Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.652
1.
Mol Biol Rep ; 51(1): 706, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824203

BACKGROUND: Microinjection is a direct procedure for delivering various compounds via micropipette into individual cells. Combined with the CRISPR/Cas9 editing technology, it has been used to produce genetically engineered animal cells. However, genetic micromanipulation of intact plant cells has been a relatively unexplored area of research, partly due to the cytological characteristics of these cells. This study aimed to gain insight into the genetic micromanipulation of wheat microspores using microinjection procedures combined with the CRISPR/Cas9 editing system targeting the Ms2 gene. METHODS AND RESULTS: Microspores were first reprogrammed by starvation and heat shock treatment to make them structurally suitable for microinjection. The large central vacuole was fragmented and the nucleus with cytoplasm was positioned in the center of the cell. This step and an additional maltose gradient provided an adequate source of intact single cells in the three wheat genotypes. The microcapillary was inserted into the cell through the germ pore to deliver a working solution with a fluorescent marker. This procedure was much more efficient and less harmful to the microspore than inserting the microcapillary through the cell wall. The CRISPR/Cas9 binary vectors injected into reprogrammed microspores induced mutations in the target Ms2 gene with deletions ranging from 1 to 16 bp. CONCLUSIONS: This is the first report of successful genome editing in an intact microspore/wheat cell using the microinjection technique and the CRISPR/Cas9 editing system. The study presented offers a range of molecular and cellular biology tools that can aid in genetic micromanipulation and single-cell analysis.


CRISPR-Cas Systems , Gene Editing , Microinjections , Mutation , Triticum , Triticum/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Microinjections/methods , Mutation/genetics , Pollen/genetics
2.
Sci Rep ; 14(1): 13163, 2024 06 07.
Article En | MEDLINE | ID: mdl-38849427

Pear pollination is performed by artificial pollination because the pollination rate through insect pollination is not stable. Pollen must be collected to secure sufficient pollen for artificial pollination. However, recently, collecting sufficient amounts of pollen in Japan has become difficult, resulting in increased imports from overseas. To solve this problem, improving the efficiency of pollen collection and strengthening the domestic supply and demand system is necessary. In this study, we proposed an Artificial Intelligence (AI)-based method to estimate the amount of pear pollen. The proposed method used a deep learning-based object detection algorithm, You Only Look Once (YOLO), to classify and detect flower shapes in five stages, from bud to flowering, and to estimate the pollen amount. In this study, the performance of the proposed method was discussed by analyzing the accuracy and error of classification for multiple flower varieties. Although this study only discussed the performance of estimating the amount of pollen collected, in the future, we aim to establish a technique for estimating the time of maximum pollen collection using the method proposed in this study.


Deep Learning , Flowers , Pollen , Pollination , Pyrus , Flowers/physiology , Pollination/physiology , Algorithms
4.
Planta ; 260(1): 21, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847829

MAIN CONCLUSION: Petal developmental characteristics in Fumarioideae were similar at early stages, and the specialized nectar holder/pollen container formed by the outer/inner petals. The micro-morphology of these two structures, however, shows diversity in seven species. Elaborate petals have been modified to form different types, including petal lobes, ridges, protuberances, and spurs, each with specialized functions. Nectar holder and pollen container presumably have a function in plant-pollinator interactions. In Fumarioideae, four elaborate petals of the disymmetric/zygomorphic flower present architecture forming the "nectar holder" and "pollen container" structure at the bottom and top separately. In the present study, the petals of seven species in Fumarioideae were investigated by scanning electron microscopy, light microscope, and transmission electron microscopes. The results show that petal development could divided into six stages: initiation, enlargement, adaxial/abaxial differentiation, elaborate specializations (sacs, spurs, and lobes formed), extension, and maturation, while the specialized "nectar holder" and "pollen container" structures mainly formed in stage 4. "Nectar holder" is developed from the shallow sac/spur differentiated at the base of the outer petal, eventually forming a multi-organized complex structure, together with staminal nectaries (1-2) with individual sizes. A semi-closed ellipsoidal "pollen container" is developed from the apical part of the 3-lobed inner petals fused by middle lobes and attain different sizes. The adaxial epidermis cells are specialized, with more distinct punctate/dense columnar protrusions or wavy cuticles presented on obviously thickening cell walls. In addition, a large and well-developed cavity appears between the inner and outer epidermis of the petals. As an exception, Hypecoum erectum middle lobes present stamen mimicry. Elaborate petal structure is crucial for comprehending the petal diversity in Fumarioideae and provides more evidence for further exploration of the reproductive study in Papaveraceae.


Flowers , Microscopy, Electron, Scanning , Plant Nectar , Pollen , Flowers/anatomy & histology , Flowers/ultrastructure , Flowers/growth & development , Pollen/ultrastructure , Microscopy, Electron, Transmission , Pollination
5.
Planta ; 260(1): 15, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829528

MAIN CONCLUSION: One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.


Flowers , Odorants , Pollen , Pollination , Solanum , Solanum/physiology , Solanum/chemistry , Pollination/physiology , Flowers/physiology , Flowers/chemistry , Pollen/physiology , Pollen/chemistry , Odorants/analysis , Animals , Bees/physiology
6.
Iran J Allergy Asthma Immunol ; 23(2): 149-157, 2024 Apr 07.
Article En | MEDLINE | ID: mdl-38822510

Allergen-specific immunotherapy is the only disease-modifying treatment for IgE-mediated allergic disorders. Intra lymphatic immunotherapy (ILIT) is an efficacious and time-saving alternative to subcutaneous immunotherapy (SCIT). This study aimed to evaluate the effects and safety of ILIT in patients with moderate to severe allergic rhinitis.  In this clinical trial, patients between 18 and 65 years old with moderate to severe allergic rhinitis were enrolled. They received monthly intra-lymphatic inguinal injections of an active allergen (1000 SQ-U Salsola kali pollen). Their clinical symptoms were assessed before and four weeks after treatments. The clinical signs were also evaluated during two consecutive pollination seasons and the following non-pollination season in April. No moderate or severe reactions were recorded following ILIT treatment. Lymph node enlargement, angioedema/urticaria, and local itching were seen instantly after injection. Patients who received ILIT experienced a significant clinical improvement in self-recorded seasonal allergic symptoms after the treatments, compared to themselves before ILIT. Furthermore, their quality of life significantly improved. This study suggests ILIT with Salsola-pollen extract may decrease symptoms of allergic rhinitis. It was safe and did not cause any crucial complications.


Desensitization, Immunologic , Quality of Life , Rhinitis, Allergic, Seasonal , Humans , Rhinitis, Allergic, Seasonal/therapy , Rhinitis, Allergic, Seasonal/immunology , Adult , Male , Female , Desensitization, Immunologic/methods , Middle Aged , Injections, Intralymphatic , Young Adult , Allergens/immunology , Allergens/administration & dosage , Severity of Illness Index , Adolescent , Treatment Outcome , Aged , Pollen/immunology
7.
Acta Biotheor ; 72(2): 7, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38869631

In angiosperms cytoplasmic DNA is typically passed on maternally through ovules. Genes in the mtDNA may cause male sterility. When male-sterile (female) cytotypes produce more seeds than cosexuals, they pass on more copies of their mtDNA and will co-occur with cosexuals with a neutral cytotype. Cytoplasmic gynodioecy is a well-known phenomenon in angiosperms, both in wild and crop plants. In some conifer families (e.g. Pinaceae) mitochondria are also maternally inherited. However in some other families (e.g. Taxaceae and Cupressaceae) mtDNA is paternally inherited through the pollen. With paternal mtDNA inheritance, male cytotypes that produce more pollen than cosexuals are expected to co-occur with cosexuals. This is uncharted territory. An ESS model shows that the presence of male cytotypes selects for more female allocation in the cosexual, i.e. for sexual specialisation. An allele that switches sex from male to female can then invade. This leads to rapid loss of the neutral cytotype of the cosexual, fixation of the male cytotype and dioecy with 50% males and 50% females. The models suggest that paternal inheritance of mtDNA facilitates the evolution dioecy. Consistent with this hypothesis the Pinaceae are 100% monoecious, while dioecy is common in the Taxaceae family and in the genus Juniperus (Cupressaceae). However, no reliable data are yet available on both mode of inheritance of mtDNA and gender variation of the same species. When cosexuals benefit from reproductive assurance (high selfing rate, low inbreeding depression, low fertilisation) they maintain themselves next to males and females. This predicted pattern with three sex types present in the same population is observed in conifers in nature.


DNA, Mitochondrial , Paternal Inheritance , Tracheophyta , DNA, Mitochondrial/genetics , Tracheophyta/genetics , Reproduction/genetics , Pollen/genetics , DNA, Plant/genetics
8.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38856917

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
9.
BMC Plant Biol ; 24(1): 535, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38862889

BACKGROUND: Cytoplasmic male sterility (CMS) has greatly improved the utilization of heterosis in crops due to the absence of functional male gametophyte. The newly developed sporophytic D1 type CMS (CMS-D1) rice exhibits unique characteristics compared to the well-known sporophytic CMS-WA line, making it a valuable resource for rice breeding. RESULTS: In this research, a novel CMS-D1 line named Xingye A (XYA) was established, characterized by small, transparent, and shriveled anthers. Histological and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays conducted on anthers from XYA and its maintainer line XYB revealed that male sterility in XYA is a result of delayed degradation of tapetal cells and abnormal programmed cell death (PCD) of microspores. Transcriptome analysis of young panicles revealed that differentially expressed genes (DEGs) in XYA, compared to XYB, were significantly enriched in processes related to chromatin structure and nucleosomes during the microspore mother cell (MMC) stage. Conversely, processes associated with sporopollenin biosynthesis, pollen exine formation, chitinase activity, and pollen wall assembly were enriched during the meiosis stage. Metabolome analysis identified 176 specific differentially accumulated metabolites (DAMs) during the meiosis stage, enriched in pathways such as α-linoleic acid metabolism, flavone and flavonol biosynthesis, and linolenic acid metabolism. Integration of transcriptomic and metabolomic data underscored the jasmonic acid (JA) biosynthesis pathway was significant enriched in XYA during the meiosis stage compared to XYB. Furthermore, levels of JA, MeJA, OPC4, OPDA, and JA-Ile were all higher in XYA than in XYB at the meiosis stage. CONCLUSIONS: These findings emphasize the involvement of the JA biosynthetic pathway in pollen development in the CMS-D1 line, providing a foundation for further exploration of the molecular mechanisms involved in CMS-D1 sterility.


Oryza , Plant Infertility , Pollen , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Plant Infertility/genetics , Transcriptome , Gene Expression Profiling , Metabolomics , Metabolome , Gene Expression Regulation, Plant , Meiosis
10.
BMC Plant Biol ; 24(1): 415, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760683

Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.


Cynara scolymus , Plant Infertility , Pollen , Plant Infertility/genetics , Cynara scolymus/genetics , Pollen/genetics , Genome, Plant , Genes, Plant
11.
Sci Rep ; 14(1): 11392, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762587

Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.


Islands , Plumbaginaceae , Pollen , Pollination , Reproduction , Pollen/physiology , Reproduction/physiology , Plumbaginaceae/physiology , Pollination/physiology , Seeds/physiology , Flowers/physiology , Phenotype
12.
Sci Total Environ ; 933: 173269, 2024 Jul 10.
Article En | MEDLINE | ID: mdl-38754518

Climate change will impact the carrot seed industry globally. One adaptation strategy to limit climatic impacts on the production of commercial carrot seeds is geographical shift. However, production must be shifted to climate-optimal places that are free from weeds such as wild carrots to avoid genetic contamination via hybridization. The process of gene flow between wild and cultivated carrots is critical to enable management of wild carrots in the face of climate change. This review systematically assesses the resilience of wild carrots to climate change and their impact on commercial carrot seed production globally with a focus on New Zealand as a major carrot seed producer. The literature was critically analyzed based on three specific components: i) resilience of wild carrots to climate change ii) genetic contamination between wild and cultivated carrots, and iii) management of wild carrots. The majority of the articles were published between 2013 and 2023 (64.71 %), and most of these studies were conducted in Europe (37.26 %) and North America (27.45 %). Country-wise analysis demonstrated that the majority of the studies were carried out in the United States (23.53 %) and the Netherlands (11.77 %). There was limited research conducted in other regions, especially in Oceania (1.96 %). Spatial distribution analysis revealed that the wild carrot was reported in around 100 countries. In New Zealand the North Island has a higher incidence of wild carrot invasion than the South Island. The findings indicated that the wild carrot is becoming more adaptable to climate change, compromising the genetic purity of cultivated carrots due to pollen flow from wild to cultivated carrots. Therefore, ongoing research will be helpful in developing sustainable weed management strategies and predicting potential geographical invasiveness. This study provides a guide for scientists, policymakers, industrialists, and farmers to control wild carrots and produce genetically pure commercial seeds amid climate change.


Climate Change , Daucus carota , Gene Flow , Daucus carota/genetics , New Zealand , Pollen , Seeds
13.
Planta ; 260(1): 6, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780795

MAIN CONCLUSION: TaAGL66, a MADS-box transcription factor highly expressed in fertile anthers of KTM3315A, regulates anther and/or pollen development, as well as male fertility in wheat with Aegilops kotschyi cytoplasm. Male sterility, as a string of sophisticated biological processes in higher plants, is commonly regulated by transcription factors (TFs). Among them, MADS-box TFs are mainly participated in the processes of floral organ formation and pollen development, which are tightly related to male sterility, but they have been little studied in the reproductive development in wheat. In our study, TaAGL66, a gene that was specifically expressed in spikes and highly expressed in fertile anthers, was identified by RNA sequencing and the expression profiles data of these genes, and qRT-PCR analyses, which was localized to the nucleus. Silencing of TaAGL66 under fertility condition in KTM3315A, a thermo-sensitive male sterile line with Ae. kotschyi cytoplasm, displayed severe fertility reduction, abnormal anther dehiscence, defective pollen development, decreased viability, and low seed-setting. It can be concluded that TaAGL66 plays an important role in wheat pollen development in the presence of Ae. kotschyi cytoplasm, providing new insights into the utilization of male sterility.


Aegilops , Cytoplasm , Fertility , Gene Expression Regulation, Plant , Plant Infertility , Plant Proteins , Pollen , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Cytoplasm/metabolism , Cytoplasm/genetics , Pollen/genetics , Pollen/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Aegilops/genetics , Plant Infertility/genetics , Fertility/genetics , Flowers/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Genes, Plant/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Proc Biol Sci ; 291(2023): 20232604, 2024 May.
Article En | MEDLINE | ID: mdl-38807521

Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.


Flowers , Pollen , Pollination , Bees/physiology , Animals , Ecosystem , Grassland , Biodiversity
15.
Sci Total Environ ; 937: 173363, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38795995

The effects of global warming are numerous and recent studies reveal that they can affect the timing of pollination. Temperature is the meteorological variable that presents a clearer relationship with the start of the pollination season of most of the observed airborne pollen taxa. In Catalonia, in the last fifty years, the average annual air temperature has increased by +0.23 °C/decade, and the local warming has been slightly higher than the one on a global scale. Projections point to an increase in temperature in the coming decades, which would be more marked towards the middle of the century. To analyse the effect of the increase in temperature due to global warming on the starting date of pollen season in Barcelona, a forecasting model has been applied to a set of projected future temperatures estimated by the European RESCCUE project. This model, largely used in the literature, is based on determining the thermal needs of the plant for the pollen season to begin. The model calibration to obtain the initial parameters has been made by using 20 years of pollen data (2000-2019), and the model effectiveness has subsequently been tested through an internal evaluation over the period of the calibration and an external evaluation on 4 years not included in the calibration (2020-2023). The mean bias error in the internal calibration ranged between -0.4 and - 0.6 days, and between +0.5 and - 8.3 in the external one, depending on the taxon. The results of the application of the model to the temperature projections over the 21st century point to a progressive advancement in the pollination dates of several pollen types abundant in the city, allergenic most of them. These advances ranged, at the end of the century, between 15 and 27 days, depending on the climate model, for the scenario of the highest concentrations (RCP8.5) and between 7 and 12 days for the emissions stabilization scenario (RCP4.5).


Air Pollutants , Environmental Monitoring , Pollen , Seasons , Spain , Environmental Monitoring/methods , Air Pollutants/analysis , Allergens/analysis , Global Warming , Forecasting , Air Pollution/statistics & numerical data , Temperature , Pollination
16.
J Insect Sci ; 24(3)2024 May 01.
Article En | MEDLINE | ID: mdl-38805656

The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.


Glycine max , Varroidae , Zea mays , Animals , Bees/parasitology , Bees/drug effects , Iowa , Varroidae/physiology , Beekeeping , Pesticides/toxicity , Longitudinal Studies , Pollen
17.
Nat Commun ; 15(1): 4612, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816386

In plants, small-interfering RNAs (siRNAs) mediate epigenetic silencing via the RNA-directed DNA methylation (RdDM) pathway, which is particularly prominent during reproduction and seed development. However, there is limited understanding of the origins and dynamics of reproductive siRNAs acting in different cellular and developmental contexts. Here, we used the RNaseIII-like protein RTL1 to suppress siRNA biogenesis in Arabidopsis pollen, and found distinct siRNA subsets produced during pollen development. We demonstrate that RTL1 expression in the late microspore and vegetative cell strongly impairs epigenetic silencing, and resembles RdDM mutants in their ability to bypass interploidy hybridization barriers in the seed. However, germline-specific RTL1 expression did not impact transgenerational inheritance of triploid seed lethality. These results reveal the existence of multiple siRNA subsets accumulated in mature pollen, and suggest that mobile siRNAs involved in the triploid block are produced in germline precursor cells after meiosis, or in the vegetative cell during pollen mitosis.


Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen , RNA, Small Interfering , Seeds , Pollen/genetics , Pollen/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Seeds/genetics , Seeds/metabolism , Triploidy , DNA Methylation , Meiosis/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , Epigenesis, Genetic
18.
Nat Commun ; 15(1): 4512, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802369

In higher plants, mature male gametophytes have distinct apertures. After pollination, pollen grains germinate, and a pollen tube grows from the aperture to deliver sperm cells to the embryo sac, completing fertilization. In rice, the pollen aperture has a single-pore structure with a collar-like annulus and a plug-like operculum. A crucial step in aperture development is the formation of aperture plasma membrane protrusion (APMP) at the distal polar region of the microspore during the late tetrad stage. Previous studies identified OsINP1 and OsDAF1 as essential regulators of APMP and pollen aperture formation in rice, but their precise molecular mechanisms remain unclear. We demonstrate that the Poaceae-specific OsSRF8 gene, encoding a STRUBBELIG-receptor family 8 protein, is essential for pollen aperture formation in Oryza sativa. Mutants lacking functional OsSRF8 exhibit defects in APMP and pollen aperture formation, like loss-of-function OsINP1 mutants. OsSRF8 is specifically expressed during early anther development and initially diffusely distributed in the microsporocytes. At the tetrad stage, OsSRF8 is recruited by OsINP1 to the pre-aperture region through direct protein-protein interaction, promoting APMP formation. The OsSRF8-OsINP1 complex then recruits OsDAF1 to the APMP site to co-regulate annulus formation. Our findings provide insights into the mechanisms controlling pollen aperture formation in cereal species.


Gene Expression Regulation, Plant , Oryza , Plant Proteins , Pollen , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/metabolism , Plant Proteins/genetics , Pollen/metabolism , Pollen/genetics , Pollen/growth & development , Mutation , Pollination , Cell Membrane/metabolism , Plants, Genetically Modified , Pollen Tube/metabolism , Pollen Tube/growth & development , Pollen Tube/genetics
19.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Article En | MEDLINE | ID: mdl-38809410

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Gene Expression Regulation, Plant , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Plants, Genetically Modified , Germination/genetics
20.
Sci Total Environ ; 935: 173430, 2024 Jul 20.
Article En | MEDLINE | ID: mdl-38782273

The prevalence of pollen allergies is a pressing global issue, with projections suggesting that half of the world's population will be affected by 2050 according to the estimation of the World Health Organization (WHO). Accurately forecasting pollen allergy risks requires identifying key factors and their thresholds for aerosol pollen. To address this, we developed a technical framework combining advanced machine learning and SHapley Additive exPlanations (SHAP) technology, focusing on Beijing. By analyzing meteorological data and vegetation phenology, we identified the factors influencing next-day's pollen concentration (NDP) in Beijing and their thresholds. Our results highlight vegetation phenology data from Synthetic Aperture Radar (SAR), temperature, wind speed, and atmospheric pressure as crucial factors in spring. In contrast, the Normalized Difference Vegetation Index (NDVI), air temperature, and wind speed are significant in autumn. Leveraging SHAP technology, we established season-specific thresholds for these factors. Our study not only confirms previous research but also unveils seasonal variations in the relationship between radar-derived vegetation phenology data and NDP. Additionally, we observe seasonal fluctuations in the influence patterns and threshold values of daily air temperatures on NDP. These insights are pivotal for improving pollen concentration prediction accuracy and managing allergic risks effectively.


Air Pollutants , Allergens , Environmental Monitoring , Machine Learning , Pollen , Seasons , Air Pollutants/analysis , Environmental Monitoring/methods , Allergens/analysis , Beijing , Air Pollution/statistics & numerical data
...