Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Sci Rep ; 14(1): 14622, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918480

ABSTRACT

Although pesticide-free techniques have been developed in agriculture, pesticides are still routinely used against weeds, pests, and pathogens worldwide. These agrochemicals pollute the environment and can negatively impact human health, biodiversity and ecosystem services. Acetamiprid, an approved neonicotinoid pesticide in the EU, may exert sub-lethal effects on pollinators and other organisms. However, our knowledge on the scope and severity of such effects is still incomplete. Our experiments focused on the effects of the insecticide formulation Mospilan (active ingredient: 20% acetamiprid) on the peripheral olfactory detection of a synthetic floral blend and foraging behaviour of buff-tailed bumblebee (Bombus terrestris) workers. We found that the applied treatment did not affect the antennal detection of the floral blend; however, it induced alterations in their foraging behaviour. Pesticide-treated individuals started foraging later, and the probability of finding the floral blend was lower than that of the control bumblebees. However, exposed bumblebees found the scent source faster than the controls. These results suggest that acetamiprid-containing Mospilan may disrupt the activity and orientation of foraging bumblebees. We hypothesize that the observed effects of pesticide exposure on foraging behaviour could be mediated through neurophysiological and endocrine mechanisms. We propose that future investigations should clarify whether such sub-lethal effects can affect pollinators' population dynamics and their ecosystem services.


Subject(s)
Flowers , Insecticides , Neonicotinoids , Odorants , Animals , Bees/drug effects , Bees/physiology , Insecticides/pharmacology , Flowers/chemistry , Odorants/analysis , Neonicotinoids/pharmacology , Pollination/drug effects
2.
PLoS One ; 17(2): e0240950, 2022.
Article in English | MEDLINE | ID: mdl-35213539

ABSTRACT

The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%-87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.


Subject(s)
Bees/drug effects , Insecticides/adverse effects , Neonicotinoids/adverse effects , Thermotolerance/drug effects , Animals , Bees/physiology , Climate Change , Pollination/drug effects
3.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34810261

ABSTRACT

Pesticides are linked to global insect declines, with impacts on biodiversity and essential ecosystem services. In addition to well-documented direct impacts of pesticides at the current stage or time, potential delayed "carryover" effects from past exposure at a different life stage may augment impacts on individuals and populations. We investigated the effects of current exposure and the carryover effects of past insecticide exposure on the individual vital rates and population growth of the solitary bee, Osmia lignaria Bees in flight cages freely foraged on wildflowers, some treated with the common insecticide, imidacloprid, in a fully crossed design over 2 y, with insecticide exposure or no exposure in each year. Insecticide exposure directly to foraging adults and via carryover effects from past exposure reduced reproduction. Repeated exposure across 2 y additively impaired individual performance, leading to a nearly fourfold reduction in bee population growth. Exposure to even a single insecticide application can have persistent effects on vital rates and can reduce population growth for multiple generations. Carryover effects had profound implications for population persistence and must be considered in risk assessment, conservation, and management decisions for pollinators to mitigate the effects of insecticide exposure.


Subject(s)
Ecosystem , Insecticides/adverse effects , Insecticides/pharmacology , Pesticides/pharmacology , Pollination/drug effects , Population Growth , Animals , Bees , Biodiversity , Crosses, Genetic , Female , Linear Models , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Probability , Reproduction , Risk Assessment
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638969

ABSTRACT

Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen.


Subject(s)
Brassinosteroids/metabolism , Flowers/anatomy & histology , Flowers/genetics , Genes, Plant , Genetic Loci , Pollination/genetics , Turnera/genetics , Turnera/metabolism , Alleles , Arabidopsis/genetics , Brassinosteroids/pharmacology , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Plant , Genotype , Germination/drug effects , Germination/genetics , Phenotype , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Point Mutation , Pollen/genetics , Pollen/growth & development , Pollen/metabolism , Pollination/drug effects , Steroids, Heterocyclic/pharmacology , Turnera/growth & development
5.
Nature ; 596(7872): 389-392, 2021 08.
Article in English | MEDLINE | ID: mdl-34349259

ABSTRACT

Global concern over widely documented declines in pollinators1-3 has led to the identification of anthropogenic stressors that, individually, are detrimental to bee populations4-7. Synergistic interactions between these stressors could substantially amplify the environmental effect of these stressors and could therefore have important implications for policy decisions that aim to improve the health of pollinators3,8,9. Here, to quantitatively assess the scale of this threat, we conducted a meta-analysis of 356 interaction effect sizes from 90 studies in which bees were exposed to combinations of agrochemicals, nutritional stressors and/or parasites. We found an overall synergistic effect between multiple stressors on bee mortality. Subgroup analysis of bee mortality revealed strong evidence for synergy when bees were exposed to multiple agrochemicals at field-realistic levels, but interactions were not greater than additive expectations when bees were exposed to parasites and/or nutritional stressors. All interactive effects on proxies of fitness, behaviour, parasite load and immune responses were either additive or antagonistic; therefore, the potential mechanisms that drive the observed synergistic interactions for bee mortality remain unclear. Environmental risk assessment schemes that assume additive effects of the risk of agrochemical exposure may underestimate the interactive effect of anthropogenic stressors on bee mortality and will fail to protect the pollinators that provide a key ecosystem service that underpins sustainable agriculture.


Subject(s)
Agrochemicals/adverse effects , Agrochemicals/poisoning , Bees/drug effects , Stress, Physiological/drug effects , Agriculture , Animal Nutritional Physiological Phenomena , Animals , Bees/immunology , Bees/parasitology , Drug Synergism , Female , Male , Pollination/drug effects
6.
Sci Rep ; 11(1): 14710, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34282204

ABSTRACT

The population of bumble bees and other pollinators has considerably declined worldwide, probably, due to the toxic effect of pesticides used in agriculture. Inexpensive and available antidotes can be one of the solutions for the problem of pesticide toxicity for pollinators. We studied the properties of the thiazine dye Methylene blue (MB) as an antidote against the toxic action of pesticides in the bumble bee mitochondria and found that MB stimulated mitochondrial respiration mediated by Complex I of the electron transport chain (ETC) and increased respiration of the mitochondria treated with mitochondria-targeted (chlorfenapyr, hydramethylnon, pyridaben, tolfenpyrad, and fenazaquin) and non-mitochondrial (deltamethrin, metribuzin, and penconazole) pesticides. MB also restored the mitochondrial membrane potential dissipated by the pesticides affecting the ETC. The mechanism of MB action is most probably related to its ability to shunt electron flow in the mitochondrial ETC.


Subject(s)
Bees , Methylene Blue/pharmacology , Mitochondria/drug effects , Pesticides/poisoning , Agriculture , Animals , Antidotes/pharmacology , Bees/drug effects , Bees/metabolism , Cytoprotection/drug effects , Energy Metabolism/drug effects , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Pollination/drug effects , Pollination/physiology , Pyrethrins/poisoning
7.
Commun Biol ; 4(1): 805, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183763

ABSTRACT

The assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world's most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved 'bee safe' butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bees/drug effects , Behavior, Animal/drug effects , Pesticides/toxicity , Pyridines/toxicity , 4-Butyrolactone/toxicity , Animals , Bees/physiology , Pollination/drug effects
8.
Sci Rep ; 11(1): 10205, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986453

ABSTRACT

The current study was performed on eight years old peach (Prunus persica L. Batsch) trees cv. Florida prince to study the influence of spraying of commercial nano fertilizer on vegetative growth, pollen grain viability, yield, and fruit quality of the "Florida prince" peach cultivar. Furthermore, extracts from the nanofertilizer treated leaves were studied for their bioactivity as insecticidal or bactericidal activities against some stored grain insects and plant bacterial pathogens. Seventy uniform peach trees were sprayed three time as follow: before flowering; during full bloom, and one month later in addition using the water as a control. Commercial silver particales (Ag NPs) at 10, 12.5, and 15 mL/L and zinc particales (Zn NPs) at 2.5, 5 and 7.5 mL/L as recommended level in a randomized complete block design in ten replicates/trees. Spraying Ag NP at 15 mL/L increased shoot diameter, leaf area, total chlorophyll, flower percentage, fruit yield and fruit physical and chemical characteristics, followed by Ag NPs at 12.5 mL/L and Zn NPs at 7.5 mL/L. Moreover, Zn and Ag NPs caused a highly significant effect on pollen viability. Different type of pollen aberrations were detected by Zn NPs treatment. The commercial Ag NPs showed a high increase in pollen viability without any aberrations. The Ag NPs significantly increased the pollen size, and the spores also increased and separated in different localities, searching about the egg for pollination and fertilization. Peach leaves extract was examined for their insecticidal activity against rice weevil (Sitophilus oryzea L.) and the lesser grain borer (Rhyzopertha dominica, Fabricius) by fumigation method. The antibacterial activity of all treatments was also performed against molecularly identified bacteria. Ag NPs treated leaves extract at concentration 3000 µg/mL were moderate sufficient to inhibit all the bacterial isolates with inhibition zone (IZ) ranged 6-8.67 mm with high efficiency of acetone extracts from leaves treated with Ag NPs compared with Zn NPs. Also, S. oryzae was more susceptible to acetone extracts from leaves treated with both nanomaterials than R. dominica.


Subject(s)
Prunus persica/drug effects , Prunus persica/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chlorophyll/metabolism , Fertilizers , Florida , Insecticides/pharmacology , Metal Nanoparticles , Plant Extracts/metabolism , Plant Leaves/drug effects , Pollen/drug effects , Pollination/drug effects , Silver , Trees/drug effects , Zinc
9.
Ecotoxicol Environ Saf ; 211: 111869, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33450537

ABSTRACT

Solitary bees are among the most important pollinators worldwide however population declines especially in croplands has been noticed. The novel pesticide sulfoxaflor is a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. While there is evidence of a negative impact of neonicotinoids on bees of several social organization levels, our overall knowledge on the impact of sulfoxaflor on bees is poor. Here we present for the first time a study showing effects of field realistic doses of sulfoxaflor on solitary bees. Bees submitted to long term exposure of field realistic doses of sulfoxaflor (5 µg dm-3, 10 µg dm-3, 50 µg dm-3) and control were observed regarding their survival rate. Moreover, we recorded metrics related to flower visitation and flight performance. We discover that the highest field realistic dose is lethal to Osmia bicornis along five days of exposure. The effect of sulfoxaflor reduces the outcome of foraging, important features for fruit and seed production of cross-pollinated plant species. Bees exposed to pesticide visited flowers mostly walking rather than flying. Flight performance was also impaired by the pesticide.


Subject(s)
Bees/physiology , Insecticides/toxicity , Animals , Feeding Behavior/drug effects , Flowers/drug effects , Neonicotinoids/toxicity , Pesticides/toxicity , Pollination/drug effects , Pyridines , Sulfur Compounds , Survival Rate
10.
Ecotoxicol Environ Saf ; 208: 111681, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396013

ABSTRACT

Analysis of particulate matter originating from beef cattle feed yards on the High Plains of the United States has revealed occurrence of multiple pesticides believed to potentially impact non-Apis pollinators. Among these pesticides are those that are highly toxic to Apis mellifera (honey bees). However, little non-Apis bee species toxicity data exist; especially pertaining to beef cattle feed yard-derived pesticides. Therefore, we conducted a series of 96-h contact toxicity tests with blue orchard mason bees (Osmia lignaria) using three neonicotinoids, two pyrethroids, and two macrocyclic lactones. Neonicotinoids (thiamethoxam, imidacloprid, and clothianidin) were most toxic with LD50 values ranging from 2.88 to 26.35 ng/bee, respectively. Macrocyclic lactones (abamectin and ivermectin) were also highly toxic to O. lignaria with LD50 estimates of 5.51-32.86 ng/bee. Pyrethroids (permethrin and bifenthrin) were relatively less toxic with LD50 values greater than 33 ng/bee. Sensitivity ratios for each pesticide were calculated to relate O. lignaria LD50 values to existing honey bee toxicity data. All three neonicotinoids were more toxic to O. lignaria than A. mellifera, but pyrethroids and abamectin were relatively less toxic. Additionally, three of seven pesticides (43%) resulted in significantly different mass normalized LD50 values for male and female O. lignaria. These results indicate that non-Apis pollinators may be highly susceptible to pesticides originating from beef cattle feed yards, necessitating consideration of more stringent regulatory protections than those based on A. mellifera pesticide sensitivity.


Subject(s)
Bees/drug effects , Lactones/toxicity , Macrocyclic Compounds/toxicity , Neonicotinoids/toxicity , Pesticides/toxicity , Pyrethrins/toxicity , Animals , Dose-Response Relationship, Drug , Female , Lethal Dose 50 , Male , Models, Theoretical , Pollination/drug effects , Toxicity Tests, Acute
12.
Environ Toxicol Chem ; 39(10): 1884-1893, 2020 10.
Article in English | MEDLINE | ID: mdl-32936472

ABSTRACT

Neonicotinoids are a widely used class of pesticides. Co-exposure to neonicotinoids and other classes of pesticides can exert potentiating or synergistic effects, and these mixtures have been detected in human bodily fluids. The present review summarizes studies into the effects of neonicotinoid-containing pesticide mixtures on humans and other nontarget organisms. Exposure to these mixtures has been reported to result in reproductive and hormonal toxicity, genotoxicity, neurotoxicity, hepatotoxicity, and immunotoxicity in vertebrates. Mortality of pollinators and toxicity in other organisms has also been reported. The underlying mechanism of pesticide mixture toxicity may be associated with impairment of cytochrome 450 enzymes, which are involved in metabolizing pesticides. However, a comprehensive explanation of the adverse effects of neonicotinoid-containing pesticide mixtures is still required so that effective prevention and control measures can be formulated. Environ Toxicol Chem 2020;39:1884-1893. © 2020 SETAC.


Subject(s)
Environmental Exposure/adverse effects , Neonicotinoids/toxicity , Pesticides/toxicity , Animals , Drug Synergism , Ecotoxicology , Environmental Exposure/analysis , Fungicides, Industrial/metabolism , Fungicides, Industrial/toxicity , Herbicides/metabolism , Herbicides/toxicity , Humans , Insecticides/metabolism , Insecticides/toxicity , Neonicotinoids/metabolism , Pesticides/metabolism , Pollination/drug effects
13.
Ecotoxicol Environ Saf ; 203: 111013, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32888588

ABSTRACT

Multiple pesticides originating from plant protection treatments and the treatment of pests infecting honey bees are frequently detected in beehive matrices. Therefore, winter honey bees, which have a long life span, could be exposed to these pesticides for longer periods than summer honey bees. In this study, winter honey bees were exposed through food to the insecticide imidacloprid, the fungicide difenoconazole and the herbicide glyphosate, alone or in binary and ternary mixtures, at environmental concentrations (0 (controls), 0.1, 1 and 10 µg/L) for 20 days. The survival of the honey bees was significantly reduced after exposure to these 3 pesticides individually and in combination. Overall, the combinations had a higher impact than the pesticides alone with a maximum mortality of 52.9% after 20 days of exposure to the insecticide-fungicide binary mixture at 1 µg/L. The analyses of the surviving bees showed that these different pesticide combinations had a systemic global impact on the physiological state of the honey bees, as revealed by the modulation of head, midgut and abdomen glutathione-S-transferase, head acetylcholinesterase, abdomen glucose-6-phosphate dehydrogenase and midgut alkaline phosphatase, which are involved in the detoxification of xenobiotics, the nervous system, defenses against oxidative stress, metabolism and immunity, respectively. These results demonstrate the importance of studying the effects of chemical cocktails based on low realistic exposure levels and developing long-term tests to reveal possible lethal and adverse sublethal interactions in honey bees and other insect pollinators.


Subject(s)
Bees/physiology , Fungicides, Industrial/toxicity , Herbicides/toxicity , Insecticides/toxicity , Pesticides/toxicity , Animals , Dioxolanes/toxicity , Drug Synergism , Glycine/analogs & derivatives , Glycine/toxicity , Neonicotinoids/toxicity , Nitro Compounds/toxicity , Pollination/drug effects , Triazoles/toxicity , Glyphosate
14.
Biochem Biophys Res Commun ; 525(3): 600-606, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32115144

ABSTRACT

Self-incompatibility (SI) is a genetic mechanism most flowering plants adopted to reject self-pollen thus avoid inbreeding. In the Brassicaceae, self-pollen recognition triggers downstream signaling pathways to reject self-pollen. However, the downstream signaling pathways are not very clear. Here we show that ethylene negatively mediates self-incompatibility response of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) via PCD in papilla cells. We found that ethylene signaling genes were upregulated after cross-pollination. Treating stigmas with ethylene, or suppressing the expression of a negative regulator of ethylene signaling, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), caused PCD in papilla cells and broke down the self-incompatibility. On the other hand, treating stigmas with ethylene inhibitors, or suppressing the expression of ethylene-responsive factors (ERFs), inhibited PCD in papilla cells and the compatible pollination. Our study identified an additional signaling pathway mediating self-incompatibility responses in the Brassicaceae and also developed a new method in overcoming self-incompatibility to improve the efficiency of inbred line propagation in agriculture practice.


Subject(s)
Brassica rapa/physiology , Ethylenes/pharmacology , Self-Incompatibility in Flowering Plants/drug effects , Apoptosis/drug effects , Brassica rapa/drug effects , Organophosphorus Compounds/pharmacology , Pollination/drug effects , Signal Transduction/drug effects , Up-Regulation/drug effects
15.
Chemosphere ; 248: 126075, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32028166

ABSTRACT

The honeybee, Apis mellifera is economically important for its products (honey, wax, and propolis) and for its role in pollination. This insect is threated due to high population losses in both agriculture and beekeeping. Within causes involved in the loss of honeybees is the increased pesticide use on agriculture. Although current testing for the regularization of insecticide use considers its acute toxic effects on pollinators, little is known about the effects of chronic exposure to sublethal concentrations that may persist in the environment. This study investigated the effect of chronic exposure to sublethal concentrations of lambda-cyhalothrin on the midgut, hypopharyngeal glands, and brain of A. mellifera. Honey bees were fed for eight days with LC50/100 insecticide. Subsequently, the midgut, hypopharyngeal glands, and brain were analyzed in light and transmission electron microscopies. The midgut was not affected after exposure, except in the posterior region with cell fragments in the lumen and changes in the mitochondria. The hypopharyngeal glands were severely affected by the insecticide with changes in the rough endoplasmic reticulum and cell death. The brain has extensive gaps in the neuropil as well as in the cellular bodies, especially in the corpora pedunculata. These resembled cellular alterations similar to those seen in death processes. The results of this study indicate that lambda-cyhalothrin is toxic to bees at sublethal concentrations and ingested chronically, causing damage to the midgut, hypopharyngeal glands, and brain, and may affect physiological and behavioral aspects of these insects.


Subject(s)
Bees/drug effects , Brain/drug effects , Digestive System/drug effects , Hypopharynx/drug effects , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Animals , Brain/ultrastructure , Digestive System/ultrastructure , Hypopharynx/ultrastructure , Lethal Dose 50 , Microscopy, Electron, Transmission , Pollination/drug effects
16.
J Integr Plant Biol ; 62(8): 1093-1111, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32009278

ABSTRACT

Brassinosteroids (BRs) play important roles in regulating plant reproductive processes. BR signaling or BR biosynthesis null mutants do not produce seeds under natural conditions, but the molecular mechanism underlying this infertility is poorly understood. In this study, we report that outer integument growth and embryo sac development were impaired in the ovules of the Arabidopsis thaliana BR receptor null mutant bri1-116. Gene expression and RNA-seq analyses showed that the expression of INNER NO OUTER (INO), an essential regulator of outer integument growth, was significantly reduced in the bri1-116 mutant. Increased INO expression due to overexpression or increased transcriptional activity of BRASSINAZOLE-RESISTANT 1 (BZR1) in the mutant alleviated the outer integument growth defect in bri1-116 ovules, suggesting that BRs regulate outer integument growth partially via BZR1-mediated transcriptional regulation of INO. Meanwhile, INO expression in bzr-h, a null mutant for all BZR1 family genes, was barely detectable; and the outer integument of bzr-h ovules had much more severe growth defects than those of the bri1-116 mutant. Together, our findings establish a new role for BRs in regulating ovule development and suggest that BZR1 family transcription factors might regulate outer integument growth through both BRI1-dependent and BRI1-independent pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Ovule/growth & development , Ovule/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Base Sequence , Cell Count , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Models, Biological , Mutation/genetics , Organ Specificity/drug effects , Organ Specificity/genetics , Ovule/drug effects , Pollen Tube/drug effects , Pollen Tube/metabolism , Pollination/drug effects , Seeds/drug effects , Seeds/metabolism
17.
Proc Natl Acad Sci U S A ; 117(1): 708-716, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871198

ABSTRACT

Mosquitoes are important vectors of disease and require sources of carbohydrates for reproduction and survival. Unlike host-related behaviors of mosquitoes, comparatively less is understood about the mechanisms involved in nectar-feeding decisions, or how this sensory information is processed in the mosquito brain. Here we show that Aedes spp. mosquitoes, including Aedes aegypti, are effective pollinators of the Platanthera obtusata orchid, and demonstrate this mutualism is mediated by the orchid's scent and the balance of excitation and inhibition in the mosquito's antennal lobe (AL). The P. obtusata orchid emits an attractive, nonanal-rich scent, whereas related Platanthera species-not visited by mosquitoes-emit scents dominated by lilac aldehyde. Calcium imaging experiments in the mosquito AL revealed that nonanal and lilac aldehyde each respectively activate the LC2 and AM2 glomerulus, and remarkably, the AM2 glomerulus is also sensitive to N,N-diethyl-meta-toluamide (DEET), a mosquito repellent. Lateral inhibition between these 2 glomeruli reflects the level of attraction to the orchid scents. Whereas the enriched nonanal scent of P. obtusata activates the LC2 and suppresses AM2, the high level of lilac aldehyde in the other orchid scents inverts this pattern of glomerular activity, and behavioral attraction is lost. These results demonstrate the ecological importance of mosquitoes beyond operating as disease vectors and open the door toward understanding the neural basis of mosquito nectar-seeking behaviors.


Subject(s)
Aedes/physiology , Appetitive Behavior/physiology , Olfactory Perception/physiology , Orchidaceae/physiology , Pollination/physiology , Animals , Appetitive Behavior/drug effects , Arthropod Antennae/cytology , Arthropod Antennae/physiology , Brain/physiology , DEET/pharmacology , Female , Insect Repellents/pharmacology , Male , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Odorants , Olfactory Perception/drug effects , Olfactory Receptor Neurons/physiology , Pollination/drug effects
18.
Ecotoxicol Environ Saf ; 190: 110100, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31869716

ABSTRACT

The neonicotinoid insecticide acetamiprid (ACT) and seven pesticides [abamectin (ABA), emamectin benzoate (EMB), dicrotophos (DIC), bifenthrin (BIF), cypermethrin (CYP), lambda-cyhalothrin (LCY) and tetraconazole (TET)] are widely applied agrochemicals worldwide. Since most previous studies on these pesticides are performed merely based on toxicity tests with individual active ingredients, only finite knowledge is available on the mixture toxicities of these formulated compounds to crop pollinators. In this study, we examined their toxicities of binary, ternary, quaternary, quinquenary, senary, septenary and octonary mixtures to honey bee (Apis mellifera L.) with feeding toxicity test. Results showed that EMB and ABA had the highest toxicities to A. mellifera with LC50 values of 0.033 (0.028-0.038) and 0.047 (0.039-0.056) µg a. i. mL-1 after exposure for 7 days, respectively, followed by DIC with an LC50 value of 1.22 (1.01-1.41) µg a. i. mL-1. In contrast, relatively low toxicities were found from pyrethroid insecticides, ACT, and TET with their LC50 values ranged from 44.76 (38.75-50.89) to 251.7 (198.4-297.3) µg a. i. mL-1. Most of pesticide mixtures containing ACT and TET elicited synergistic interactions to honey bees. Besides, four pesticide mixtures of ACT + BIF, ACT + BIF + CYP, ACT + BIF + LCY and ACT + CYP + DIC + EMB also displayed synergistic effects. Among 98 tested binary to octonary mixtures of ACT in combination with seven pesticides, 44.90% of combinations exhibited synergistic effects on honey bees. Considering ACT was permitted to use on flowering crops, more attention should be paid to its application in the fields due to the synergistic effects of ACT in combination with other pesticides on A. mellifera under laboratory conditions.


Subject(s)
Bees/physiology , Neonicotinoids/toxicity , Pesticides/toxicity , Animals , Chlorobenzenes , Insecticides/toxicity , Nitriles , Pollination/drug effects , Pyrethrins , Toxicity Tests , Triazoles
19.
Molecules ; 24(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817417

ABSTRACT

The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.


Subject(s)
Bees/physiology , Nanotechnology , Pesticides , Pollination/drug effects , Animals , Humans , Pesticides/adverse effects , Pesticides/chemistry , Pesticides/pharmacology , Pollen
20.
J Chem Ecol ; 45(10): 869-878, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31741191

ABSTRACT

Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae.


Subject(s)
Cacao/chemistry , Ceratopogonidae/physiology , Volatile Organic Compounds/chemistry , Animals , Cacao/metabolism , Ceratopogonidae/drug effects , Flowers/chemistry , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Pollen/chemistry , Pollen/metabolism , Pollination/drug effects , Smell , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL