Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Environ Virol ; 6(4): 260-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24952878

ABSTRACT

Disinfection by low-pressure monochromatic ultraviolet (UVC) radiation (253.7 nm) became an important technique to sanitize drinking water and also wastewater in tertiary treatments. In order to prevent the transmission of waterborne viral diseases, the analysis of the disinfection kinetics and the quantification of infectious viral pathogens and indicators are highly relevant and need to be addressed. The families Adenoviridae and Polyomaviridae comprise human and animal pathogenic viruses that have been also proposed as indicators of fecal contamination in water and as Microbial Source Tracking tools. While it has been previously suggested that dsDNA viruses may be highly resistant to UVC radiation compared to other viruses or bacteria, no information is available on the stability of polyomavirus toward UV irradiation. Here, the inactivation of dsDNA (HAdV2 and JCPyV) and ssRNA (MS2 bacteriophage) viruses was analyzed at increasing UVC fluences. A minor decay of 2-logs was achieved for both infectious JC polyomaviruses (JCPyV) and human adenoviruses 2 (HAdV2) exposed to a UVC fluence of 1,400 J/m(2), while a decay of 4-log was observed for MS2 bacteriophages (ssRNA). The present study reveals the high UVC resistance of dsDNA viruses, and the UV fluences needed to efficiently inactivate JCPyV and HAdV2 are predicted. Furthermore, we show that in conjunction with appropriate mathematical models, qPCR data may be used to accurately estimate virus infectivity.


Subject(s)
Adenoviridae/radiation effects , DNA, Viral/radiation effects , Disinfection/methods , Polyomaviridae/radiation effects , RNA, Viral/radiation effects , Adenoviridae/metabolism , Adenoviridae/pathogenicity , Adenoviridae/ultrastructure , Adenoviruses, Human/metabolism , Adenoviruses, Human/pathogenicity , Adenoviruses, Human/radiation effects , Adenoviruses, Human/ultrastructure , Cell Line , DNA, Viral/metabolism , Humans , JC Virus/metabolism , JC Virus/pathogenicity , JC Virus/radiation effects , JC Virus/ultrastructure , Kinetics , Levivirus/metabolism , Levivirus/pathogenicity , Levivirus/radiation effects , Levivirus/ultrastructure , Microbial Viability/radiation effects , Microscopy, Electron, Transmission , Polyomaviridae/metabolism , Polyomaviridae/pathogenicity , Polyomaviridae/ultrastructure , RNA Stability/radiation effects , RNA, Viral/metabolism , Radiation Tolerance , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Ultraviolet Rays , Virion/metabolism , Virion/pathogenicity , Virion/radiation effects , Virion/ultrastructure , Virus Inactivation/radiation effects
2.
J Theor Biol ; 253(4): 808-16, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18538795

ABSTRACT

In a seminal paper, Caspar and Klug [1962. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27, 1-24] derived a family of surface lattices as blueprints for the structural organisation of the protein shells, called viral capsids, which encapsulate and hence protect the viral genome. These lattices schematically encode, and hence predict, the locations of the proteins in the viral capsids. Despite the huge success and numerous applications of this theory in virology, experimental results have provided evidence for the fact that it is too restrictive to describe all known viruses [Casjens, S., 1985. Virus Structure and Assembly. Jones and Bartlett, Boston, MA]. Especially, the family of Polyomaviridae, which contains cancer-causing viruses, falls out of the scope of this theory. In [Twarock, R., 2004. A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477], we have shown that a member of the family of Polyomaviridae can be described via an icosahedrally symmetric tiling. We show here that all viruses in this family can be described by tilings with vertices corresponding to subsets of a quasi-lattice that is constructed based on an affine extended Coxeter group, and we use this methodology to derive their coordinates explicitly. Since the particles appear as different subsets of the same quasi-lattice, their relative sizes are predicted by this approach, and there hence exists only one scaling factor that relates the sizes of all particles collectively to their biological counterparts. It is the first mathematical result that provides a common organisational principle for different types of viral particles in the family of Polyomaviridae, and paves the way for modelling Polyomaviridae polymorphism.


Subject(s)
Capsid/ultrastructure , Computer Simulation , Models, Structural , Polyomaviridae/ultrastructure , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Polyomaviridae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...