Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 708
Filter
1.
Int J Biol Macromol ; 278(Pt 3): 134400, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122076

ABSTRACT

Bacteria can synthesize a broad spectrum of multifunctional polysaccharides including extracellular polysaccharides (EPS). Bacterial EPS can be utilized in the food, pharmaceutical, and biomedical areas owing to their physical and rheological properties in addition to generally presenting low toxicity. From an ecological viewpoint, EPS are biodegradable and environment compatible, offering several advantages over synthetic compounds. This study investigated the EPS produced by Klebsiella oxytoca (KO-EPS) by chemically characterizing and evaluating its properties. The monosaccharide components of the KO-EPS were determined by HPLC coupled with a refractive index detector and GC-MS. The KO-EPS was then analyzed by methylation analysis, FT-IR and NMR spectroscopy to give a potential primary structure. KO-EPS demonstrated the ability to stabilize hydrophilic emulsions with various hydrophobic compounds, including hydrocarbons and vegetable and mineral oils. In terms of iron chelation capacity, the KO-EPS could sequester 41.9 % and 34.1 % of the most common iron states, Fe2+ and Fe3+, respectively. Moreover, KO-EPS exhibited an improvement in the viscosity of aqueous dispersion, being proportional to the increase in its concentration and presenting a non-Newtonian pseudoplastic flow behavior. KO-EPS also did not present a cytotoxic effect indicating that the KO-EPS could have potential applications as a natural thickener, bioemulsifier, and bioremediation agent.


Subject(s)
Biodegradation, Environmental , Emulsions , Klebsiella oxytoca , Polysaccharides, Bacterial , Rheology , Klebsiella oxytoca/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/biosynthesis , Emulsifying Agents/chemistry , Emulsifying Agents/metabolism , Biotechnology/methods , Viscosity , Hydrophobic and Hydrophilic Interactions
2.
Immunohorizons ; 8(8): 527-537, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093309

ABSTRACT

Many bacterial polysaccharide vaccines, including the typhoid Vi polysaccharide (ViPS) and tetravalent meningococcal polysaccharide conjugate (MCV4) vaccines, do not incorporate adjuvants and are not highly immunogenic, particularly in infants. I found that endotoxin, a TLR4 ligand in ViPS, contributes to the immunogenicity of typhoid vaccines. Because endotoxin is pyrogenic, and its levels are highly variable in vaccines, I developed monophosphoryl lipid A, a nontoxic TLR4 ligand-based adjuvant named Turbo. Admixing Turbo with ViPS and MCV4 vaccines improved their immunogenicity across all ages and eliminated booster requirement. To understand the characteristics of this adjuvanticity, I compared Turbo with alum. Unlike alum, which polarizes the response toward the IgG1 isotype, Turbo promoted Ab class switching to all IgG isotypes with affinity maturation; the magnitude of this IgG response is durable and accompanied by the presence of long-lived plasma cells in the mouse bone marrow. In striking contrast with the pathways employed by alum, Turbo adjuvanticity is independent of NLPR3, pyroptotic cell death effector Gasdermin D, and canonical and noncanonical inflammasome activation mediated by Caspase-1 and Caspase-11, respectively. Turbo adjuvanticity is primarily dependent on the MyD88 axis and is lost in mice deficient in costimulatory molecules CD86 and CD40, indicating that Turbo adjuvanticity includes activation of these pathways. Because Turbo formulations containing either monophosphoryl lipid A or TLR2 ligands, Pam2CysSerLys4, and Pam3CysSerLys4 help generate Ab response of all IgG isotypes, as an adjuvant Turbo can improve the immunogenicity of glycoconjugate vaccines against a wide range of bacterial pathogens whose elimination requires appropriate IgG isotypes.


Subject(s)
Adjuvants, Immunologic , Lipid A , Animals , Mice , Adjuvants, Immunologic/administration & dosage , Lipid A/analogs & derivatives , Lipid A/immunology , Polysaccharides, Bacterial/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Mice, Inbred C57BL , Adjuvants, Vaccine , Meningococcal Vaccines/immunology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Typhoid-Paratyphoid Vaccines/immunology , Typhoid-Paratyphoid Vaccines/administration & dosage , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Female , Ligands , Glycoconjugates/immunology , Humans , Vaccines, Conjugate/immunology , Alum Compounds/administration & dosage , Mice, Knockout
3.
Int J Biol Macromol ; 278(Pt 1): 133672, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38971276

ABSTRACT

Bioemulsifiers are compounds produced by microorganisms that reduce the interfacial forces between hydrophobic substances and water. Due to their potential in the pharmaceutical and food industries and their efficiency in oil spill remediation, they have been the subject of study in the scientific community while being safe, biodegradable, and sustainable compared to synthetic options. These biomolecules have high molecular weight and polymeric structures, distinguishing them from traditional biosurfactants. Emulsan, a bioemulsifier exopolysaccharide, is produced by Acinetobacter strains and is highly efficient in forming stable emulsions. Its low toxicity and high potential as an emulsifying agent promote its application in pharmaceutical and food industries as a drug-delivery vehicle and emulsion stabilizer. Due to the high environmental impact of oil spills, bioemulsifiers have great potential for environmental applications, such as bioremediation. This unique feature gives them a distinct mechanism of action in forming emulsions, resulting in minimal environmental impact. A better understanding of these aspects can improve the use of bioemulsifiers and environmental remediation in various industries. This review will discuss the production and characterization of Emulsan, focusing on recent advancements in cultivation conditions, purification techniques, compound identification, and ecotoxicity.


Subject(s)
Biodegradation, Environmental , Emulsifying Agents , Emulsifying Agents/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/isolation & purification , Emulsions , Surface-Active Agents/chemistry , Acinetobacter/metabolism
4.
Arch Oral Biol ; 166: 106029, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38924874

ABSTRACT

OBJECTIVES: To develop a protocol for forming subsurface caries lesions on bovine enamel by dual-species biofilms of Streptococcus mutans and Candida albicans in vitro. DESIGN: Biofilms were grown on bovine enamel specimens in artificial saliva (AS) for seven days. After 24 h of formation, the AS was supplemented or not with fluoride (F) using sodium fluoride (0.005 or 0.008 ppm F), and the biofilms were exposed or not to a 20 % sucrose solution (reproducing a cariogenic challenge) once/day. On the seventh day, the biofilms were harvested and had their extracellular polysaccharides (EPS) and inorganic components analyzed. The specimens were subjected to computed X-ray microtomography analysis to determine their mineral concentration. Data were compared using two-way analyses of variance, followed by Fisher's LSD or Student-Newman-Keuls tests (p < 0.05). RESULTS: Biofilms exposed to the cariogenic challenge had significantly higher EPS concentrations than those not exposed, regardless of the presence of F. For biofilms grown with 0.008 ppm F, those exposed to the cariogenic challenge had lower F levels than those not exposed. For biofilms exposed to the cariogenic challenge, those grown with 0.008 ppm F had lower lesion depths and integrated mineral loss, and higher outer layers than those grown without F. CONCLUSIONS: The dual biofilm model assessed was able to create subsurface caries lesions in bovine enamel in vitro, which was influenced by the presence of F in the culture medium and exposure to sucrose.


Subject(s)
Biofilms , Candida albicans , Dental Caries , Dental Enamel , Streptococcus mutans , Candida albicans/physiology , Streptococcus mutans/physiology , Dental Caries/microbiology , Animals , Cattle , Polysaccharides, Bacterial/metabolism , Sucrose/pharmacology , Fluorides/pharmacology , Dental Enamel/chemistry , Dental Enamel/microbiology , Dental Enamel/pathology , Models, Animal
5.
An Acad Bras Cienc ; 96(1): e20230658, 2024.
Article in English | MEDLINE | ID: mdl-38808815

ABSTRACT

In the present study, the effect of xanthan gum was evaluated on the metabolic activity and survival of two probiotic strains, namely B. lactis and L. casei using in vitro assay and skim milk model system. In vitro assay was carried out identifying by pH, optical cell density (OD), and formation of postbiotics (lactic, acetic, propionic, and butyric acids) in different basal media including glucose, inulin, and xanthan gum as carbon source. The highest pH values were recorded for control (without carbon source) and media with xanthan gum, whereas the media with glucose and xanthan gum had the highest OD values. In comparison to strains, B. lactis had higher pH and lower OD values than L. casei. It was found that xanthan gum supported the formation of postbiotics as a result of bacterial fermentation. In the skim milk model system, xanthan gum did not negatively affect probiotic viability, and the counts of both strains were above the required level for health benefits (8 log cfu g-1) after 28-day storage. The use of xanthan gum in skim milk matrix positively affected techno-functional properties such as syneresis, color, and textural parameters of samples.


Subject(s)
Milk , Polysaccharides, Bacterial , Probiotics , Polysaccharides, Bacterial/pharmacology , Animals , Milk/chemistry , Milk/microbiology , Lacticaseibacillus casei/drug effects , Bifidobacterium animalis , Hydrogen-Ion Concentration , Fermentation
6.
Plant J ; 118(4): 1136-1154, 2024 May.
Article in English | MEDLINE | ID: mdl-38341846

ABSTRACT

Rhizobial phosphatidylcholine (PC) is thought to be a critical phospholipid for the symbiotic relationship between rhizobia and legume host plants. A PC-deficient mutant of Sinorhizobium meliloti overproduces succinoglycan, is unable to swim, and lacks the ability to form nodules on alfalfa (Medicago sativa) host roots. Suppressor mutants had been obtained which did not overproduce succinoglycan and regained the ability to swim. Previously, we showed that point mutations leading to altered ExoS proteins can reverse the succinoglycan and swimming phenotypes of a PC-deficient mutant. Here, we report that other point mutations leading to altered ExoS, ChvI, FabA, or RpoH1 proteins also revert the succinoglycan and swimming phenotypes of PC-deficient mutants. Notably, the suppressor mutants also restore the ability to form nodule organs on alfalfa roots. However, nodules generated by these suppressor mutants express only low levels of an early nodulin, do not induce leghemoglobin transcript accumulation, thus remain white, and are unable to fix nitrogen. Among these suppressor mutants, we detected a reduced function mutant of the 3-hydoxydecanoyl-acyl carrier protein dehydratase FabA that produces reduced amounts of unsaturated and increased amounts of shorter chain fatty acids. This alteration of fatty acid composition probably affects lipid packing thereby partially compensating for the previous loss of PC and contributing to the restoration of membrane homeostasis.


Subject(s)
Fatty Acids , Medicago sativa , Phosphatidylcholines , Plant Root Nodulation , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/physiology , Sinorhizobium meliloti/genetics , Medicago sativa/microbiology , Medicago sativa/genetics , Plant Root Nodulation/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Root Nodules, Plant/microbiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Mutation , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/biosynthesis , Nitrogen Fixation
7.
Food Res Int ; 177: 113836, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225113

ABSTRACT

An acidic beverage was formulated with xanthan gum (XG), pectin (P) and brewer spent grain (BSG) peptides with antioxidant and antihypertensive properties. The impact of hydrocolloids levels on peptide bioaccessibility was studied. Peptides were obtained from BSG using Purazyme and Flavourzyme enzymes. BSG peptides were fractionated by ultrafiltration (UF) and four fractions were obtained: F1 (>10 kDa), F2 (10-5 kDa), F3 (1-5 kDa), and F4 (<1 kDa). F3 showed the highest protein purity, ferulic acid content, proportion of amphipathic peptides, and bioactive properties (ABTS+ radical scavenging and ACE-I inhibitory activity). The identified peptides from F3 by tandem mass spectrometry were 138. In silico analysis showed that 26 identified peptides had ABTS+ inhibitory activity, while 59 ones presented good antihypertensive properties. The effect of XG and P levels on bioaccessibility of F3 peptides in the formulated beverages was studied by a central composite experimental design. It was observed that F3 peptides interacted with hydrocolloids by electrostatic forces at pH of formulated beverages. The addition of hydrocolloids to formulation modulated the release of the antioxidant peptides and protected the degradation of ACE-I inhibitory peptides from F3 during simulated gastrointestinal digestion. Finally, the level of hydrocolloids that produced intermediate viscosities in the formulated beverages improved the bioaccessibility of the F3 peptides.


Subject(s)
Antihypertensive Agents , Antioxidants , Benzothiazoles , Polysaccharides, Bacterial , Sulfonic Acids , Antihypertensive Agents/chemistry , Antioxidants/analysis , Hydrolysis , Angiotensin-Converting Enzyme Inhibitors/chemistry , Pectins/analysis , Protein Hydrolysates/chemistry , Peptides/chemistry , Edible Grain/chemistry , Colloids/analysis
8.
Int J Biol Macromol ; 257(Pt 2): 128701, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072348

ABSTRACT

Trichomoniasis is a common sexually transmitted infection that poses significant complications for women. Challenges in treatment include adverse effects and resistance to standard antimicrobial agents. Given this context, a sesame seed oil nanoemulsion (SONE) was developed and showed anti-Trichomonas vaginalis activity. To facilitate the local application of SONE, a polysaccharide film was developed using xanthan gum (XG) and κ-carrageenan gum (CG). A blend of XG and CG (at 2 %, ratio 1:3) plasticized with glycerol produced a more promising film (XCF) than using the gums individually. The film containing SONE (SONE-XCF) was successfully obtained by replacing the aqueous solvent with SONE via solvent evaporation technique. The hydrophilic SONE-XCF exhibited homogeneity and suitable mechanical properties for vaginal application. Furthermore, SONE-XCF demonstrated mucoadhesive properties and high absorption capacity for excessive vaginal fluids produced in vaginitis. It also had a disintegration time of over 8 h, indicating long retention at the intended site of action. Hemolysis and chorioallantoic membrane tests confirmed the safety of the film. Therefore, SONE-XCF is a biocompatible film with a natural composition and inherent activity against T. vaginalis, possessing exceptional characteristics that make it appropriate for vaginal application, offering an interesting alternative for trichomoniasis treatment.


Subject(s)
Nanocomposites , Sesamum , Trichomonas Infections , Female , Humans , Carrageenan , Prednisone , Polysaccharides, Bacterial , Solvents , Pharmaceutical Preparations , Plant Oils/pharmacology
9.
Int J Biol Macromol ; 255: 128113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977459

ABSTRACT

Plant-based analogs have been developed to mimic foods from animal sources by using ingredients from vegetable sources. Among the strategies to produce plant-based structures is the gelation of mixtures between plant proteins and polysaccharides. In this study, our aim was to investigate gels of pea proteins and gellan gum with high protein concentration and the addition of salt (potassium and sodium chloride). In the first step, a qualitative mapping was performed to select pea protein and gellan gum concentrations to produce self-sustainable gels. After that, the effect of salt addition was investigated for the formulations containing 10-15 % (wt) pea protein and 0.5-1 % (wt) gellan gum. The results showed that the gels containing potassium ions were more rigid and less deformable, with lesser water loss by syneresis. The morphological analysis showed a spatial exclusion of pea protein from the gel network mainly structured by the gellan gum. While potassium ions led to a more compact network, calcium ions promoted higher pores in the structure. Depending on the composition, the mechanical properties of gels were similar to some products from animal sources. So, the information obtained from these gels can be applied to the structuring of formulations in the development of plant-based analogs.


Subject(s)
Pea Proteins , Animals , Polysaccharides, Bacterial/chemistry , Gels/chemistry , Ions , Potassium/chemistry
10.
J Basic Microbiol ; 63(6): 646-657, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36737831

ABSTRACT

Bacterial surface components and extracellular compounds such as exopolysaccharides (EPSs) are crucial for interactions between cells, tolerance to different types of stress, and host colonization. Sinorhizobium meliloti produces two EPSs: Succinoglycan (EPS I), which is involved in the establishment of symbiosis with Medicago sativa, and galactoglucan (EPS II), associated with biofilm formation and the promotion of aggregation. Here, we aimed to assess their role in aggregative interactions between cells of the same strain of a given species (auto-aggregation), and between genetically different strains of the same or different species (intra- or intergeneric coaggregation). To do this, we used S. meliloti mutants which are defective in the production of EPS I, EPS II, or both. Macroscopic and microscopic coaggregation tests were performed with combinations or pairs of different bacterial strains. The EPS II-producing strains were more capable of coaggregation than those that cannot produce EPS II. This was true both for coaggregations between different S. meliloti strains, and between S. meliloti and other common rhizobacteria of agricultural relevance, such as Pseudomonas fluorescens and Azospirillum brasilense. The exogenous addition of EPS II strongly promoted coaggregation, thus confirming the polymer's importance for this phenotype. EPS II may therefore be a key factor in events of physiological significance for environmental survival, such as aggregative interactions and biofilm development. Furthermore, it might be a connecting molecule with relevant properties at an ecological, biotechnological, and agricultural level.


Subject(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genetics , Gene Expression Regulation, Bacterial , Biofilms , Medicago sativa/metabolism , Medicago sativa/microbiology , Symbiosis/genetics , Polysaccharides, Bacterial , Bacterial Proteins/genetics
11.
Microbiology (Reading) ; 169(2)2023 02.
Article in English | MEDLINE | ID: mdl-36757866

ABSTRACT

Pseudomonas aeruginosa is a versatile bacterium capable of adapting to a wide range of stress factors, including solar UVA radiation (400-315 nm). High UVA doses produce lethal effects due to the action of reactive oxygen species. Sublethal UVA doses also induces oxidative damage, but, in addition, it triggers a variety of adaptive responses, including the overexpression of pelA and pslA genes in P. aeruginosa. These genes encode the synthesis of Pel and Psl, which are essential polysaccharides in biofilm formation. The present study analysed the role of Pel and Psl in the adaptive responses generated by exposure to low UVA doses, and their importance in the response to lethal doses of UVA, hydrogen peroxide (H2O2), and sodium hypochlorite, in both planktonic cells and submerged and air-liquid interface (ALI) biofilms. It also studied the roles of Pel and Psl in P. aeruginosa-Staphylococcus aureus interaction. The results demonstrate that the capacity of sublethal UVA exposure to increase cell hydrophobicity and cell attachment and generate cross-protection phenomena in P. aeruginosa depends on the presence of Pel and Psl. The study also shows that Pel and Psl have a key role in the tolerance to lethal doses of UVA radiation, sodium hypochlorite and H2O2, in both biofilms and planktonic cells. Finally, co-culture assays showed total inhibition of S. aureus growth in presence of P. aeruginosa. This phenomenon depends, at least in part, on the simultaneous presence of Pel and Psl in planktonic cells and biofilms, suggesting a relevant role of these polysaccharides in the interaction between these species.


Subject(s)
Hydrogen Peroxide , Sodium Hypochlorite , Hydrogen Peroxide/pharmacology , Sodium Hypochlorite/pharmacology , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Polysaccharides, Bacterial/metabolism , Biofilms , Oxidative Stress
12.
Biomed Mater ; 18(2)2023 03 03.
Article in English | MEDLINE | ID: mdl-36805541

ABSTRACT

Bioactive peptides from natural resources with associated beneficial biological properties such as skin wound healing have drawn much attention. Polysaccharides with their biocompatibility, biodegradability, and ease of modification are suitable carriers for peptides delivery to the wound. In this study, a polysaccharide-peptide system was designed for potential wound healing applications. Xanthan hydrogels were modified with the yeast-derived peptide VW-9 with known biological properties via chemical conjugation using carbodiimide chemistry (XG-g-VW-9) or physically incorporation (XG-p-VW-9). Grafting VW-9 to the hydrogels increased the hydrogels' swelling degree and the release of the peptide from the hydrogels followed the Higuchi model indicating the peptide diffusion from the hydrogel matrix without hydrogel matrix dissolution. Both hydrogels were cytocompatible toward the tested fibroblast and macrophage cells. XG-p-VW-9 and XG-g-VW-9 reduce the level of tumor necrosis factor-alpha and interleukin-6 in cells activated with lipopolysaccharide more efficiently than free VW-9. Thus, VW-9-modified xanthan hydrogels may have the potential to be considered for skin wound healing.


Subject(s)
Hydrogels , Saccharomyces cerevisiae , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Peptides
13.
Microbiology (Reading) ; 169(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748569

ABSTRACT

We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.


Subject(s)
Polyamines , Sinorhizobium meliloti , Polyamines/metabolism , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Polysaccharides, Bacterial/metabolism
14.
Prep Biochem Biotechnol ; 53(8): 942-953, 2023.
Article in English | MEDLINE | ID: mdl-36592021

ABSTRACT

Polysaccharides and proteins are compatible macromolecules that can be used to obtain biopolymeric hydrogels through physical interactions. In this study, an environmentally friendly strategy is being proposed to produce gelatin-xanthan gum- cellulose hydrogels, without the addition of chemical synthetic crosslinkers. Xanthan gum was employed as an alternative crosslinking agent, and cellulose was used as a potential reinforcing agent in the polymeric matrix. Firstly, the biopolymers were mixed by the extrusion process, and glycerol was used as a plasticizer. Then, the polymeric mixture was molded by thermopressing to obtain hydrogels as laminated films. All hydrogels formulations resulted in films with smooth surfaces, without pores or cracks, resulting in amorphous polymeric matrices. The obtained hydrogels had a pH-dependent degree of swelling, the highest swelling values were obtained at pH 4 (5.3-7.9 g/g) after 24 h of immersion. Cellulose acted as a reinforcing agent for hydrogels, increasing thermal stability, tensile strength, and Young's modulus of films when employed at the higher level (7%). The strategy employed in this study to obtain nontoxic hydrogels without synthetic crosslinkers was effective, resulting in materials with promising properties to be used as pharmaceutical forms to deliver active compounds in cosmetic or pharmaceutical products.


Subject(s)
Cellulose , Gelatin , Gelatin/chemistry , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Polymers/chemistry
15.
Microbiol Res ; 268: 127276, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36525789

ABSTRACT

There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.


Subject(s)
Bacillus , Polysaccharides, Bacterial/chemistry , Ecosystem , Bacteria , Antiviral Agents
16.
Curr Med Chem ; 30(17): 1963-1970, 2023.
Article in English | MEDLINE | ID: mdl-35770400

ABSTRACT

Bacteria and their enzymatic machinery, also called bacterial cell factories, produce a diverse variety of biopolymers, such as polynucleotides, polypeptides and polysaccharides, with different and fundamental cellular functions. Polysaccharides are the most widely used biopolymers, especially in biotechnology. This type of biopolymer, thanks to its physical and chemical properties, can be used to create a wide range of advanced bio-based materials, hybrid materials and nanocomposites for a variety of exciting biomedical applications. In contrast to synthetic polymers, bacterial polysaccharides have several advantages, such as biocompatibility, biodegradability, low immunogenicity, and non-toxicity, among others. On the other hand, the main advantage of bacterial polysaccharides compared to polymers extracted from other natural sources is that their physicochemical properties, such as purity, porosity, and malleability, among others, can be adapted to a specific application with the use of biotechnological tools and/or chemical modifications. Another great reason for using bacterial polysaccharides is due to the possibility of developing advanced materials from them using bacterial factories that can metabolize raw materials (recycling of industrial and agricultural wastes) that are readily available and in large quantities. Moreover, through this strategy, it is possible to curb environmental pollution. In this article, we project the desire to move towards large-scale production of bacterial polysaccharides taking into account the benefits, weaknesses and prospects in the near future for the development of advanced biological materials for medical and pharmaceutical purposes.


Subject(s)
Nanocomposites , Polysaccharides, Bacterial , Humans , Biopolymers/chemistry , Polymers , Biotechnology
17.
Braz. j. oral sci ; 22: e231137, Jan.-Dec. 2023. ilus
Article in English | LILACS, BBO - Dentistry | ID: biblio-1523140

ABSTRACT

The purpose of this in vitro study was to analyze the influence of nicotine on the extracellular polysaccharides in Fusobacterium nucleatum biofilm. Methods: F. nucleatum (ATCC 10953) biofilms supplemented with different concentrations of nicotine (0, 0.5, 1, 2, 4, and 8 mg/mL) were grown in two different BHI broth conditions [no sucrose and 1% sucrose]. Extracellular polysaccharides assay, pH measurements, and a spectrophotometric assay were performed. Data were submitted for ANOVA and Tukey honestly significant difference analyses (HSD) tests (α =.05). Results: Extracellular polysaccharides synthesis was influenced by an interaction between nicotine concentrations and growth medium solution containing sucrose (P<.05). The pH values declined in the sucrose-exposed biofilm were greater than in the group exposed only to nicotine (P<.05). The biofilm exposed to sucrose and nicotine had a higher total biofilm growth (P<.05) than the nicotine-treated biofilm without sucrose. Conclusions: Regardless of sucrose exposure, biofilms exposed to different nicotine concentrations influenced the amount of extracellular polysaccharides


Subject(s)
Humans , Polysaccharides, Bacterial/chemical synthesis , Fusobacterium nucleatum/growth & development , Biofilms/growth & development , Nicotine/pharmacology , Periodontal Diseases/microbiology , Spectrophotometry , Sucrose/administration & dosage , Culture Media , Dental Caries/microbiology , Nicotine/administration & dosage
18.
Immunohorizons ; 6(12): 807-816, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36480484

ABSTRACT

Circulating IgM present in the body prior to any apparent Ag exposure is referred to as natural IgM. Natural IgM provides protective immunity against a variety of pathogens. Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever in humans. Because mice are not permissive to S. Typhi infection, we employed a murine model of typhoid using S. enterica serovar Typhimurium expressing the Vi polysaccharide (ViPS) of S. Typhi (S. Typhimurium strain RC60) to evaluate the role of natural IgM in pathogenesis. We found that natural mouse IgM binds to S. Typhi and S. Typhimurium. The severity of S. Typhimurium infection in mice is dependent on presence of the natural resistance-associated macrophage protein 1 (Nramp1) allele; therefore, we infected mice deficient in secreted form of IgM (sIgM) on either a Nramp1-resistant (129S) or -susceptible (C57BL/6J) background. We found that the lack of natural IgM results in a significantly increased susceptibility and an exaggerated liver pathology regardless of the route of infection or the Nramp1 allele. Reconstitution of sIgM-/- mice with normal mouse serum or purified polyclonal IgM restored the resistance to that of sIgM+/+ mice. Furthermore, immunization of sIgM-/- mice with heat-killed S. Typhi induced a significantly reduced anti-ViPS IgG and complement-dependent bactericidal activity against S. Typhi in vitro, compared with that of sIgM+/+ mice. These findings indicate that natural IgM is an important factor in reducing the typhoid severity and inducing an optimal anti-ViPS IgG response to vaccination.


Subject(s)
Immunoglobulin G , Immunoglobulin M , Polysaccharides, Bacterial , Typhoid Fever , Animals , Humans , Mice , Disease Models, Animal , Immunoglobulin G/immunology , Mice, Inbred C57BL , Typhoid Fever/immunology , Disease Susceptibility , Antibody Formation , Mice, 129 Strain , Polysaccharides, Bacterial/immunology
19.
Braz J Microbiol ; 53(4): 1843-1856, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36104575

ABSTRACT

Inoculants with beneficial microorganisms comprise both selected strains and carriers that ensure a favorable microenvironment for cell survival and stability. Formulations of inoculants using synthetic polymers as carriers are common. However, only a few studies are available in the literature regarding the formulation of inoculants using natural biomolecules as carriers. Exopolysaccharides (EPS) are biomolecules produced by a vast array of microbial species, including symbiotic nitrogen-fixing bacteria, commonly known as rhizobia. EPS perform several functions, such as the protection against the deleterious effects of diverse environmental soil stresses. Two Rhizobium tropici strains and one Paraburkholderia strain were selected after semiquantitative analysis by scanning electron microscopy (SEM) of their EPS production in liquid YMA medium. Their EPS were characterized through a series of analytical techniques, aiming at their use in the formulation of plant inoculants. In addition, the effect of the carbon source on EPS yield was evaluated. Multi-stage fragmentation analysis showed the presence of xylose, glucose, galactose, galacturonic acid, and glucuronic acid in EPS chemical composition, which was confirmed by FT-IR spectra and 13C NMR spectroscopy. Thermal stability (thermogravimetric) was close to 270 °C and viscosity ranged from 120 to 1053.3 mPa.s. Surface morphology (SEM) was rough and irregular, with a cross-linked spongy matrix, which, together with the hydrophilic functional groups, confers water holding capacity. The present study showed that the three EPS have potential as microorganism carriers for formulation of microbial inoculants to be applied in plants.


Subject(s)
Rhizobium tropici , Rhizobium , Spectroscopy, Fourier Transform Infrared , Rhizobium tropici/metabolism , Symbiosis , Biopolymers/metabolism , Polysaccharides, Bacterial/metabolism
20.
Braz J Microbiol ; 53(4): 1829-1842, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36040685

ABSTRACT

The microorganisms living on the phyllosphere (the aerial part of the plants) are in contact with the lignocellulosic plant cell wall and might have a lignocellulolytic potential. We isolated a Saccharibacillus strain (Saccharibacillus WB17) from wheat bran phyllosphere and its cellulolytic and hemicellulolytic potential was investigated during growth onto wheat bran. Five other type strains from that genus selected from databases were also cultivated onto wheat bran and glucose. Studying the chemical composition of wheat bran residues by FTIR after growth of the six strains showed an important attack of the stretching C-O vibrations assigned to polysaccharides for all the strains, whereas the C = O bond/esterified carboxyl groups were not impacted. The genomic content of the strains showed that they harbored several CAZymes (comprised between 196 and 276) and possessed four of the fifth modules reflecting the presence of a high diversity of enzymes families. Xylanase and amylase activities were the most active enzymes with values reaching more than 4746 ± 1400 mIU/mg protein for the xylanase activity in case of Saccharibacillus deserti KCTC 33693 T and 452 ± 110 mIU/mg protein for the amylase activity of Saccharibacillus WB17. The total enzymatic activities obtained was not correlated to the total abundance of CAZyme along that genus. The Saccharibacillus strains harbor also some promising proteins in the GH30 and GH109 modules with potential arabinofuranosidase and oxidoreductase activities. Overall, the genus Saccharibacillus and more specifically the Saccharibacillus WB17 strain represent biological tools of interest for further biotechnological applications.


Subject(s)
Bacillales , Dietary Fiber , Polysaccharides, Bacterial , Amylases , Dietary Fiber/microbiology , Genomics , Phylogeny , Bacillales/classification , Bacillales/isolation & purification , Polysaccharides, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL