Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(29): 19896-19908, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38982560

ABSTRACT

The disturbance of potassium current in cardiac myocytes caused by potassium channel dysfunction can lead to cardiac electrophysiological disorders, resulting in associated cardiovascular diseases. The emergence of artificial potassium ion channels opens up a way to replace dysfunctional natural ion channels and cure related diseases. However, bionic potassium ion channels have not been introduced into living cells to regulate cell function. One of the biggest challenges is that when the bionic channel fuses with the cell, it is difficult to control the inserting angle of the bionic potassium channel to ensure its penetration of the entire cell membrane. In nature, the extracellular vesicles can fuse with living cells with a completely preserved structure of vesicle protein. Inspired by this, we developed a vesicle fusion-based bionic porin (VFBP), which integrates bionic potassium ion channels into cardiomyocytes to replace damaged potassium ion channels. Theoretical and experimental results show that the inserted bionic ion channels have a potassium ion transport rate comparable to that of natural ion channels, which can restore the potassium ion outflow in cardiomyocytes and repair the abnormal action potential and excitation-contraction coupling of cardiomyocytes. Therefore, the bionic potassium ion channel system based on membrane fusion is expected to become the research object in many fields such as ultrafast ion transport, transmembrane delivery, and channelopathies treatment.


Subject(s)
Myocytes, Cardiac , Potassium Channels , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Potassium Channels/chemistry , Humans , Potassium/metabolism , Potassium/chemistry , Animals , Porins/metabolism , Porins/chemistry
2.
Biochemistry (Mosc) ; 89(6): 1079-1093, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981702

ABSTRACT

The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with ß-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total ß-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to ß-barrel.


Subject(s)
Porins , Yersinia pseudotuberculosis , Porins/chemistry , Porins/metabolism , Yersinia pseudotuberculosis/metabolism , Yersinia pseudotuberculosis/chemistry , Animals , Mice , Amyloid/metabolism , Amyloid/chemistry , Protein Structure, Secondary , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Protein Conformation
3.
Nucleic Acids Res ; 52(13): 7429-7436, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38884270

ABSTRACT

Nanopores are increasingly powerful tools for single molecule sensing, in particular, for sequencing DNA, RNA and peptides. This success has spurred efforts to sequence non-canonical nucleic acid bases and amino acids. While canonical DNA and RNA bases have pKas far from neutral, certain non-canonical bases, natural RNA modifications, and amino acids are known to have pKas near neutral pHs at which nanopore sequencing is typically performed. Previous reports have suggested that the nanopore signal may be sensitive to the protonation state of an individual moiety. We sequenced ion currents with the MspA nanopore using a single stranded DNA containing a single non-canonical DNA base (Z) at various pH conditions. The Z-base has a near-neutral pKa ∼ 7.8. We find that the measured ion current is remarkably sensitive to the protonation state of the Z-base. We demonstrate how nanopores can be used to localize and determine the pKa of individual moieties along a polymer. More broadly, these experiments provide a path to mapping different protonation sites along polymers and give insight in how to optimize sequencing of polymers that contain moieties with near-neutral pKas.


Subject(s)
DNA, Single-Stranded , Nanopores , Hydrogen-Ion Concentration , DNA, Single-Stranded/chemistry , DNA/chemistry , Protons , Porins/chemistry , Porins/genetics , Sequence Analysis, DNA/methods
4.
ACS Infect Dis ; 10(8): 3042-3051, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-38922179

ABSTRACT

Antimicrobial peptides (AMPs) are becoming next-generation alternative antibacterial agents because of the rapid increase in resistance in bacteria against existing antibiotics, which can also be attributed to the formation of resilient biofilms. However, their widespread use is limited because of their poor absorption, higher dosage requirements, and delayed onset of the bioactivity to elicit a desired response. Here we developed a short AMP that specifically targeted Fusobacterium nucleatum. We conjugated 23R to a statherin-derived peptide (SDP) through rational design; this conjugate binds to FomA, a major porin protein of F. nucleatum. The SDP-tagged 23R exhibited rapid and highly specific bactericidal efficacy against F. nucleatum. Further, IC50 values were in the nanomolar range, and they were 100-fold lower than those obtained with unconjugated 23R. In a human gut microbiota model, 0.1 nM SDP-23R achieved 99% clearance of F. nucleatum ATCC 25586 without markedly altering resident microbiota. Here we demonstrated that binding-peptide-coupled AMPs show increased killing efficacy and specificity for the target pathogen without affecting the resident microbiota.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Fusobacterium nucleatum , Fusobacterium nucleatum/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Gastrointestinal Microbiome/drug effects , Biofilms/drug effects , Porins/metabolism , Porins/genetics , Porins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics
5.
Nat Commun ; 15(1): 4185, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760367

ABSTRACT

Bacteriophage infection, a pivotal process in microbiology, initiates with the phage's tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system's biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.


Subject(s)
Bacteriophage lambda , Cryoelectron Microscopy , Shigella sonnei , Bacteriophage lambda/genetics , Bacteriophage lambda/metabolism , Bacteriophage lambda/physiology , Shigella sonnei/virology , Shigella sonnei/metabolism , Viral Tail Proteins/metabolism , Viral Tail Proteins/chemistry , Viral Tail Proteins/genetics , Porins/metabolism , Porins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/ultrastructure , Protein Binding , Models, Molecular , Protein Conformation , Receptors, Virus
6.
J Mol Recognit ; 37(4): e3087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38686731

ABSTRACT

Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.


Subject(s)
Electrodes , Epitopes , Gold , Molecular Imprinting , Neisseria meningitidis , Quartz Crystal Microbalance Techniques , Epitopes/immunology , Epitopes/chemistry , Humans , Neisseria meningitidis/immunology , Gold/chemistry , Biosensing Techniques/methods , Bacterial Proteins/chemistry , Bacterial Proteins/immunology , Metal Nanoparticles/chemistry , Porins/chemistry , Porins/immunology
7.
Chemphyschem ; 25(14): e202400147, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38625051

ABSTRACT

We investigated, by using all-atom molecular dynamics simulations, the effect of the outer membrane of Gram-negative bacteria, composed in the outer leaflet by polar/charged lipopolysaccharides (LPS), on the electrostatic properties of general porins from the Enterobacteriaceae family. General porins constitute the main path for the facilitated diffusion of polar antibiotics through the outer membrane. As model system we selected OmpK36 from Klebsiella pneumoniae, the ortholog of OmpC from Escherichia coli. This species presents high variability of amino acid composition of porins, with the effect to increase its resistance to the penetration of antibiotics. The various properties we analyzed seem to indicate that LPS acts as an independent layer without affecting the internal electrostatic properties of OmpK36. The only apparent effect on the microsecond time scale we sampled is the appearance of calcium ions, when present at moderate concentration in solution, inside the pore. However, we noticed increased fluctuations of the polarization density and only minor changes on its average value.


Subject(s)
Lipopolysaccharides , Molecular Dynamics Simulation , Porins , Static Electricity , Lipopolysaccharides/chemistry , Porins/chemistry , Porins/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/chemistry , Enterobacteriaceae/drug effects , Enterobacteriaceae/chemistry , Enterobacteriaceae/metabolism , Escherichia coli/drug effects , Escherichia coli/chemistry
8.
Biomolecules ; 14(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38540723

ABSTRACT

Mitochondria are most likely descendants of strictly aerobic prokaryotes from the class Alphaproteobacteria. The mitochondrial matrix is surrounded by two membranes according to its relationship with Gram-negative bacteria. Similar to the bacterial outer membrane, the mitochondrial outer membrane acts as a molecular sieve because it also contains diffusion pores. However, it is more actively involved in mitochondrial metabolism because it plays a functional role, whereas the bacterial outer membrane has only passive sieving properties. Mitochondrial porins, also known as eukaryotic porins or voltage-dependent anion-selective channels (VDACs) control the permeability properties of the mitochondrial outer membrane. They contrast with most bacterial porins because they are voltage-dependent. They switch at relatively small transmembrane potentials of 20 to 30 mV in closed states that exhibit different permeability properties than the open state. Whereas the open state is preferentially permeable to anionic metabolites of mitochondrial metabolism, the closed states prefer cationic solutes, in particular, calcium ions. Mitochondrial porins are encoded in the nucleus, synthesized at cytoplasmatic ribosomes, and post-translationally imported through special transport systems into mitochondria. Nineteen beta strands form the beta-barrel cylinders of mitochondrial and related porins. The pores contain in addition an α-helical structure at the N-terminal end of the protein that serves as a gate for the voltage-dependence. Similarly, they bind peripheral proteins that are involved in mitochondrial function and compartment formation. This means that mitochondrial porins are localized in a strategic position to control mitochondrial metabolism. The special features of the role of mitochondrial porins in apoptosis and cancer will also be discussed in this article.


Subject(s)
Ion Channels , Voltage-Dependent Anion Channels , Ion Channels/metabolism , Voltage-Dependent Anion Channels/metabolism , Porins/analysis , Porins/chemistry , Porins/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Membrane Potentials
9.
Nat Methods ; 21(4): 609-618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443507

ABSTRACT

Precise identification and quantification of amino acids is crucial for many biological applications. Here we report a copper(II)-functionalized Mycobacterium smegmatis porin A (MspA) nanopore with the N91H substitution, which enables direct identification of all 20 proteinogenic amino acids when combined with a machine-learning algorithm. The validation accuracy reaches 99.1%, with 30.9% signal recovery. The feasibility of ultrasensitive quantification of amino acids was also demonstrated at the nanomolar range. Furthermore, the capability of this system for real-time analyses of two representative post-translational modifications (PTMs), one unnatural amino acid and ten synthetic peptides using exopeptidases, including clinically relevant peptides associated with Alzheimer's disease and cancer neoantigens, was demonstrated. Notably, our strategy successfully distinguishes peptides with only one amino acid difference from the hydrolysate and provides the possibility to infer the peptide sequence.


Subject(s)
Nanopores , Amino Acids/chemistry , Peptides/chemistry , Amino Acid Sequence , Porins/chemistry , Porins/metabolism
10.
Protein Sci ; 33(3): e4912, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358254

ABSTRACT

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability. While a conserved C-terminal signal sequence is essential for folding and protein assembly in the outer membrane of Gram-negative bacteria, the molecular determinants of these processes are unknown for MspA. In this study, we show that mutation and deletion of methionine 183 in the highly conserved C-terminus of MspA and mutation of the conserved tryptophan 40 lead to a complete loss of protein in heat extracts of M. smegmatis. Swapping these residues partially restores the heat stability of MspA indicating that methionine 183 and tryptophan 40 form a conserved sulfur-π electron interaction, which stabilizes the MspA monomer. Flow cytometry showed that all MspA mutants are surface-accessible demonstrating that oligomerization and membrane integration in M. smegmatis are not affected. Thus, the conserved C-terminus of MspA is essential for its thermal stability, but it is not required for protein assembly in its native membrane, indicating that this process is mediated by a mechanism distinct from that in Gram-negative bacteria. These findings will benefit the rational design of MspA-like pores to tailor their properties in current and future applications.


Subject(s)
Mycobacterium , Tryptophan , Tryptophan/metabolism , Porins/chemistry , Porins/genetics , Porins/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Methionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL