Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 108.596
1.
Anal Chim Acta ; 1309: 342701, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772662

BACKGROUND: Nanozymes, a new class of nanomaterials, have emerged as promising substitutes for enzymes in biosensor design due to their exceptional stability, affordability, and ready availability. While nanozymes address many limitations of natural enzymes, they still face challenges, particularly in achieving the catalytic activity levels of their natural counterparts. This indicates the need for enhancing the sensitivity of biosensors based on nanozymes. The catalytic activity of nanozyme can be significantly improved by regulating its size, morphology, and surface composition of nanomaterial. RESULTS: In this work, a kind of hollow core-shell structure was designed to enhance the catalytic activity of nanozymes. The hollow core-shell structure material consists of a nanozymes core layer, a hollow layer, and a MOF shell layer. Taking the classic peroxidase like Fe3O4 as an example, the development of a novel nanozyme@MOF, specifically p-Fe3O4@PDA@ZIF-67, is detailed, showcasing its application in enhancing the sensitivity of sensors based on Fe3O4 nanozymes. This innovative nanocomposite, featuring that MOF layer was designed to adsorb the signal molecules of the sensor to improve the utilization rate of reactive oxygen species generated by the nanozymes catalyzed reactions and the hollow layer was designed to prevent the active sites of nanozymes from being cover by the MOF layer. The manuscript emphasizes the nanocomposite's remarkable sensitivity in detecting hydrogen peroxide (H2O2), coupled with high specificity and reproducibility, even in complex environments like milk samples. SIGNIFICANCE AND NOVELTY: This work firstly proposed and proved that Fe3O4 nanozyme@MOF with hollow layer structure was designed to improve the catalytic activity of the Fe3O4 nanozyme and the sensitivity of the sensors based on Fe3O4 nanozyme. This research marks a significant advancement in nanozyme technology, demonstrating the potential of structural innovation in creating high-performance, sensitive, and stable biosensors for various applications.


Biosensing Techniques , Metal-Organic Frameworks , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Indoles/chemistry , Catalysis , Limit of Detection , Nanostructures/chemistry , Nanocomposites/chemistry , Imidazoles , Polymers , Zeolites
2.
AAPS PharmSciTech ; 25(5): 105, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724807

The formulation of microspheres involves a complex manufacturing process with multiple steps. Identifying the appropriate process parameters to achieve the desired quality attributes poses a significant challenge. This study aims to optimize the critical process parameters (CPPs) involved in the preparation of naltrexone microspheres using a Quality by Design (QbD) methodology. Additionally, the research aims to assess the drug release profiles of these microspheres under both in vivo and in vitro conditions. Critical process parameters (CPPs) and critical quality attributes (CQAs) were identified, and a Box-Behnken design was utilized to delineate the design space, ensuring alignment with the desired Quality Target Product Profile (QTPP). The investigated CPPs comprised polymer concentration, aqueous phase ratio to organic phase ratio, and quench volume. The microspheres were fabricated using the oil-in-water emulsion solvent extraction technique. Analysis revealed that increased polymer concentration was correlated with decreased particle size, reduced quench volume resulted in decreased burst release, and a heightened aqueous phase ratio to organic phase ratio improved drug entrapment. Upon analyzing the results, an optimal formulation was determined. In conclusion, the study conducted in vivo drug release testing on both the commercially available innovator product and the optimized test product utilizing an animal model. The integration of in vitro dissolution data with in vivo assessments presents a holistic understanding of drug release dynamics. The QbD approach-based optimization of CPPs furnishes informed guidance for the development of generic pharmaceutical formulations.


Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Delivery Systems , Drug Liberation , Microspheres , Naltrexone , Particle Size , Naltrexone/chemistry , Naltrexone/administration & dosage , Naltrexone/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Delayed-Action Preparations/chemistry , Drug Delivery Systems/methods , Polymers/chemistry , Emulsions/chemistry , Drug Compounding/methods , Solubility , Solvents/chemistry
3.
Int J Nanomedicine ; 19: 4163-4180, 2024.
Article En | MEDLINE | ID: mdl-38751660

Purpose: The study aimed to address the non-specific toxicity of cytotoxins (CTX) in liver cancer treatment and explore their combined application with the photosensitizer Ce6, co-loaded into carbonized Zn/Co bimetallic organic frameworks. The goal was to achieve controlled CTX release and synergistic photodynamic therapy, with a focus on evaluating anti-tumor activity against human liver cancer cell lines (Hep G2). Methods: Purified cobra cytotoxin (CTX) and photosensitizer Ce6 were co-loaded into carbonized Zn/Co bimetallic organic frameworks, resulting in RGD-PDA@C-ZIF@(CTX+Ce6). The formulation was designed with surface-functionalization using polydopamine and tumor-penetrating peptide RGD. This approach aimed to facilitate controlled CTX release and enhance the synergistic effect of photodynamic therapy. The accumulation of RGD-PDA@C-ZIF@(CTX+Ce6) at tumor sites was achieved through RGD's active targeting and the enhanced permeability and retention (EPR) effect. In the acidic tumor microenvironment, the porous structure of the metal-organic framework disintegrated, releasing CTX and Ce6 into tumor cells. Results: Experiments demonstrated that RGD-PDA@C-ZIF@(CTX+Ce6) nanoparticles, combined with near-infrared laser irradiation, exhibited optimal anti-tumor effects against human liver cancer cells. The formulation showcased heightened anti-tumor activity without discernible systemic toxicity. Conclusion: The study underscores the potential of utilizing metal-organic frameworks as an efficient nanoplatform for co-loading cytotoxins and photodynamic therapy in liver cancer treatment. The developed formulation, RGD-PDA@C-ZIF@(CTX+Ce6), offers a promising avenue for advancing the clinical application of cytotoxins in oncology, providing a solid theoretical foundation for future research and development.


Indoles , Liver Neoplasms , Metal-Organic Frameworks , Photochemotherapy , Photosensitizing Agents , Zinc , Humans , Photochemotherapy/methods , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Liver Neoplasms/drug therapy , Zinc/chemistry , Zinc/pharmacology , Indoles/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/administration & dosage , Animals , Hep G2 Cells , Cobalt/chemistry , Cobalt/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Polymers/chemistry , Mice , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/pharmacokinetics , Mice, Nude , Mice, Inbred BALB C , Cell Survival/drug effects
4.
Nucleus ; 15(1): 2351957, 2024 Dec.
Article En | MEDLINE | ID: mdl-38753956

Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.


Cell Nucleus , Chromatin , Heterochromatin , Cell Nucleus/metabolism , Heterochromatin/metabolism , Heterochromatin/chemistry , Chromatin/metabolism , Chromatin/chemistry , Polymers/chemistry , Polymers/metabolism , Euchromatin/metabolism , Euchromatin/chemistry , Humans , Phase Separation
5.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731481

As the use of antibiotics increases, the increasing resistance of bacteria is the main reason for the reduced efficiency of antibacterial drugs, making the research of new antibacterial materials become new hot spot. In this article, two novel coordination polymers (CPs), namely, [Cd2(L)2(bibp)2]n (1) and [Ni(L)(bib)]n (2), where H2L = N,N'-bis(4-carbozvlbenzvl)-4-aminotoluene, bibp = 4,4'-bis(imidazol-1-yl)biphenyl, and bib = 1,3-bis(1-imidazoly)benzene, have been synthesized under solvothermal and hydrothermal condition. Structural clarification was performed through infrared spectrum and single-crystal X-ray diffraction analysis, while thermal analysis and XRD technology were used for the performance assessment of compounds 1 and 2. In addition, antibacterial performance experiments showed that compounds 1 and 2 have certain selectivity in their antibacterial properties and have good antibacterial properties against S. aureus. As the concentration of the compound increases, the inhibitory effect gradually strengthens, and when the concentration of the compound reaches 500 µg/mL and 400 µg/mL, the concentration of the S. aureus solution no longer increases and has been completely inhibited.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Polymers , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Models, Molecular , Crystallography, X-Ray
6.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731542

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Biocompatible Materials , Cell Proliferation , Polyesters , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Animals , Mice , Cell Proliferation/drug effects , Tissue Scaffolds/chemistry , Tensile Strength , Membranes, Artificial , Cell Line , Materials Testing , Polymers/chemistry , Cell Adhesion/drug effects
7.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734777

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
8.
Carbohydr Polym ; 337: 122159, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710574

Chitosan and chitosan derivatives can kill pathogenic microorganisms including bacteria and fungi. The antimicrobial activity is dependent on the degree of acetylation, substituent structure, and molecular weight. Over the past four decades, numerous studies have endeavored to elucidate the relationship between molecular weight and the activity against microorganisms. However, investigators have reported divergent and, at times, conflicting conclusions. Here a bilinear equation is proposed, delineating the relationship between antimicrobial activity, defined as log (1/MIC), and the molecular weight of chitosan and chitosan derivatives. Three constants AMin, AMax, and CMW govern the shape of the curve determined by the equation. The constant AMin denotes the minimal activity expected as the molecular weight tends towards zero while AMax represents the maximal activity observed for molecular weights exceeding CMW, the critical molecular weight required for max activity. This equation was applied to analyze data from seven studies conducted between 1984 and 2019, which reported MIC (Minimum Inhibitory Concentration) values against bacteria and fungi for various molecular weights of chitosan and its derivatives. All the 29 datasets exhibited a good fit (R2 ≥ 0.5) and half excellent (R2 ≥ 0.95) fit to the equation. The CMW generally ranged from 4 to 10 KD for datasets with an excellent fit to the equation.


Bacteria , Chitosan , Fungi , Microbial Sensitivity Tests , Molecular Weight , Chitosan/chemistry , Chitosan/pharmacology , Fungi/drug effects , Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Polymers/chemistry , Polymers/pharmacology
9.
AAPS PharmSciTech ; 25(5): 113, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750336

Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.


Curcumin , Drug Carriers , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa , Nanoparticles , Stearic Acids , Nanoparticles/chemistry , Administration, Oral , Animals , Stearic Acids/chemistry , Curcumin/administration & dosage , Curcumin/pharmacokinetics , Curcumin/chemistry , Intestinal Mucosa/metabolism , Drug Carriers/chemistry , Particle Size , Lipids/chemistry , Polymers/chemistry , Biological Transport/physiology , Polyvinyls/chemistry
10.
Water Sci Technol ; 89(9): 2558-2576, 2024 May.
Article En | MEDLINE | ID: mdl-38747967

In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73-89.36%, contact angles 69.18-85.81%, and average pure water fluxes 257.25-375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.


Filtration , Membranes, Artificial , Polymers , Sulfones , Polymers/chemistry , Sulfones/chemistry , Filtration/methods , Water Purification/methods , Water Pollutants, Chemical/chemistry , Microscopy, Electron, Scanning
11.
Opt Lett ; 49(10): 2821-2824, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748170

Waveguide Bragg grating (WBG) blood glucose sensing, as a biological sensing technology with broad application prospects, plays an important role in the fields of health management and medical treatment. In this work, a polymer-based cascaded WBG is applied to glucose detection. We investigated photonic devices with two different grating structures cascaded-a crossed grating and a bilateral grating-and analyzed the effects of the crossed grating period, bilateral grating period, and number of grating periods on the sensing performance of the glucose sensor. Finally, the spectral reflectance characteristics, response time, and sensing specificity of the cascaded WBG were evaluated. The experimental results showed that the glucose sensor has a sensitivity of 175 nm/RIU in a glucose concentration range of 0-2 mg/ml and has the advantages of high integration, a narrow bandwidth, and low cost.


Blood Glucose , Polymers , Polymers/chemistry , Blood Glucose/analysis , Biosensing Techniques/instrumentation
12.
Front Immunol ; 15: 1396486, 2024.
Article En | MEDLINE | ID: mdl-38694497

Bone marrow failure (BMF) has become one of the most studied autoimmune disorders, particularly due to its prevalence both as an inherited disease, but also as a result of chemotherapies. BMF is associated with severe symptoms such as bleeding episodes and susceptibility to infections, and often has underlying characteristics, such as anemia, thrombocytopenia, and neutropenia. The current treatment landscape for BMF requires stem cell transplantation or chemotherapies to induce immune suppression. However, there is limited donor cell availability or dose related toxicity associated with these treatments. Optimizing these treatments has become a necessity. Polymer-based materials have become increasingly popular, as current research efforts are focused on synthesizing novel cell matrices for stem cell expansion to solve limited donor cell availability, as well as applying polymer delivery vehicles to intracellularly deliver cargo that can aid in immunosuppression. Here, we discuss the importance and impact of polymer materials to enhance therapeutics in the context of BMF.


Polymers , Humans , Polymers/chemistry , Animals , Bone Marrow Diseases/chemically induced , Bone Marrow Diseases/therapy , Bone Marrow Failure Disorders/therapy , Biocompatible Materials
13.
J Health Popul Nutr ; 43(1): 63, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741213

BACKGROUND: According to national guidelines, a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAP) is a second-line therapy option for irritable bowel syndrome (IBS) and improves functional intestinal symptoms. Numerous noteworthy results have been published in this field over the past fifteen years. This study aims to analyze the global research trend and hotspot of the low FODMAP diet research, and provide a comprehensive perspective and direction for researchers. METHODS: The Science Citation Index-Expanded of the Web of Science Core Collection (WoSCC) was used to identify low FODMAP diet-related articles and reviews. Three bibliometric programs (CiteSpace, VOSviewer, Scimago Graphic) were utilized to analyze and visualize the annual publications, authors, countries, institutions, journals, citations, and keywords. RESULTS: In total, 843 documents related to the low FODMAP diet research were published in 227 journals by 3,343 authors in 1,233 institutions from 59 countries. The United States, which was the most engaged nation in international collaboration, had the largest annual production and the fastest growth. The most productive organization was Monash University, and the most fruitful researcher was Gibson PR. Nutrients ranked first in terms of the number of published documents. The article "A diet low in FODMAPs reduces symptoms of irritable bowel syndrome" (Halmos EP, 2014) received the most co-citations. Keywords that appear frequently in the literature mainly involve two main aspects: the clinical efficacy evaluation and mechanism exploration of the low FODMAP diet. The term "gut microbiota" stands out as the most prominent keyword among the burst keywords that have remained prevalent till date. CONCLUSION: The restriction stage of the low FODMAP diet is superior to other dietary therapies for IBS in terms of symptom response, but it has a negative impact on the abundance of gut Bifidobacteria and diet quality. Identification of biomarkers to predict response to the low FODMAP diet is of great interest and has become the current research hotspot.


Bibliometrics , Diet, Carbohydrate-Restricted , Fermentation , Irritable Bowel Syndrome , Oligosaccharides , Humans , Irritable Bowel Syndrome/diet therapy , Diet, Carbohydrate-Restricted/methods , Oligosaccharides/administration & dosage , Disaccharides/administration & dosage , Monosaccharides/analysis , Polymers , Biomedical Research , FODMAP Diet
14.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693874

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Glucose Oxidase , Horseradish Peroxidase , beta-Galactosidase , Glucose Oxidase/chemistry , Humans , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Organelles/metabolism , Fluorescent Dyes/chemistry , Polymers/chemistry , Fluorescence , HeLa Cells , Mitochondria/metabolism
15.
Biomacromolecules ; 25(5): 2990-3000, 2024 May 13.
Article En | MEDLINE | ID: mdl-38696732

Recently, we reported the synthesis of a hydrophilic aldehyde-functional methacrylic polymer (Angew. Chem., 2021, 60, 12032-12037). Herein we demonstrate that such polymers can be reacted with arginine in aqueous solution to produce arginine-functional methacrylic polymers without recourse to protecting group chemistry. Careful control of the solution pH is essential to ensure regioselective imine bond formation; subsequent reductive amination leads to a hydrolytically stable amide linkage. This new protocol was used to prepare a series of arginine-functionalized diblock copolymer nanoparticles of varying size via polymerization-induced self-assembly in aqueous media. Adsorption of these cationic nanoparticles onto silica was monitored using a quartz crystal microbalance. Strong electrostatic adsorption occurred at pH 7 (Γ = 14.7 mg m-2), whereas much weaker adsorption occurred at pH 3 (Γ = 1.9 mg m-2). These findings were corroborated by electron microscopy, which indicated a surface coverage of 42% at pH 7 but only 5% at pH 3.


Arginine , Nanoparticles , Nanoparticles/chemistry , Adsorption , Arginine/chemistry , Hydrogen-Ion Concentration , Polymerization , Silicon Dioxide/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/chemical synthesis
16.
ACS Nano ; 18(19): 12025-12048, 2024 May 14.
Article En | MEDLINE | ID: mdl-38706306

Cardiac interfacing devices are essential components for the management of cardiovascular diseases, particularly in terms of electrophysiological monitoring and implementation of therapies. However, conventional cardiac devices are typically composed of rigid and bulky materials and thus pose significant challenges for effective long-term interfacing with the curvilinear surface of a dynamically beating heart. In this regard, the recent development of intrinsically soft bioelectronic devices using nanocomposites, which are fabricated by blending conductive nanofillers in polymeric and elastomeric matrices, has shown great promise. The intrinsically soft bioelectronics not only endure the dynamic beating motion of the heart and maintain stable performance but also enable conformal, reliable, and large-area interfacing with the target cardiac tissue, allowing for high-quality electrophysiological mapping, feedback electrical stimulations, and even mechanical assistance. Here, we explore next-generation cardiac interfacing strategies based on soft bioelectronic devices that utilize elastic conductive nanocomposites. We first discuss the conventional cardiac devices used to manage cardiovascular diseases and explain their undesired limitations. Then, we introduce intrinsically soft polymeric materials and mechanical restraint devices utilizing soft polymeric materials. After the discussion of the fabrication and functionalization of conductive nanomaterials, the introduction of intrinsically soft bioelectronics using nanocomposites and their application to cardiac monitoring and feedback therapy follow. Finally, comments on the future prospects of soft bioelectronics for cardiac interfacing technologies are discussed.


Nanostructures , Humans , Nanostructures/chemistry , Cardiovascular Diseases/therapy , Electric Conductivity , Polymers/chemistry , Animals , Nanocomposites/chemistry , Heart/physiology
17.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704412

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
18.
Sci Rep ; 14(1): 10418, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710793

A new drug delivery system using an asymmetric polyethersulfone (PES) membrane modified by SBA-15 and glutamine-modified SBA-15 (SBA-Q) was prepared in this study by the aim of azithromycin delivery enhancement in both in vitro and ex vivo experiments. The research focused on optimizing membrane performance by adjusting critical parameters including drug concentration, membrane thickness, modifier percentage, polymer percentage, and pore maker percentage. To characterize the fabricated membranes, various techniques were employed, including scanning electron microscopy, water contact angle, and tensile strength assessments. Following optimization, membrane composition of 17% PES, 2% polyvinylpyrrolidone, 1% SBA-15, and 0.5% SBA-Q emerged as the most effective. The optimized membranes demonstrated a substantial increase in drug release (906 mg/L) compared to the unmodified membrane (440 mg/L). The unique membrane structure, with a dense top layer facilitating sustained drug release and a porous sub-layer acting as a drug reservoir, contributed to this improvement. Biocompatibility assessments, antibacterial activity analysis, blood compatibility tests, and post-diffusion tissue integrity evaluations confirmed the promising biocompatibility of the optimized membranes. Moreover, long-term performance evaluations involving ten repeated usages underscored the reusability of the optimized membrane, highlighting its potential for sustained and reliable drug delivery applications.


Anti-Bacterial Agents , Drug Delivery Systems , Membranes, Artificial , Polymers , Silicon Dioxide , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Polymers/chemistry , Porosity , Sulfones/chemistry , Sulfones/administration & dosage , Drug Liberation , Animals , Azithromycin/administration & dosage , Azithromycin/pharmacokinetics , Azithromycin/chemistry , Azithromycin/pharmacology , Humans
19.
Mikrochim Acta ; 191(6): 306, 2024 05 07.
Article En | MEDLINE | ID: mdl-38713247

For early diabetes identification and management, the progression of an uncomplicated and exceedingly responsive glucose testing technology is crucial. In this study, we present a new sensor incorporating a composite of metal organic framework (MOF) based on cobalt, coated with boronic acid to facilitate selective glucose binding. Additionally, we successfully employed a highly sensitive electro-optical immunosensor for the detection of subtle changes in concentration of the diabetes biomarker glycated haemoglobin (HbA1c), using zeolitic imidazolate framework-67 (ZIF-67) coated with polydopamine which further modified with boronic acid. Utilizing the polymerization characteristics of dopamine and the NH2 groups, a bonding structure is formed between ZIF-67 and 4-carboxyphenylboronic acid. ZIF-67 composite served as an effective substrate for immobilising 4-carboxyphenylboronic acid binding agent, ensuring precise and highly selective glucose identification. The sensing response was evaluated through both electrochemical and optical methods, confirming its efficacy. Under optimized experimental condition, the ZIF-67 based sensor demonstrated a broad detection range of 50-500 mg dL-1, a low limit of detection (LOD) of 9.87 mg dL-1 and a high correlation coefficient of 0.98. Furthermore, the 4-carboxyphenylboronic acid-conjugated ZIF-67-based sensor platform exhibited remarkable sensitivity and selectivity in optical-based detection for glycated haemoglobin within the clinical range of 4.7-11.3%, achieving a LOD of 3.7%. These findings highlight the potential of the 4-carboxyphenylboronic acid-conjugated ZIF-67-based electro-optical sensor as a highly sensitive platform for diabetes detection.


Blood Glucose , Boronic Acids , Diabetes Mellitus , Glycated Hemoglobin , Imidazoles , Limit of Detection , Metal-Organic Frameworks , Zeolites , Boronic Acids/chemistry , Zeolites/chemistry , Metal-Organic Frameworks/chemistry , Imidazoles/chemistry , Humans , Glycated Hemoglobin/analysis , Blood Glucose/analysis , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Nanoparticles/chemistry , Biosensing Techniques/methods , Indoles/chemistry , Polymers/chemistry , Electrochemical Techniques/methods
20.
PLoS One ; 19(5): e0303096, 2024.
Article En | MEDLINE | ID: mdl-38713656

Fast-growing poplar plantations are considered a great benefit to timber production, but water availability is a key factor limiting their growth and development, especially in arid and semi-arid ecosystems. Super-absorbent polymers facilitate more water retention in soil after rain or irrigation, and they are able to release water gradually during plant growth. This study aimed to examine the effects of reduced irrigation (60% and 30% of conventional border irrigation) co-applied with super-absorbent polymers (0, 40 kg/ha) on root exudates, enzyme activities, microbial functional diversity in rhizosphere soil, and volume increments in poplar (Populus euramericana cv. 'Neva'). The results showed that 60% border irrigation co-applied with super-absorbent polymers significantly increased the content of organic acids, amino acids and total sugars in the root exudates, and the activities of invertase, urease, dehydrogenase, and catalase in the rhizosphere soil in comparison to conventional border irrigation without super-absorbent polymers. Meanwhile, this treatment also enhanced the average well-color development, Shannon index, and McIntosh index, but decreased the Simpson index. Additionally, the average volume growth rate and relative water content of leaves reached their maximum using 60% irrigation with super-absorbent polymers, which was significantly higher than other treatments. However, using 30% irrigation with super-absorbent polymers, had a smaller effect on rhizosphere soil and volume growth than 60% irrigation with super-absorbent polymers. Therefore, using an appropriate water-saving irrigation measure (60% conventional border irrigation with super-absorbent polymers) can help to improve enzyme activities and microbial diversity in the rhizosphere soil while promoting the growth of poplar trees.


Agricultural Irrigation , Polymers , Populus , Rhizosphere , Soil Microbiology , Populus/growth & development , Populus/microbiology , Agricultural Irrigation/methods , Polymers/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Soil/chemistry , Water/chemistry
...