Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.712
1.
Nat Commun ; 15(1): 4673, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824124

Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.


Cell Proliferation , Hematopoietic Stem Cells , NF-KappaB Inhibitor alpha , Signal Transduction , Tretinoin , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Tretinoin/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Embryonic Development/genetics , Mice, Knockout , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Mice, Inbred C57BL , Gene Expression Regulation, Developmental , Female
2.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Article En | MEDLINE | ID: mdl-38759625

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


G-Quadruplexes , Histones , Polycomb Repressive Complex 2 , RNA, Long Noncoding , X Chromosome Inactivation , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Histones/metabolism , Histones/genetics , Mouse Embryonic Stem Cells/metabolism , Chromatin/metabolism , Chromatin/genetics , X Chromosome/genetics , X Chromosome/metabolism , Gene Silencing , RNA Folding , Protein Binding
3.
Elife ; 132024 May 30.
Article En | MEDLINE | ID: mdl-38813868

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Genomic Imprinting , Animals , Female , Pregnancy , Mice , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Fetal Development/genetics , Placenta/metabolism , Oocytes/metabolism , Oocytes/growth & development , Amino Acid Transport System A
4.
Sci Adv ; 10(19): eadl4529, 2024 May 10.
Article En | MEDLINE | ID: mdl-38718120

Polycomb repressive complexes 1 and 2 (PRC1 and 2) are required for heritable repression of developmental genes. The cis- and trans-acting factors that contribute to epigenetic inheritance of mammalian Polycomb repression are not fully understood. Here, we show that, in human cells, ectopically induced Polycomb silencing at initially active developmental genes, but not near ubiquitously expressed housekeeping genes, is inherited for many cell divisions. Unexpectedly, silencing is heritable in cells with mutations in the H3K27me3 binding pocket of the Embryonic Ectoderm Development (EED) subunit of PRC2, which are known to disrupt H3K27me3 recognition and lead to loss of H3K27me3. This mode of inheritance is less stable and requires intact PRC2 and recognition of H2AK119ub1 by PRC1. Our findings suggest that maintenance of Polycomb silencing is sensitive to local genomic context and can be mediated by PRC1-dependent H2AK119ub1 and PRC2 independently of H3K27me3 recognition.


Gene Silencing , Histones , Polycomb-Group Proteins , Ubiquitination , Humans , Histones/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Genome, Human , Epigenesis, Genetic , Mutation
5.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38652118

Chromatin-remodeling protein BRG1/SMARCA4 is pivotal for establishing oligodendrocyte (OL) lineage identity. However, its functions for oligodendrocyte-precursor cell (OPC) differentiation within the postnatal brain and during remyelination remain elusive. Here, we demonstrate that Brg1 loss profoundly impairs OPC differentiation in the brain with a comparatively lesser effect in the spinal cord. Moreover, BRG1 is critical for OPC remyelination after injury. Integrative transcriptomic/genomic profiling reveals that BRG1 exhibits a dual role by promoting OPC differentiation networks while repressing OL-inhibitory cues and proneuronal programs. Furthermore, we find that BRG1 interacts with EED/PRC2 polycomb-repressive-complexes to enhance H3K27me3-mediated repression at gene loci associated with OL-differentiation inhibition and neurogenesis. Notably, BRG1 depletion decreases H3K27me3 deposition, leading to the upregulation of BMP/WNT signaling and proneurogenic genes, which suppresses OL programs. Thus, our findings reveal a hitherto unexplored spatiotemporal-specific role of BRG1 for OPC differentiation in the developing CNS and underscore a new insight into BRG1/PRC2-mediated epigenetic regulation that promotes and safeguards OL lineage commitment and differentiation.


Cell Differentiation , DNA Helicases , Oligodendroglia , Polycomb Repressive Complex 2 , Animals , Mice , DNA Helicases/metabolism , DNA Helicases/genetics , Epigenesis, Genetic , Histones/metabolism , Histones/genetics , Mice, Inbred C57BL , Neurogenesis/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Remyelination , Transcription Factors/metabolism , Transcription Factors/genetics
6.
Clin Epigenetics ; 16(1): 54, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600608

The polycomb group (PcG) comprises a set of proteins that exert epigenetic regulatory effects and play crucial roles in diverse biological processes, ranging from pluripotency and development to carcinogenesis. Among these proteins, enhancer of zeste homolog 2 (EZH2) stands out as a catalytic component of polycomb repressive complex 2 (PRC2), which plays a role in regulating the expression of homologous (Hox) genes and initial stages of x chromosome inactivation. In numerous human cancers, including head and neck squamous cell carcinoma (HNSCC), EZH2 is frequently overexpressed or activated and has been identified as a negative prognostic factor. Notably, EZH2 emerges as a significant gene involved in regulating the STAT3/HOTAIR axis, influencing HNSCC proliferation, differentiation, and promoting metastasis by modulating related oncogenes in oral cancer. Currently, various small molecule compounds have been developed as inhibitors specifically targeting EZH2 and have gained approval for treating refractory tumors. In this review, we delve into the epigenetic regulation mediated by EZH2/PRC2 in HNSCC, with a specific focus on exploring the potential roles and mechanisms of EZH2, its crucial contribution to targeted drug therapy, and its association with cancer markers and epithelial-mesenchymal transition. Furthermore, we aim to unravel its potential as a therapeutic strategy for oral squamous cell carcinoma.


Enhancer of Zeste Homolog 2 Protein , Squamous Cell Carcinoma of Head and Neck , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , DNA Methylation , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Head and Neck Neoplasms/drug therapy , Mouth Neoplasms/drug therapy , Polycomb Repressive Complex 2/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy
7.
Mol Cell ; 84(7): 1178-1179, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38579673

A new study in Molecular Cell by Guo et al.1 and two studies in Cell Reports by Healy et al.2 and by Hall Hickman and Jenner3 show how PRC2 and other chromatin regulators do not appear to bind RNA in vivo, challenging the importance of RNA for their function.


Polycomb Repressive Complex 2 , RNA , RNA/genetics , Polycomb Repressive Complex 2/metabolism , Chromatin/genetics
8.
Nat Commun ; 15(1): 3452, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658543

Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.


Enhancer of Zeste Homolog 2 Protein , Histones , Lymphoma, Follicular , Mutation , Polycomb Repressive Complex 2 , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histones/metabolism , Histones/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Methylation , Chromatin/metabolism , Chromatin/genetics , Transcription, Genetic
9.
Cell Rep ; 43(4): 114090, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607915

Gene repression by the Polycomb pathway is essential for metazoan development. Polycomb domains, characterized by trimethylation of histone H3 lysine 27 (H3K27me3), carry the memory of repression and hence need to be maintained to counter the dilution of parental H3K27me3 with unmodified H3 during replication. Yet, how locus-specific H3K27me3 is maintained through replication is unclear. To understand H3K27me3 recovery post-replication, we first define nucleation sites within each Polycomb domain in mouse embryonic stem cells. To map dynamics of H3K27me3 domains across the cell cycle, we develop CUT&Flow (coupling cleavage under target and tagmentation with flow cytometry). We show that post-replication recovery of Polycomb domains occurs by nucleation and spreading, using the same nucleation sites used during de novo domain formation. By using Polycomb repressive complex 2 (PRC2) subunit-specific inhibitors, we find that PRC2 targets nucleation sites post-replication independent of pre-existing H3K27me3. Thus, competition between H3K27me3 deposition and nucleosome turnover drives both de novo domain formation and maintenance during every cell cycle.


Cell Cycle , Histones , Polycomb Repressive Complex 2 , Animals , Mice , Histones/metabolism , Polycomb Repressive Complex 2/metabolism , Methylation , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Protein Domains , Nucleosomes/metabolism
10.
Drug Discov Today ; 29(6): 103986, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642703

EED within the PRC2 complex is crucial for chromatin regulation particularly in tumor development, making its inhibition a promising epigenetic therapeutic strategy. Significant advancement in PRC2 inhibitor development has been achieved with an approved EZH2 inhibitor in the market and with others in the clinical trials. However, current EZH2 inhibitors are limited to specific blood cancers and encounter therapeutic resistance. EED stabilizes PRC2 complex and enhances its activity through unique allosteric mechanisms, thereby acting as both a scaffold protein and a recognizer of H3K27me3 making it an attractive drug target. This review provides an overview of epigenetic therapeutic strategies targeting EED, including allosteric inhibitors, PPI inhibitors, and PROTACs, together with brief discussions on the relevant challenges, opportunities, and future directions.


Epigenesis, Genetic , Polycomb Repressive Complex 2 , Humans , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Epigenesis, Genetic/drug effects , Animals , Neoplasms/drug therapy , Neoplasms/genetics , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Allosteric Regulation/drug effects
11.
Immunol Cell Biol ; 102(5): 298-301, 2024.
Article En | MEDLINE | ID: mdl-38606590

Epigenetic modifications, particularly through methylation of DNA packaging histones, play a pivotal role in controlling gene expression. Aberrant patterns of histone methylation have been associated with the development and progression of hematological malignancies. Unraveling the impact of aberrant histone marks on gene expression and leukemogenesis has spurred a concerted effort to develop clinically effective epigenetic therapies. In malignancies associated with the accumulation of histone H3 lysine trimethylation (H3K27me3), one such intervention involves preventing the deposition of this repressive histone mark by inhibiting the histone-modifying enzymes EZH1 and EZH2. While inhibition of EZH1/2 has demonstrated efficacy in both preclinical studies and clinical trials in various cancers, studies delineating the dynamic effect of EZH1/2 inhibition on H3K27me3 and disease relapse in clinical samples are lacking. In a recent publication, Yamagishi et al. explore how responses of a patient with adult T-cell leukemia/lymphoma to valemetostat, an EZH1/2 inhibitor, are associated with changes in H3K27me3, chromatin accessibility and gene expression, and how these changes can be circumvented in relapsed disease.


Epigenesis, Genetic , Histones , Leukemia-Lymphoma, Adult T-Cell , Animals , Humans , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Histones/metabolism , Leukemia-Lymphoma, Adult T-Cell/genetics , Leukemia-Lymphoma, Adult T-Cell/pathology , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics
12.
Nucleic Acids Res ; 52(8): 4409-4421, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587197

Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.


Gene Fusion , RNA , Receptors, Cytokine , Transcription Factors , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Polymorphism, Genetic , RNA/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , TRPM Cation Channels/genetics , Receptors, Cytokine/genetics , Sequence Analysis, RNA , RNA Splicing
13.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article En | MEDLINE | ID: mdl-38473991

In this study, we utilized an in vitro model consisting of human malignant melanoma as well as non-tumorigenic immortalized keratinocyte cells with the aim of characterizing the therapeutic effectiveness of the clinical epigenetic drug Tazemetostat alone or in combination with various isothiocyanates. In doing so, we assessed markers of cell viability, apoptotic induction, and expression levels of key proteins capable of mediating the therapeutic response. Our data indicated, for the first time, that Tazemetostat caused a significant decrease in viability levels of malignant melanoma cells in a dose- and time-dependent manner via the induction of apoptosis, while non-malignant keratinocytes were more resistant. Moreover, combinatorial treatment protocols caused a further decrease in cell viability, together with higher apoptotic rates. In addition, a significant reduction in the Polycomb Repressive Complex 2 (PRC2) members [e.g., Enhancer of Zeste Homologue 2 (EZH2), Embryonic Ectoderm Development (EED), and suppressor of zeste 12 (SUZ12)] and tri-methylating lysine 27 at Histone 3 (H3K27me3) protein expression levels was observed, at least partially, under specific combinatorial exposure conditions. Reactivation of major apoptotic gene targets was determined at much higher levels in combinatorial treatment protocols than Tazemetostat alone, known to be involved in the induction of intrinsic and extrinsic apoptosis. Overall, we developed an optimized experimental therapeutic platform aiming to ensure the therapeutic effectiveness of Tazemetostat in malignant melanoma while at the same time minimizing toxicity against neighboring non-tumorigenic keratinocyte cells.


Benzamides , Biphenyl Compounds , Histones , Melanoma , Morpholines , Pyridones , Humans , Histones/metabolism , Polycomb Repressive Complex 2/genetics , Lysine/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Apoptosis
14.
Genome Biol ; 25(1): 67, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38468348

BACKGROUND: Bromo-adjacent homology-plant homeodomain domain containing protein 1 (BP1) is a reader of histone post-translational modifications in fungi. BP1 recognizes trimethylation of lysine 27 in histone H3 (H3K27me3), an epigenetic hallmark of gene silencing. However, whether and how BP1 participates in transcriptional repression remains poorly understood. RESULTS: We report that BP1 forms phase-separated liquid condensates to modulate its biological function in Fusarium graminearum. Deletion assays reveal that intrinsically disordered region 2 (IDR2) of BP1 mediates its liquid-liquid phase separation. The phase separation of BP1 is indispensable for its interaction with suppressor of Zeste 12, a component of polycomb repressive complex 2. Furthermore, IDR2 deletion abolishes BP1-H3K27me3 binding and alleviates the transcriptional repression of secondary metabolism-related genes, especially deoxynivalenol mycotoxin biosynthesis genes. CONCLUSIONS: BP1 maintains transcriptional repression by forming liquid-liquid phase-separated condensates, expanding our understanding of the relationship between post-translational modifications and liquid-liquid phase separation.


Histones , Phase Separation , Histones/metabolism , Gene Expression , Polycomb Repressive Complex 2/metabolism , Protein Processing, Post-Translational
15.
Nat Commun ; 15(1): 1924, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38429303

Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.


Drosophila Proteins , MicroRNAs , Female , Animals , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Polycomb-Group Proteins , Intestines , Polycomb Repressive Complex 2/genetics , MicroRNAs/genetics
16.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38452766

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Alternative Splicing , Polycomb Repressive Complex 2 , Animals , Mice , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histones/genetics , Histones/metabolism , Chromatin/genetics , Protein Isoforms/genetics
17.
Genetics ; 227(1)2024 May 07.
Article En | MEDLINE | ID: mdl-38513719

Comparative approaches have revealed both divergent and convergent paths to achieving shared developmental outcomes. Thus, only through assembling multiple case studies can we understand biological principles. Yet, despite appreciating the conservation-or lack thereof-of developmental networks, the conservation of epigenetic mechanisms regulating these networks is poorly understood. The nematode Pristionchus pacificus has emerged as a model system of plasticity and epigenetic regulation as it exhibits a bacterivorous or omnivorous morph depending on its environment. Here, we determined the "epigenetic toolkit" available to P. pacificus as a resource for future functional work on plasticity, and as a comparison with Caenorhabditis elegans to investigate the conservation of epigenetic mechanisms. Broadly, we observed a similar cast of genes with putative epigenetic function between C. elegans and P. pacificus. However, we also found striking differences. Most notably, the histone methyltransferase complex PRC2 appears to be missing in P. pacificus. We described the deletion/pseudogenization of the PRC2 genes mes-2 and mes-6 and concluded that both were lost in the last common ancestor of P. pacificus and a related species P. arcanus. Interestingly, we observed the enzymatic product of PRC2 (H3K27me3) by mass spectrometry and immunofluorescence, suggesting that a currently unknown methyltransferase has been co-opted for heterochromatin silencing. Altogether, we have provided an inventory of epigenetic genes in P. pacificus to compare with C. elegans. This inventory will enable reverse-genetic experiments related to plasticity and has revealed the first loss of PRC2 in a multicellular organism.


Caenorhabditis elegans , Epigenesis, Genetic , Evolution, Molecular , Animals , Caenorhabditis elegans/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Histone Methyltransferases/metabolism , Histone Methyltransferases/genetics , Nematoda/genetics , Helminth Proteins/genetics , Helminth Proteins/metabolism
18.
J Gastrointestin Liver Dis ; 33(1): 44-56, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38554427

BACKGROUND AND AIMS: The incidence and mortality of hepatocellular carcinoma (HCC) are increasing. It is urgent to develop more effective HCC biomarkers for diagnosis and treatment. This project intends to verify the expression of enhancer of zeste 1 polycomb repressive complex 2 subunit (EZH1) and its mechanism in HCC. METHODS: This study integrates global microarray and high-throughput sequencing datasets, combined with internal immunohistochemistry, to analyze the expression and prognostic value of EZH1 in HCC. Functional enrichment analysis was conducted to investigate transcriptional targets, which were achieved by intersecting HCC over-expressed genes, EZH1 co-expressed genes and putative transcriptional targets. The relationship between EZH1 and anticancer drugs was detected by drug sensitivity analysis. RESULTS: In this study, 84 datasets from 40 platforms (3,926 HCC samples and 3,428 non-cancerous liver tissues) were included to show the high expression of EZH1 in HCC. Immunohistochemistry with 159 HCC samples and 62 non-HCC samples confirmed the high expression level. HCC patients with high EZH1 expression had worse survival prognoses. Gene ontology and Reactome analysis revealed that metabolism-related pathways, including autophagy, are critical for HCC. Interestingly, as one of the EZH1 potential transcriptional targets, autophagy-related 7 (ATG7) appeared in the above pathways. ATG7 was positively correlated with EZH1, upregulated in HCC, and mediated poor prognosis. Upregulation of EZH1 was found to be in contact with HCC anti-tumor drug resistance. CONCLUSIONS: The upregulation of EZH1 expression can promote the occurrence of HCC and lead to poor clinical progression and drug resistance; these effects may be mediated by regulating ATG7.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Up-Regulation , Clinical Relevance , Prognosis , Gene Expression Regulation, Neoplastic
19.
Cell Cycle ; 23(3): 308-327, 2024 Feb.
Article En | MEDLINE | ID: mdl-38461418

Although the transcription factor nuclear factor κB (NF-κB) plays a central role in the regulation of senescence-associated secretory phenotype (SASP) acquisition, our understanding of the involvement of NF-κB in the induction of cellular senescence is limited. Here, we show that activation of the canonical NF-κB pathway suppresses senescence in murine dermal fibroblasts. IκB kinase ß (IKKß)-depleted dermal fibroblasts showed ineffective NF-κB activation and underwent senescence more rapidly than control cells when cultured under 20% oxygen conditions, as indicated by senescence-associated ß-galactosidase (SA-ß-gal) staining and p16INK4a mRNA levels. Conversely, the expression of constitutively active IKKß (IKKß-CA) was sufficient to drive senescence bypass. Notably, the expression of a degradation-resistant form of inhibitor of κB (IκB), which inhibits NF-κB nuclear translocation, abolished senescence bypass, suggesting that the inhibitory effect of IKKß-CA on senescence is largely mediated by NF-κB. We also found that IKKß-CA expression suppressed the derepression of INK4/Arf genes and counteracted the senescence-associated loss of Ezh2, a catalytic subunit of the Polycomb repressive complex 2 (PRC2). Moreover, pharmacological inhibition of Ezh2 abolished IKKß-CA-induced senescence bypass. We propose that NF-κB plays a suppressive role in the induction of stress-induced senescence through sustaining Ezh2 expression.


Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Fibroblasts , I-kappa B Kinase , NF-kappa B , Animals , Mice , Cells, Cultured , Cellular Senescence/drug effects , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Fibroblasts/metabolism , I-kappa B Kinase/metabolism , I-kappa B Kinase/genetics , NF-kappa B/metabolism , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/genetics , Signal Transduction
20.
Nat Commun ; 15(1): 1721, 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38409226

Quiescence in stem cells is traditionally considered as a state of inactive dormancy or with poised potential. Naive mouse embryonic stem cells (ESCs) can enter quiescence spontaneously or upon inhibition of MYC or fatty acid oxidation, mimicking embryonic diapause in vivo. The molecular underpinning and developmental potential of quiescent ESCs (qESCs) are relatively unexplored. Here we show that qESCs possess an expanded or unrestricted cell fate, capable of generating both embryonic and extraembryonic cell types (e.g., trophoblast stem cells). These cells have a divergent metabolic landscape comparing to the cycling ESCs, with a notable decrease of the one-carbon metabolite S-adenosylmethionine. The metabolic changes are accompanied by a global reduction of H3K27me3, an increase of chromatin accessibility, as well as the de-repression of endogenous retrovirus MERVL and trophoblast master regulators. Depletion of methionine adenosyltransferase Mat2a or deletion of Eed in the polycomb repressive complex 2 results in removal of the developmental constraints towards the extraembryonic lineages. Our findings suggest that quiescent ESCs are not dormant but rather undergo an active transition towards an unrestricted cell fate.


Chromatin , Embryonic Stem Cells , Animals , Mice , Embryonic Stem Cells/metabolism , Cell Differentiation , Chromatin/metabolism , Mouse Embryonic Stem Cells/metabolism , Polycomb Repressive Complex 2/metabolism , S-Adenosylmethionine/metabolism
...