Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.933
Filter
1.
PLoS Pathog ; 20(8): e1012388, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102425

ABSTRACT

Enteroviruses are a vast genus of positive-sense RNA viruses that cause diseases ranging from common cold to poliomyelitis and viral myocarditis. They encode a membrane-bound AAA+ ATPase, 2C, that has been suggested to serve several roles in virus replication, e.g. as an RNA helicase and capsid assembly factor. Here, we report the reconstitution of full-length, poliovirus 2C's association with membranes. We show that the N-terminal membrane-binding domain of 2C contains a conserved glycine, which is suggested by structure predictions to divide the domain into two amphipathic helix regions, which we name AH1 and AH2. AH2 is the main mediator of 2C oligomerization, and is necessary and sufficient for its membrane binding. AH1 is the main mediator of a novel function of 2C: clustering of membranes. Cryo-electron tomography reveal that several 2C copies mediate this function by localizing to vesicle-vesicle interfaces. 2C-mediated clustering is partially outcompeted by RNA, suggesting a way by which 2C can switch from an early role in coalescing replication organelles and lipid droplets, to a later role where 2C assists RNA replication and particle assembly. 2C is sufficient to recruit RNA to membranes, with a preference for double-stranded RNA (the replicating form of the viral genome). Finally, the in vitro reconstitution revealed that full-length, membrane-bound 2C has ATPase activity and ATP-independent, single-strand ribonuclease activity, but no detectable helicase activity. Together, this study suggests novel roles for 2C in membrane clustering, RNA membrane recruitment and cleavage, and calls into question a role of 2C as an RNA helicase. The reconstitution of functional, 2C-decorated vesicles provides a platform for further biochemical studies into this protein and its roles in enterovirus replication.


Subject(s)
RNA, Viral , Viral Proteins , Virus Replication , RNA, Viral/metabolism , RNA, Viral/genetics , Humans , Virus Replication/physiology , Viral Proteins/metabolism , Viral Proteins/genetics , Poliovirus/metabolism , Poliovirus/physiology , Cell Membrane/metabolism , Enterovirus/physiology , Adenosine Triphosphatases/metabolism , Carrier Proteins , Viral Nonstructural Proteins
4.
Sci Rep ; 14(1): 17237, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060276

ABSTRACT

This study introduces a fractional order model to investigate the dynamics of polio disease spread, focusing on its significance, unique results, and conclusions. We emphasize the importance of understanding polio transmission dynamics and propose a novel approach using a fractional order model with an exponential decay kernel. Through rigorous analysis, including existence and stability assessment applying the Caputo Fabrizio fractional operator, we derive key insights into the disease dynamics. Our findings reveal distinct disease-free equilibrium (DFE) and endemic equilibrium (EE) points, shedding light on the disease's stability. Furthermore, graphical representations and numerical simulations demonstrate the behavior of the disease under various parameter values, enhancing our understanding of polio transmission dynamics. In conclusion, this study offers valuable insights into the spread of polio and contributes to the broader understanding of infectious disease dynamics.


Subject(s)
Poliomyelitis , Poliomyelitis/epidemiology , Poliomyelitis/virology , Humans , Poliovirus , Computer Simulation , Models, Theoretical , Epidemiological Models
5.
FEBS Lett ; 598(15): 1909-1918, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955545

ABSTRACT

The poliovirus (PV) enters the central nervous system (CNS) via the bloodstream, suggesting the existence of a mechanism to cross the blood-brain barrier. Here, we report that PV capsid proteins (VP1 and VP3) can penetrate cells, with VP3 being more invasive. Two independent parts of VP3 are responsible for this function. Both peptides can penetrate human umbilical cord vascular endothelial cells, and one peptide of VP3 could also penetrate peripheral blood mononuclear cells. In an in vitro blood-brain barrier model using rat-derived astrocytes, pericytes, and endothelial cells, both peptides were observed to traverse from the blood side to the brain side at 6 h after administration. These results provide insights into the molecular mechanisms underlying PV invasion into the CNS.


Subject(s)
Blood-Brain Barrier , Capsid Proteins , Poliovirus , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , Poliovirus/genetics , Poliovirus/metabolism , Poliovirus/physiology , Animals , Rats , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Astrocytes/metabolism
6.
PLoS One ; 19(7): e0305108, 2024.
Article in English | MEDLINE | ID: mdl-38959255

ABSTRACT

The Global Specialized Polio Laboratory at CDC supports the Global Poliovirus Laboratory Network with environmental surveillance (ES) to detect the presence of vaccine strain polioviruses, vaccine-derived polioviruses, and wild polioviruses in high-risk countries. Environmental sampling provides valuable supplementary information, particularly in areas with gaps in surveillance of acute flaccid paralysis (AFP) mainly in children less than 15 years. In collaboration with Guatemala's National Health Laboratory (Laboratorio Nacional de Salud Guatemala), monthly sewage collections allowed screening enterovirus (EV) presence without incurring additional costs for sample collection, transport, or concentration. Murine recombinant fibroblast L-cells (L20B) and human rhabdomyosarcoma (RD) cells are used for the isolation of polioviruses following a standard detection algorithm. Though non-polio-Enteroviruses (NPEV) can be isolated, the algorithm is optimized for the detection of polioviruses. To explore if other EV's are present in sewage not found through standard methods, five additional cell lines were piloted in a small-scale experiment, and next-generation sequencing (NGS) was used for the identification of any EV types. Human lung fibroblast cells (HLF) were selected based on their ability to isolate EV-A genus. Sewage concentrates collected between 2020-2021 were isolated in HLF cells and any cytopathic effect positive isolates used for NGS. A large variety of EVs, including echoviruses 1, 3, 6, 7, 11, 13, 18, 19, 25, 29; coxsackievirus A13, B2, and B5, EV-C99, EVB, and polioviruses (Sabin 1 and 3) were identified through genomic typing in NGS. When the EV genotypes were compared by phylogenetic analysis, it showed many EV's were genomically like viruses previously isolated from ES collected in Haiti. Enterovirus occurrence did not follow a seasonality, but more diverse EV types were found in ES collection sites with lower populations. Using the additional cell line in the existing poliovirus ES algorithm may add value by providing data about EV circulation, without additional sample collection or processing. Next-generation sequencing closed gaps in knowledge providing molecular epidemiological information on multiple EV types and full genome sequences of EVs present in wastewater in Guatemala.


Subject(s)
Enterovirus , Fibroblasts , Wastewater , Humans , Enterovirus/genetics , Enterovirus/isolation & purification , Wastewater/virology , Fibroblasts/virology , Guatemala/epidemiology , Lung/virology , Lung/cytology , Molecular Epidemiology , Cell Line , Phylogeny , Animals , Poliovirus/genetics , Poliovirus/isolation & purification , Sewage/virology , Mice , Enterovirus Infections/virology , Enterovirus Infections/epidemiology
7.
J Virol ; 98(7): e0052324, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38837378

ABSTRACT

The picornavirus genome encodes a large, single polyprotein that is processed by viral proteases to form an active replication complex. The replication complex is formed with the viral genome, host proteins, and viral proteins that are produced/translated directly from each of the viral genomes (viral proteins provided in cis). Efficient complementation in vivo of replication complex formation by viral proteins provided in trans, thus exogenous or ectopically expressed viral proteins, remains to be demonstrated. Here, we report an efficient trans complementation system for the replication of defective poliovirus (PV) mutants by a viral polyprotein precursor in HEK293 cells. Viral 3AB in the polyprotein, but not 2BC, was processed exclusively in cis. Replication of a defective PV replicon mutant, with a disrupted cleavage site for viral 3Cpro protease between 3Cpro and 3Dpol (3C/D[A/G] mutant) could be rescued by a viral polyprotein provided in trans. Only a defect of 3Dpol activity of the replicon could be rescued in trans; inactivating mutations in 2CATPase/hel, 3B, and 3Cpro of the replicon completely abrogated the trans-rescued replication. An intact N-terminus of the 3Cpro domain of the 3CDpro provided in trans was essential for the trans-active function. By using this trans complementation system, a high-titer defective PV pseudovirus (PVpv) (>107 infectious units per mL) could be produced with the defective mutants, whose replication was completely dependent on trans complementation. This work reveals potential roles of exogenous viral proteins in PV replication and offers insights into protein/protein interaction during picornavirus infection. IMPORTANCE: Viral polyprotein processing is an elaborately controlled step by viral proteases encoded in the polyprotein; fully processed proteins and processing intermediates need to be correctly produced for replication, which can be detrimentally affected even by a small modification of the polyprotein. Purified/isolated viral proteins can retain their enzymatic activities required for viral replication, such as protease, helicase, polymerase, etc. However, when these proteins of picornavirus are exogenously provided (provided in trans) to the viral replication complex with a defective viral genome, replication is generally not rescued/complemented, suggesting the importance of viral proteins endogenously provided (provided in cis) to the replication complex. In this study, I discovered that only the viral polymerase activity of poliovirus (PV) (the typical member of picornavirus family) could be efficiently rescued by exogenously expressed viral proteins. The current study reveals potential roles for exogenous viral proteins in viral replication and offers insights into interactions during picornavirus infection.


Subject(s)
Poliovirus , Viral Proteins , Virus Replication , Poliovirus/genetics , Poliovirus/physiology , Virus Replication/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , HEK293 Cells , Mutation , Genetic Complementation Test , Polyproteins/metabolism , Polyproteins/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , 3C Viral Proteases
8.
Infect Dis (Lond) ; 56(8): 669-677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889538

ABSTRACT

AIMS: To explore if intestinal immunity induced by infection with live viruses in the oral poliovirus vaccine (OPV) is essential, necessary or even helpful in interrupting transmission of wild poliovirus (WPV) for global polio eradication. METHODS: We reviewed the biology of virus-host interactions in WPV infection and its alterations by OPV-induced immunity for direct evidence of the usefulness of intestinal immunity. We also explored indirect evidence by way of the effect of the inactivated poliovirus vaccine (IPV) on the biology and on transmission dynamics of WPV. RESULTS: Immunity, systemic and intestinal, induced by infection with WPV or vaccine viruses, does not prevent re-infection with WPV or vaccine viruses respectively, when exposed. Such re-infected hosts shed virus in the throat and in faeces and are sources of further transmission. Immunity protects against polio paralysis-hence reinfection always remain asymptommatic and silent. CONCLUSION: Vaccine virus-induced intestinal immunity is not necessary for polio eradication. The continued and intensive vaccination efforts using OPV under the assumption of its superiority over IPV have resulted in the well-known undesirable effects, namely vaccine associated paralytic polio and the emergence of de-attenuated circulating vaccine-derived polioviruses, in addition to the delay in completing global WPV eradication.


Subject(s)
Disease Eradication , Immunity, Mucosal , Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Poliomyelitis/prevention & control , Poliomyelitis/immunology , Poliomyelitis/transmission , Humans , Poliovirus Vaccine, Oral/immunology , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/virology , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Vaccination
9.
MMWR Morb Mortal Wkly Rep ; 73(25): 575-580, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935565

ABSTRACT

Since the launch of the Global Polio Eradication Initiative in 1988, substantial progress has been made in the interruption of wild poliovirus (WPV) transmission worldwide: global eradication of WPV types 2 and 3 were certified in 2015 and 2019, respectively, and endemic transmission of WPV type 1 continues only in Afghanistan and Pakistan. After the synchronized global withdrawal of all serotype 2 oral poliovirus vaccines (OPVs) in 2016, widespread outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2) have occurred, which are linked to areas with low population immunity to poliovirus. Officials in Somalia have detected ongoing cVDPV2 transmission since 2017. Polio vaccination coverage and surveillance data for Somalia were reviewed to assess this persistent transmission. During January 2017-March 2024, officials in Somalia detected 39 cVDPV2 cases in 14 of 20 regions, and transmission has spread to neighboring Ethiopia and Kenya. Since January 2021, 28 supplementary immunization activities (SIAs) targeting cVDPV2 were conducted in Somalia. Some parts of the country are security-compromised and inaccessible for vaccination campaigns. Among 1,921 children with nonpolio acute flaccid paralysis, 231 (12%) had not received OPV doses through routine immunization or SIAs, 95% of whom were from the South-Central region, and 60% of whom lived in inaccessible districts. Enhancing humanitarian negotiation measures in Somalia to enable vaccination of children in security-compromised areas and strengthening campaign quality in accessible areas will help interrupt cVDPV2 transmission.


Subject(s)
Disease Outbreaks , Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Humans , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliomyelitis/transmission , Somalia/epidemiology , Poliovirus/isolation & purification , Poliovirus Vaccine, Oral/administration & dosage , Poliovirus Vaccine, Oral/adverse effects , Child, Preschool , Infant , Population Surveillance , Immunization Programs , Vaccination Coverage/statistics & numerical data , Child
10.
Sci Rep ; 14(1): 12651, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825618

ABSTRACT

Effective disinfection methods are crucial in the cold chain transportation process of food due to the specificity of temperature and the diversity of contaminated flora. The objective of this study was to investigate the sanitizing effect of different disinfectants on various fungi at - 20 °C to achieve accurate disinfection of diverse bacterial populations. Peracetic acid, hydrogen peroxide, and potassium bisulfate were selected as low-temperature disinfectants and were combined with antifreeze. The sanitizing effect of these cryogenic disinfectants on pathogens such as Bacillus subtilis black variant spores (ATCC9372), Staphylococcus aureus (ATCC 6538), Candida albicans (ATCC 10231), Escherichia coli (8099), and poliovirus (PV-1) was sequentially verified by bactericidal and virus inactivation experiments. After a specified time of disinfection, a neutralizing agent was used to halt the sanitizing process. The study demonstrates that different disinfectants exhibit selective effects during the low-temperature disinfection process. Peracetic acid, hydrogen peroxide, and potassium monopersulfate are suitable for the low-temperature environmental disinfection of bacterial propagules, viruses, and fungal contaminants. However, for microorganisms with strong resistance to spores, a low-temperature disinfectant based on peracetic acid should be chosen for effective disinfection treatment. Our results provide a valuable reference for selecting appropriate disinfectants to sanitize various potential pathogens in the future.


Subject(s)
Cold Temperature , Disinfectants , Disinfection , Hydrogen Peroxide , Peracetic Acid , Disinfectants/pharmacology , Disinfection/methods , Hydrogen Peroxide/pharmacology , Peracetic Acid/pharmacology , Sulfates/pharmacology , Bacillus subtilis/drug effects , Potassium Compounds/pharmacology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Escherichia coli/drug effects , Poliovirus/drug effects
12.
Biomed Khim ; 70(3): 161-167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940205

ABSTRACT

Electrochemical profiling of formaldehyde-inactivated poliovirus particles demonstrated a relationship between the D-antigen concentration and the intensity of the maximum amplitude currents of the poliovirus samples. The resultant signal was therefore identified as electrochemical oxidation of the surface proteins of the poliovirus. Using registration of electrooxidation of amino acid residues of the capsid proteins, a comparative electrochemical analysis of poliovirus particles inactivated by electrons accelerated with doses of 5 kGy, 10 kGy, 15 kGy, 25 kGy, 30 kGy at room temperature was carried out. An increase in the radiation dose was accompanied by an increase in electrooxidation signals. A significant increase in the signals of electrooxidation of poliovirus capsid proteins was detected upon irradiation at doses of 15-30 kGy. The data obtained suggest that the change in the profile and increase in the electrooxidation signals of poliovirus capsid proteins are associated with an increase in the degree of structural reorganization of surface proteins and insufficient preservation of the D-antigen under these conditions of poliovirus inactivation.


Subject(s)
Capsid Proteins , Poliovirus , Poliovirus/radiation effects , Poliovirus/chemistry , Capsid Proteins/chemistry , Capsid Proteins/radiation effects , Virus Inactivation/radiation effects , Oxidation-Reduction , Formaldehyde/chemistry , Humans , Virion/chemistry , Virion/radiation effects
13.
Viruses ; 16(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932253

ABSTRACT

Recently, a multiplex PCR-based titration (MPBT) assay was developed for simultaneous determination of infectious titers of all three Sabin strains of the oral poliovirus vaccine (OPV) to replace the conventional CCID50 assay, which is both time-consuming and laborious. The MPBT assay was shown to be reproducible, robust and sensitive. The conventional and MPBT assays showed similar results and sensitivity. The MPBT assay can be completed in two to three days, instead of ten days for the conventional assay. To prevent attenuated vaccine strains of poliovirus from reversion to virulence, a novel, genetically stable OPV (nOPV) was developed by modifying the genomes of conventional Sabin strains used in OPV. In this work, we evaluated the MPBT assay as a rapid screening tool to support trivalent nOPV (tnOPV) formulation development by simultaneous titration of the three nOPV strains to confirm stability as needed, for the selection of the lead tnOPV formulation candidate. We first assessed the ability of the MPBT assay to discriminate a 0.5 log10 titer difference by titrating the two tnOPV samples (undiluted and threefold-diluted) on the same plate. Once the assay was shown to be discriminating, we then tested different formulations of tnOPV drug products (DPs) that were subjected to different exposure times at 37 °C (untreated group and treated groups: 2 and 7 days at 37 °C), and to three freeze and thaw (FT) cycles. Final confirmation of the down selected formulation candidates was achieved by performing the conventional CCID50 assay, comparing the stability of untreated and treated groups and FT stability testing on the top three candidates. The results showed that the MPBT assay generates similar titers as the conventional assay. By testing two trivalent samples in the same plate, the assay can differentiate a 0.5 log10 difference between the titers of the tested nOPV samples. Also, the assay was able to detect the gradual degradation of nOPV viruses with different formulation compositions and under different time/temperature conditions and freeze/thaw cycles. We found that there were three tnOPV formulations which met the stability criteria of less than 0.5 log10 loss after 2 days' exposure to 37 ℃ and after three FT cycles, maintaining the potency of all three serotypes in these formulations. The ability of the MPBT assay to titrate two tnOPV lots (six viruses) in the same plate makes it cheaper and gives it a higher throughput for rapid screening. The assay detected the gradual degradation of the tnOPV and was successful in the selection of optimal formulations for the tnOPV. The results demonstrated that the MPBT method can be used as a stability indicating assay to assess the thermal stability of the nOPV. It can be used for rapid virus titer determination during the vaccine manufacturing process, and in clinical trials. The MPBT assay can be automated and applied for other viruses, including those with no cytopathic effect.


Subject(s)
Multiplex Polymerase Chain Reaction , Poliovirus Vaccine, Oral , Poliovirus , Poliovirus/genetics , Humans , Multiplex Polymerase Chain Reaction/methods , Poliomyelitis/prevention & control , Poliomyelitis/virology , Vaccines, Attenuated/immunology , Reproducibility of Results , Sensitivity and Specificity
14.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932251

ABSTRACT

Pentasilver hexaoxoiodate (Ag5IO6) has broad-spectrum antimicrobial efficacy, including the long-term prevention of microbial adherence, the rapid killing of planktonic microorganisms, and the elimination of mature biofilms. This study's goal was to determine whether it may also have antiviral activity against structurally distinct viruses. Ag5IO6 was tested following ASTM E1052-20, Standard Practice to Assess the Activity of Microbicides Against Viruses in Suspension, against adenovirus type 5, murine norovirus, poliovirus type 1, SARS-CoV-2 (original), and SARS-CoV-2 (omicron) (host cells: H1HeLa, RAW 264.7, LLC-MK2, Vero E6, and Vero E6, respectively). A 0.1 g/mL Ag5IO6 suspension was prepared and the viruses were exposed for 30 min, 4 h, or 24 h. Exposure to Ag5IO6 resulted in complete kill of SARS-CoV-2 (omicron) within 30 min, as well as complete kill of both SARS-CoV-2 (original) and the murine norovirus within 4 h. Ag5IO6 showed increasing activity over time against the adenovirus, but did not achieve a 3-log reduction within 24 h, and showed no antiviral activity against the poliovirus. These results demonstrate that Ag5IO6 has antiviral activity against medically important viruses, in addition to its well-characterized antimicrobial activity, suggesting that it may be valuable in situations where the prevention or simultaneous treatment of microbes and viruses are necessary.


Subject(s)
Antiviral Agents , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Animals , Mice , Chlorocebus aethiops , Humans , SARS-CoV-2/drug effects , Vero Cells , Silver Compounds/pharmacology , Silver Compounds/chemistry , Cell Line , Poliovirus/drug effects , Norovirus/drug effects , RAW 264.7 Cells
15.
MMWR Morb Mortal Wkly Rep ; 73(19): 441-446, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753550

ABSTRACT

In 1988, poliomyelitis (polio) was targeted for eradication. Global efforts have led to the eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3), with only WPV type 1 (WPV1) remaining endemic, and only in Afghanistan and Pakistan. This report describes global polio immunization, surveillance activities, and poliovirus epidemiology during January 2022-December 2023, using data current as of April 10, 2024. In 2023, Afghanistan and Pakistan identified 12 total WPV1 polio cases, compared with 22 in 2022. WPV1 transmission was detected through systematic testing for poliovirus in sewage samples (environmental surveillance) in 13 provinces in Afghanistan and Pakistan, compared with seven provinces in 2022. The number of polio cases caused by circulating vaccine-derived polioviruses (cVDPVs; circulating vaccine virus strains that have reverted to neurovirulence) decreased from 881 in 2022 to 524 in 2023; cVDPV outbreaks (defined as either a cVDPV case with evidence of circulation or at least two positive environmental surveillance isolates) occurred in 32 countries in 2023, including eight that did not experience a cVDPV outbreak in 2022. Despite reductions in paralytic polio cases from 2022, cVDPV cases and WPV1 cases (in countries with endemic transmission) were more geographically widespread in 2023. Renewed efforts to vaccinate persistently missed children in countries and territories where WPV1 transmission is endemic, strengthen routine immunization programs in countries at high risk for poliovirus transmission, and provide more effective cVDPV outbreak responses are necessary to further progress toward global polio eradication.


Subject(s)
Disease Eradication , Global Health , Immunization Programs , Poliomyelitis , Poliovirus , Population Surveillance , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Humans , Global Health/statistics & numerical data , Poliovirus/isolation & purification , Disease Outbreaks/prevention & control , Poliovirus Vaccines/administration & dosage , Child, Preschool , Infant , Poliovirus Vaccine, Oral/administration & dosage
17.
Expert Rev Vaccines ; 23(1): 597-613, 2024.
Article in English | MEDLINE | ID: mdl-38813792

ABSTRACT

BACKGROUND: Despite multiple revisions of targets and timelines in polio eradication plans since 1988, including changes in supplemental immunization activities (SIAs) that increase immunity above routine immunization (RI) coverage, poliovirus transmission continues as of 2024. METHODS: We reviewed polio eradication plans and Global Polio Eradication Initiative (GPEI) annual reports and budgets to characterize key phases of polio eradication, the evolution of poliovirus vaccines, and the role of SIAs. We used polio epidemiology to provide context for successes and failures and updated prior modeling to show the contribution of SIAs in achieving and maintaining low polio incidence compared to expected incidence for the counterfactual of RI only. RESULTS: We identified multiple phases of polio eradication that included shifts in targets and timelines and the introduction of different poliovirus vaccines, which influenced polio epidemiology. Notable shifts occurred in GPEI investments in SIAs since 2001, particularly since 2016. Modeling results suggest that SIAs play(ed) a key role in increasing (and maintaining) high population immunity to levels required to eradicate poliovirus transmission globally. CONCLUSIONS: Shifts in polio eradication strategy and poliovirus vaccine usage in SIAs provide important context for understanding polio epidemiology, delayed achievement of polio eradication milestones, and complexity of the polio endgame.


Subject(s)
Disease Eradication , Global Health , Immunization Programs , Poliomyelitis , Poliovirus Vaccines , Poliomyelitis/prevention & control , Poliomyelitis/epidemiology , Poliomyelitis/immunology , Humans , Poliovirus Vaccines/administration & dosage , Poliovirus Vaccines/immunology , Incidence , Poliovirus/immunology
19.
BMC Infect Dis ; 24(1): 535, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807038

ABSTRACT

BACKGROUND: To assess the immunogenicity of the current primary polio vaccination schedule in China and compare it with alternative schedules using Sabin or Salk-strain IPV (sIPV, wIPV). METHODS: A cross-sectional investigation was conducted at four sites in Chongqing, China, healthy infants aged 60-89 days were conveniently recruited and divided into four groups according to their received primary polio vaccination schedules (2sIPV + bOPV, 2wIPV + bOPV, 3sIPV, and 3wIPV). The sero-protection and neutralizing antibody titers against poliovirus serotypes (type 1, 2, and 3) were compared after the last dose. RESULTS: There were 408 infants completed the protocol. The observed seropositivity was more than 96% against poliovirus types 1, 2, and 3 in all groups. IPV-only groups induced higher antibody titers(GMT) against poliovirus type 2 (Median:192, QR: 96-384, P<0.05) than the "2IPV + bOPV" group. While the "2IPV + bOPV" group induced significantly higher antibody titers against poliovirus type 1 (Median:2048, QR: 768-2048, P<0.05)and type 3 (Median:2048, QR: 512-2048, P<0.05) than the IPV-only group. CONCLUSIONS: Our findings have proved that the two doses of IPV with one dose of bOPV is currently the best polio routine immunization schedule in China.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunization Schedule , Poliomyelitis , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral , Poliovirus , Humans , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Poliomyelitis/prevention & control , Poliomyelitis/immunology , Infant , Poliovirus Vaccine, Oral/immunology , Poliovirus Vaccine, Oral/administration & dosage , Male , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross-Sectional Studies , China , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Poliovirus/immunology , Immunogenicity, Vaccine , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL