
Body Fluids/physiology , Gene Expression Regulation/physiology , Hemiptera/physiology , Insect Proteins , Animals , Host-Parasite Interactions , Poaceae/parasitology
13.
Med Vet Entomol ; 32(4): 473-480, 2018 12.
Article in English | MEDLINE | ID: mdl-30194860

ABSTRACT

The red sheep tick, Haemaphysalis punctata (Ixodida: Ixodidae), has been reported as present in the U.K. for more than a century; however, very little has been written about its distribution. In recent years, numbers of detections of this tick species reported to the Public Health England (PHE) Tick Surveillance Scheme have increased. This rise in the number of records may be attributable to increased tick surveillance activities or to the increased distribution of this species of tick in parts of England. This paper reviews published reports of H. punctata and all data held by the Biological Records Centre and PHE, and summarizes a number of field studies conducted by PHE and the Animal and Plant Health Agency over the past 8 years. It would appear from the evidence presented here that H. punctata may be expanding its range across the eastern part of the South Downs National Park, where there have also been reports of this tick species biting humans. It is possible that the movement of sheep between grassland sites is facilitating this spread. Further studies that better elucidate the ecology of this tick and its possible role as a vector of human and veterinary diseases are now warranted.


Subject(s)
Bird Diseases/parasitology , Ixodidae/physiology , Passeriformes/parasitology , Rabbits/parasitology , Sheep Diseases/parasitology , Tick Infestations/veterinary , Animals , Bird Diseases/epidemiology , England/epidemiology , Female , Humans , Male , Poaceae/parasitology , Sheep , Sheep Diseases/epidemiology , Tick Infestations/epidemiology , Tick Infestations/parasitology , Wales/epidemiology
14.
Exp Parasitol ; 193: 27-32, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30053398

ABSTRACT

Duddingtonia flagrans is a natural strain of Nematophagous-Fungi isolated around the world. It has demonstrated efficacy and ease of use in laboratory as well as in field conditions. The fungus contributes to the prophylactic control of the worms by reducing the number of L3 on pasture. The aims of this study were to test and analyze the predatory effect of D. flagrans under sunny and shaded conditions on the L3 in the faeces, and to verify the reduction of translation to pasture during summer and winter seasons. Faecal Mass Units (FMUs) were assigned to two treated groups (groups treated with D. flagrans chlamydospores, TG) and two untreated groups (without D. flagrans chlamydospores, UG), in summer and winter, under sunny and shaded conditions. FMUs and herbage samples were taken for parasitological workup. Predatory activity of D. flagrans was evident under both conditions for the summer experiment but was not manifest for the winter experiment. In summer, an interaction between sunny and shaded conditions and predatory activity of D. flagrans was found. Environmental conditions on predatory activity should be considered when designing strategies for the implementation of D. flagrans in grazing systems to smooth the infectivity curve of L3.


Subject(s)
Cattle Diseases/parasitology , Duddingtonia/physiology , Intestinal Diseases, Parasitic/veterinary , Nematoda/microbiology , Sunlight , Animals , Cattle , Cattle Diseases/prevention & control , Duddingtonia/radiation effects , Feces/parasitology , Intestinal Diseases, Parasitic/parasitology , Intestinal Diseases, Parasitic/prevention & control , Larva/microbiology , Parasite Egg Count/veterinary , Pest Control, Biological/methods , Pest Control, Biological/standards , Poaceae/parasitology , Predatory Behavior/radiation effects , Rain , Seasons , Temperature
15.
Trans R Soc Trop Med Hyg ; 112(5): 216-222, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29860359

ABSTRACT

Background: The aim of the investigation was to determine the risk factors for human fascioliasis in schoolchildren in five localities of the Baños del Inca district in Cajamarca, Peru. Secondarily, the prevalence of infection among this population was also studied. Methods: A questionnaire was applied to 270 schoolchildren from 6-12 years of age and to their parents with the aim of collecting information related to risk factors predisposing the children to Fasciola hepatica infection. Faecal samples from all the children were tested for F. hepatica using the modified rapid sedimentation method of Lumbreras and the technique of Kato-Katz for egg counts. Results: Risk factors were identified as follows-raising cattle, consumption of radishes and chewing grass. The prevalence of F. hepatica in Baños del Inca was 6.30%; there was no significant difference by sex or age. Conclusion: Risk factors associated with this parasitosis in children in this area of Cajamarca were the raising of cattle, the consumption of radish and the habit of chewing grass. The prevalence results in this district suggest a mesoendemic level of infection, with local variations between meso- and hyper-endemic levels.


Subject(s)
Cattle Diseases/parasitology , Fasciola hepatica/isolation & purification , Fascioliasis/epidemiology , Feces/parasitology , Schools , Students , Animal Husbandry , Animals , Cattle , Child , Fascioliasis/etiology , Fascioliasis/parasitology , Female , Humans , Male , Peru/epidemiology , Pilot Projects , Poaceae/parasitology , Prevalence , Raphanus/parasitology , Risk Factors , Students/statistics & numerical data , Water Supply
16.
Parasit Vectors ; 11(1): 342, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29884202

ABSTRACT

BACKGROUND: Increasing trematode prevalence and disease occurrence in livestock is a major concern. With the global spread of anthelmintic resistant trematodes, future control strategies must incorporate approaches focusing on avoidance of infection. The reliance of trematodes on intermediate snail hosts to successfully complete their life-cycle means livestock infections are linked to the availability of respective snail populations. By identifying intermediate snail host habitats, infection risk models may be strengthened whilst farmers may confidently apply pasture management strategies to disrupt the trematode life-cycle. However, accurately identifying and mapping these risk areas is challenging. METHODS: In this study, environmental DNA (eDNA) assays were designed to reveal Galba truncatula, Fasciola hepatica and Calicophoron daubneyi presence within water sources on pasture land. eDNA was captured using a filter-based protocol, with DNA extracted using the DNeasy® PowerSoil® kit and amplified via PCR. In total, 19 potential G. truncatula habitats were analysed on four farms grazed by livestock infected with both F. hepatica and C. daubneyi. RESULTS: Galba truncatula eDNA was identified in 10/10 habitats where the snail was detected by eye. Galba truncatula eDNA was also identified in four further habitats where the snail was not physically detected. Fasciola hepatica and C. daubneyi eDNA was also identified in 5/19 and 8/19 habitats, respectively. CONCLUSIONS: This study demonstrated that eDNA assays have the capabilities of detecting G. truncatula, F. hepatica and C. daubneyi DNA in the environment. Further assay development will be required for a field test capable of identifying and quantifying F. hepatica and C. daubneyi infection risk areas, to support future control strategies. An eDNA test would also be a powerful new tool for epidemiological investigations of parasite infections on farms.


Subject(s)
DNA, Helminth/genetics , Fasciola hepatica/isolation & purification , Fresh Water/parasitology , Paramphistomatidae/isolation & purification , Poaceae/parasitology , Snails/genetics , Animals , DNA, Helminth/isolation & purification , Ecosystem , Fasciola hepatica/classification , Fasciola hepatica/genetics , Fresh Water/chemistry , Paramphistomatidae/classification , Paramphistomatidae/genetics , Pest Control , Poaceae/chemistry , Snails/parasitology
17.
Plant Biol (Stuttg) ; 20(4): 759-764, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29577546

ABSTRACT

Root-hemiparasitic interaction between the dominant grass Calamagrostis epigejos and the hemiparasite Thesium linophyllon was studied to assess the potential of the parasite to regulate dominance of the grass, which is expanding into species-rich steppe grasslands. First, we aimed to identify physiological links between the two species as a principal indicator of the parasitic relationship. Second, we analysed the dynamics of the two species in the vegetation of a steppe grassland at the foot of the Bükk Mountains, Hungary, where their joint presence is recorded in a long-term permanent plot monitoring dataset to detect patterns associated with the parasitic ecological interaction. Numerous well-developed functional haustoria of Th. linophyllon were identified on the root systems of C. epigejos. The joint dynamics of C. epigejos and Th. linophyllon displayed clear signs of the parasitic interaction: (1) the dynamics of Th. linophyllon frequency was positively associated with the initial cover of C. epigejos; (2) maximum recorded cover values of the two species were strongly positively correlated; and (3) the extent of C. epigejos decrease in the vegetation was significantly positively associated with maximum Th. linophyllon cover recorded throughout the monitoring period. We demonstrate that C. epigejos can be parasitized by Th. linophyllon, which restricts abundance of the grass. Th. linophyllon thus has potential to act as a native biological control of C. epigejos in steppe grasslands.


Subject(s)
Host-Parasite Interactions/physiology , Plant Roots/parasitology , Poaceae/parasitology , Tracheophyta/physiology , Hungary
18.
PLoS One ; 13(2): e0191536, 2018.
Article in English | MEDLINE | ID: mdl-29489819

ABSTRACT

Spider mites, a cosmopolitan pest of agricultural and landscape plants, thrive under hot and dry conditions, which could become more frequent and extreme due to climate change. Recent work has shown that neonicotinoids, a widely used class of systemic insecticides that have come under scrutiny for non-target effects, can elevate spider mite populations. Both water-stress and neonicotinoids independently alter plant resistance against herbivores. Yet, the interaction between these two factors on spider mites is unclear, particularly for Banks grass mite (Oligonychus pratensis; BGM). We conducted a field study to examine the effects of water-stress (optimal irrigation = 100% estimated evapotranspiration (ET) replacement, water stress = 25% of the water provided to optimally irrigated plants) and neonicotinoid seed treatments (control, clothianidin, thiamethoxam) on resident mite populations in corn (Zea mays, hybrid KSC7112). Our field study was followed by a manipulative field cage study and a parallel greenhouse study, where we tested the effects of water-stress and neonicotinoids on BGM and plant responses. We found that water-stress and clothianidin consistently increased BGM densities, while thiamethoxam-treated plants only had this effect when plants were mature. Water-stress and BGM herbivory had a greater effect on plant defenses than neonicotinoids alone, and the combination of BGM herbivory with the two abiotic factors increased the concentration of total soluble proteins. These results suggest that spider mite outbreaks by combinations of changes in plant defenses and protein concentration are triggered by water-stress and neonicotinoids, but the severity of the infestations varies depending on the insecticide active ingredient.


Subject(s)
Neonicotinoids/pharmacology , Poaceae/parasitology , Stress, Physiological , Tetranychidae/drug effects , Animals , Droughts
19.
Vet Parasitol ; 252: 107-116, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29559130

ABSTRACT

The distribution of gastro-intestinal (GI) parasites across landscapes is closely related to the spatial distribution of hosts. In GI parasites with environmental life stages, the vitality of parasites is also affected by ecological and landscape-related components of the environment. This is particularly relevant for domestic livestock species that are often kept across habitats with varying degrees of degradation, exposing them to a wide range of environmentally robust parasite species. In our study, we examined the effect of environmental and anthropogenic factors on the prevalence and intensity of GI parasites across a free-ranging stock of Ankole cattle in the Mutara rangelands of northeastern Rwanda. Prevalence and intensity of each parasite type (i.e., strongyle-type nematodes, Strongyloides spp., Moniezia spp., and Eimeria spp.) were used as dependent variables. Two fixed factors related to season and conservation-political history, together with three principal components (condensed from nine ecological variables) were used as independent covariates in a univariate General Linear Model (GLM). Major effects on the prevalence and intensity of strongyle-type nematodes and on the intensity of Eimeria spp. were found in that vegetation-related effects such as above-ground grass biomass in conjunction with a high degree of soil compaction had a negative relationship with these parasite types. These unexpected findings suggest that strongyle-type and coccidian infections increase with increasing rangeland degradation. Strongyle-type nematode prevalence and intensity were also negatively related to goat/sheep density, indicating a 'dilution effect' of GI infections between domestic livestock species.


Subject(s)
Coccidiosis/veterinary , Ecology , Eimeria/isolation & purification , Gastrointestinal Tract/parasitology , Intestinal Diseases, Parasitic/veterinary , Strongyloidiasis/veterinary , Animals , Biomass , Cattle/parasitology , Coccidiosis/parasitology , Feces/parasitology , Goats/parasitology , Herbivory , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/parasitology , Parasite Egg Count/veterinary , Poaceae/parasitology , Prevalence , Seasons , Soil/chemistry , Soil/parasitology , Strongyloides/isolation & purification , Strongyloides/physiology
20.
PLoS One ; 13(2): e0192397, 2018.
Article in English | MEDLINE | ID: mdl-29415001

ABSTRACT

Plant-parasitic nematodes of the genus Meloidogyne, known as root-knot nematodes (RKN), have an important economic impact on golf course turfgrasses. The most prevalent RKN species associated with grasses are M. chitwoodi, M. graminicola, M. graminis, M. incognita, M. marylandi, M. microtyla, M. minor, M. naasi and M. sasseri. In 2010, slight thickening of the roots and RKN females with unusual features were observed in turfgrass roots on golf courses in Araras, São Paulo state, Brazil. This population (MgARA) was maintained in the lab and studied including morphological, morphometrical, biochemical and molecular markers. Morphology and morphometry were variable and not useful for identification, although perineal pattern morphology showed highly similarity with M. graminis description. Concerning to biochemical characterisation, the esterase phenotype Mg1, characterised by a very slow and fainter band, was detected in some protein homogenates. Regarding to molecular analysis, D2-D3 region of 28S rDNA gene and cytochrome oxidase subunit II region from mitochondrial DNA were amplified by PCR and sequenced. Phylogenetic analysis revealed that the Brazilian isolate, found associated with turfgrass, grouped with M. graminis isolates (98-99% bootstrap; variation of 8-11 and 0-24 bp, respectively), close to M. marylandi, supporting its identification as M. graminis. This is the first report of M. graminis on golf courses in Brazil.


Subject(s)
Poaceae/parasitology , Tylenchoidea/isolation & purification , Animals , Brazil , Tylenchoidea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL