Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Nat Commun ; 11(1): 5250, 2020 10 16.
Article En | MEDLINE | ID: mdl-33067435

Protein-DNA interactions are key to the functionality and stability of the genome. Identification and mapping of protein-DNA interaction interfaces and sites is crucial for understanding DNA-dependent processes. Here, we present a workflow that allows mass spectrometric (MS) identification of proteins in direct contact with DNA in reconstituted and native chromatin after cross-linking by ultraviolet (UV) light. Our approach enables the determination of contact interfaces at amino-acid level. With the example of chromatin-associated protein SCML2 we show that our technique allows differentiation of nucleosome-binding interfaces in distinct states. By UV cross-linking of isolated nuclei we determined the cross-linking sites of several factors including chromatin-modifying enzymes, demonstrating that our workflow is not restricted to reconstituted materials. As our approach can distinguish between protein-RNA and DNA interactions in one single experiment, we project that it will be possible to obtain insights into chromatin and its regulation in the future.


Chromatin/metabolism , DNA/metabolism , DNA/radiation effects , Proteins/metabolism , Chromatin/chemistry , Chromatin/genetics , DNA/chemistry , DNA/genetics , Humans , Mass Spectrometry , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/radiation effects , Protein Binding/radiation effects , Proteins/chemistry , Proteins/genetics , Proteins/radiation effects , Ultraviolet Rays
...