Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.940
Filter
1.
J Am Heart Assoc ; 13(16): e035415, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39158577

ABSTRACT

BACKGROUND: Cardiovascular disease remains one of the leading causes of death globally. Myocardial ischemia and infarction, in particular, frequently cause disturbances in cardiac electrical activity that can trigger ventricular arrhythmias. We aimed to investigate whether catestatin, an endogenous catecholamine-inhibiting peptide, ameliorates myocardial ischemia-induced ventricular arrhythmias in rats and the underlying ionic mechanisms. METHODS AND RESULTS: Adult male Sprague-Dawley rats were randomly divided into control and catestatin groups. Ventricular arrhythmias were induced by ligation of the left anterior descending coronary artery and electrical stimulation. Action potential, transient outward potassium current, delayed rectifier potassium current, inward rectifying potassium current, and L-type calcium current (ICa-L) of rat ventricular myocytes were recorded using a patch-clamp technique. Catestatin notably reduced ventricular arrhythmia caused by myocardial ischemia/reperfusion and electrical stimulation of rats. In ventricular myocytes, catestatin markedly shortened the action potential duration of ventricular myocytes, which was counteracted by potassium channel antagonists TEACl and 4-AP, and ICa-L current channel agonist Bay K8644. In addition, catestatin significantly increased transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current density in a concentration-dependent manner. Catestatin accelerated the activation and decelerated the inactivation of the transient outward potassium current channel. Furthermore, catestatin decreased ICa-L current density in a concentration-dependent manner. Catestatin also accelerated the inactivation of the ICa-L channel and slowed down the recovery of ICa-L from inactivation. CONCLUSIONS: Catestatin enhances the activity of transient outward potassium current, delayed rectifier potassium current, and inward rectifying potassium current, while suppressing the ICa-L in ventricular myocytes, leading to shortened action potential duration and ultimately reducing the ventricular arrhythmia in rats.


Subject(s)
Action Potentials , Chromogranin A , Myocytes, Cardiac , Peptide Fragments , Rats, Sprague-Dawley , Animals , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Chromogranin A/pharmacology , Chromogranin A/metabolism , Action Potentials/drug effects , Peptide Fragments/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/drug effects , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Arrhythmias, Cardiac/metabolism , Anti-Arrhythmia Agents/pharmacology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/drug effects , Disease Models, Animal , Potassium Channel Blockers/pharmacology , Rats , Patch-Clamp Techniques , Delayed Rectifier Potassium Channels/metabolism , Delayed Rectifier Potassium Channels/drug effects , Potassium Channels/metabolism , Potassium Channels/drug effects
2.
Stem Cell Res Ther ; 15(1): 268, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183338

ABSTRACT

BACKGROUND: The KCNJ16 gene has been associated with a novel kidney tubulopathy phenotype, viz. disturbed acid-base homeostasis, hypokalemia and altered renal salt transport. KCNJ16 encodes for Kir5.1, which together with Kir4.1 constitutes a potassium channel located at kidney tubular cell basolateral membranes. Preclinical studies provided mechanistic links between Kir5.1 and tubulopathy, however, the disease pathology remains poorly understood. Here, we aimed at generating and characterizing a novel advanced in vitro human kidney model that recapitulates the disease phenotype to investigate further the pathophysiological mechanisms underlying the tubulopathy and potential therapeutic interventions. METHODS: We used CRISPR/Cas9 to generate KCNJ16 mutant (KCNJ16+/- and KCNJ16-/-) cell lines from healthy human induced pluripotent stem cells (iPSC) KCNJ16 control (KCNJ16WT). The iPSCs were differentiated following an optimized protocol into kidney organoids in an air-liquid interface. RESULTS: KCNJ16-depleted kidney organoids showed transcriptomic and potential functional impairment of key voltage-dependent electrolyte and water-balance transporters. We observed cysts formation, lipid droplet accumulation and fibrosis upon Kir5.1 function loss. Furthermore, a large scale, glutamine tracer flux metabolomics analysis demonstrated that KCNJ16-/- organoids display TCA cycle and lipid metabolism impairments. Drug screening revealed that treatment with statins, particularly the combination of simvastatin and C75, prevented lipid droplet accumulation and collagen-I deposition in KCNJ16-/- kidney organoids. CONCLUSIONS: Mature kidney organoids represent a relevant in vitro model for investigating the function of Kir5.1. We discovered novel molecular targets for this genetic tubulopathy and identified statins as a potential therapeutic strategy for KCNJ16 defects in the kidney.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Induced Pluripotent Stem Cells , Organoids , Potassium Channels, Inwardly Rectifying , Humans , Organoids/metabolism , Organoids/drug effects , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Lipid Metabolism/drug effects
3.
Handb Clin Neurol ; 203: 59-67, 2024.
Article in English | MEDLINE | ID: mdl-39174254

ABSTRACT

Andersen-Tawil syndrome (ATS) is one of the periodic paralyses, a set of skeletal muscle disorders that cause transient weakness of the arms and legs lasting minutes to many hours. Distinguishing features of ATS include facial and limb dysmorphisms, cardiac arrhythmia, difficulties with executive function, and association with dominant mutations in the potassium channel, KCNJ2. In this review, we discuss the key features of ATS, diagnostic testing, pathophysiology and treatment of ATS, and compare them with other periodic paralyses.


Subject(s)
Andersen Syndrome , Andersen Syndrome/genetics , Andersen Syndrome/diagnosis , Andersen Syndrome/therapy , Andersen Syndrome/physiopathology , Humans , Mutation/genetics , Potassium Channels, Inwardly Rectifying/genetics
4.
Mol Biol Cell ; 35(9): ar119, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024255

ABSTRACT

Hypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension. Therefore, we hypothesized that gain-of-function (GoF) ROMK variants which increase potassium flux may predispose people to hypertension. To begin to test this hypothesis, we employed genetic screens and a candidate-based approach to identify six GoF variants in yeast. Subsequent functional assays in higher cells revealed two variant classes. The first group exhibited greater stability in the endoplasmic reticulum, enhanced channel assembly, and/or increased protein at the cell surface. The second group of variants resided in the PIP2-binding pocket, and computational modeling coupled with patch-clamp studies demonstrated lower free energy for channel opening and slowed current rundown, consistent with an acquired PIP2-activated state. Together, these findings advance our understanding of ROMK structure-function, suggest the existence of hyperactive ROMK alleles in humans, and establish a system to facilitate the development of ROMK-targeted antihypertensives.


Subject(s)
Potassium Channels, Inwardly Rectifying , Humans , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Gain of Function Mutation , Potassium/metabolism , Hypertension/genetics , Hypertension/metabolism , Kidney/metabolism , Mutation/genetics , HEK293 Cells , Endoplasmic Reticulum/metabolism , Ion Transport , Alleles
5.
Eur J Neurosci ; 60(4): 4569-4585, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992988

ABSTRACT

The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.


Subject(s)
Connexins , Neuralgia , Reactive Oxygen Species , p38 Mitogen-Activated Protein Kinases , Animals , Male , Reactive Oxygen Species/metabolism , Neuralgia/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Female , Connexins/metabolism , Connexins/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Facial Pain/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Trigeminal Ganglion/metabolism , Hyperalgesia/metabolism , Mice, Inbred C57BL , MAP Kinase Signaling System/physiology
6.
J Biochem Mol Toxicol ; 38(8): e23780, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39056188

ABSTRACT

Sodium and potassium channels, especially Nav1.5 and Kir2.1, play key roles in the formation of action potentials in cardiomyocytes. These channels interact with, and are regulated by, synapse-associated protein 97 (SAP97). However, the regulatory role of SAP97 in myocyte remains incompletely understood. Here, we investigate the function of SAP97 phosphorylation in the regulation of Nav1.5 and Kir2.1 channel complexes and the upstream regulation of SAP97. We found that SAP97 is phosphorylated by casein kinase II (CK2) in vitro. In addition, transfection of casein kinase 2 interacting protein-1 (CKIP-1) into cardiomyocytes to drive CK2 from the nucleus to the cytoplasm, increased SAP97 phosphorylation and Nav1.5 and Kir2.1 current activity. These findings demonstrated that CKIP-1 modulates the subcellular translocation of CK2, which regulates Nav1.5 and Kir2.1 channel complex formation and activity in cardiomyocytes.


Subject(s)
Casein Kinase II , Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Potassium Channels, Inwardly Rectifying , Myocytes, Cardiac/metabolism , Casein Kinase II/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , Animals , Rats , Phosphorylation , Protein Transport , Humans , Carrier Proteins/metabolism , Rats, Sprague-Dawley
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 783-789, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946358

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and molecular basis for children and adolescents with monogenic diabetes. METHODS: A retrospective analysis was carried out for the clinical manifestations and laboratory data of 116 children and adolescents diagnosed with diabetes at Ningbo Women and Children's Hospital from January 2020 to March 2023. Whole exome sequencing and mitochondrial gene sequencing were carried out on 21 children with suspected monogenic diabetes. RESULTS: A total of 10 cases of monogenic diabetes were diagnosed, all of which were Maturity-onset Diabetes Of the Young (MODY). Six cases of MODY2 were due to GCK gene mutations, 1 case of MODY3 was due to HNF1A gene mutation, 2 cases of MODY12 were due to ABCC8 gene mutations, and 1 case of MODY13 was due to KCNJ11 gene mutation. Nine of the 10 patients with MODY had no typical symptoms of diabetes. A family history of diabetes was significantly more common in the MODY group compared with the T1DM and T2DM groups (P < 0.05). The BMI of the MODY group was higher than that of the T1DM group (P < 0.05). The initial blood glucose level was lower than that of the T1DM group (P < 0.05), and there was no significant difference compared with the T2DM group. The fasting C-peptide level of the MODY group was higher than that of the T1DM group (P < 0.05), and there was no significant difference compared with the T2DM group. Glycosylated hemoglobin of the MODY group was lower than both the T1DM and T2DM groups (P < 0.05). CONCLUSION: In this study, MODY has accounted for the majority of monogenic diabetes among children and adolescents, and the common mutations were those of the GCK gene in association with MODY2. Blood glucose and glycosylated hemoglobin of children with MODY were slightly increased, whilst the islet cell function had remained, and the clinical manifestations and laboratory tests had overlapped with those of type 2 diabetes. WES and mitochondrial gene sequencing can clarify the etiology of monogenic diabetes and facilitate precise treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Mutation , Humans , Adolescent , Child , Diabetes Mellitus, Type 2/genetics , Female , Male , Retrospective Studies , Hepatocyte Nuclear Factor 1-alpha/genetics , Genetic Testing , Potassium Channels, Inwardly Rectifying/genetics , Exome Sequencing , Germinal Center Kinases/genetics , Sulfonylurea Receptors/genetics , Child, Preschool , Glycated Hemoglobin/analysis
8.
Trends Neurosci ; 47(8): 569-570, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866601

ABSTRACT

Neurons have high energy demands. In a recent study, Looser et al. identified oligodendrocyte Kir4.1 as the activity-dependent driver of oligodendrocyte glycolysis that ensures that lactate is supplied to active neurons. Given that oligodendrocyte Kir4.1 also influenced axonal glucose consumption and uptake, oligodendrocytes may play a broader role in neuronal metabolic regulation.


Subject(s)
Axons , Glucose , Oligodendroglia , Oligodendroglia/metabolism , Animals , Glucose/metabolism , Axons/metabolism , Axons/physiology , Humans , Potassium Channels, Inwardly Rectifying/metabolism , Neurons/metabolism
9.
Prog Neurobiol ; 239: 102635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825174

ABSTRACT

Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.


Subject(s)
Calcium , Dendrites , Nerve Regeneration , Dendrites/metabolism , Dendrites/physiology , Animals , Calcium/metabolism , Nerve Regeneration/physiology , Humans , Mice , Potassium Channels, Inwardly Rectifying/metabolism , Mice, Transgenic
10.
J Neurosci ; 44(34)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38926088

ABSTRACT

Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of the paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of the PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on the PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT→prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which is mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.


Subject(s)
Astrocytes , Consciousness , Midline Thalamic Nuclei , Potassium Channels, Inwardly Rectifying , Sevoflurane , Animals , Astrocytes/physiology , Astrocytes/drug effects , Astrocytes/metabolism , Male , Mice , Sevoflurane/pharmacology , Consciousness/physiology , Consciousness/drug effects , Midline Thalamic Nuclei/physiology , Midline Thalamic Nuclei/drug effects , Midline Thalamic Nuclei/cytology , Potassium Channels, Inwardly Rectifying/metabolism , Mice, Inbred C57BL , Anesthetics, Inhalation/pharmacology , Neural Pathways/physiology , Neural Pathways/drug effects , Neurons/physiology , Neurons/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Frontal Lobe/physiology , Frontal Lobe/drug effects , Anesthesia Recovery Period
11.
Nat Commun ; 15(1): 5144, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886379

ABSTRACT

The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.


Subject(s)
Kidney Tubules, Proximal , Mechanistic Target of Rapamycin Complex 2 , Mice, Knockout , Potassium Channels, Inwardly Rectifying , Potassium , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Proto-Oncogene Proteins c-akt/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , TOR Serine-Threonine Kinases/metabolism , Potassium/metabolism , Kidney Tubules, Proximal/metabolism , Mice , Mechanistic Target of Rapamycin Complex 2/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Phosphorylation , Male , Chlorides/metabolism , Mice, Inbred C57BL
12.
Methods Mol Biol ; 2796: 229-248, 2024.
Article in English | MEDLINE | ID: mdl-38856905

ABSTRACT

Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.


Subject(s)
Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying , Receptor, Melanocortin, Type 4 , Patch-Clamp Techniques/methods , Animals , Humans , Receptor, Melanocortin, Type 4/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Ion Channel Gating/drug effects , Receptors, G-Protein-Coupled/metabolism , HEK293 Cells
13.
Transl Vis Sci Technol ; 13(6): 13, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38899953

ABSTRACT

Purpose: To compare gene expression changes following branch retinal vein occlusion (BRVO) in the pig with and without bevacizumab (BEV) and triamcinolone acetonide (TA). Methods: Photothrombotic BRVOs were created in both eyes of four groups of nine pigs (2, 6, 10, and 20 days). In each group, six pigs received intravitreal injections of BEV in one eye and TA in the fellow eye, with three pigs serving as untreated BRVO controls. Three untreated pigs served as healthy controls. Expression of mRNA of vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), dystrophin (DMD), potassium inwardly rectifying channel subfamily J member 10 protein (Kir4.1, KCNJ10), aquaporin-4 (AQP4), stromal cell-derived factor-1α (CXCL12), interleukin-6 (IL6), interleukin-8 (IL8), monocyte chemoattractant protein-1 (CCL2), intercellular adhesion molecule 1 (ICAM1), and heat shock factor 1 (HSF1) were analyzed by quantitative reverse-transcription polymerase chain reaction. Retinal VEGF protein levels were characterized by immunohistochemistry. Results: In untreated eyes, BRVO significantly increased expression of GFAP, IL8, CCL2, ICAM1, HSF1, and AQP4. Expression of VEGF, KCNJ10, and CXCL12 was significantly reduced by 6 days post-BRVO, with expression recovering to healthy control levels by day 20. Treatment with BEV or TA significantly increased VEGF, DMD, and IL6 expression compared with untreated BRVO eyes and suppressed BRVO-induced CCL2 and AQP4 upregulation, as well as recovery of KCNJ10 expression, at 10 to 20 days post-BRVO. Conclusions: Inflammation and cellular osmohomeostasis rather than VEGF suppression appear to play important roles in BRVO-induced retinal neurodegeneration, enhanced in both BEV- and TA-treated retinas. Translational Relevance: Inner retinal neurodegeneration seen in this acute model of BRVO appears to be mediated by inflammation and alterations in osmohomeostasis rather than VEGF inhibition, which may have implications for more specific treatment modalities in the acute phase of BRVO.


Subject(s)
Angiogenesis Inhibitors , Bevacizumab , Cytokines , Disease Models, Animal , Intravitreal Injections , Retinal Vein Occlusion , Triamcinolone Acetonide , Animals , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Triamcinolone Acetonide/pharmacology , Triamcinolone Acetonide/administration & dosage , Triamcinolone Acetonide/therapeutic use , Retinal Vein Occlusion/drug therapy , Retinal Vein Occlusion/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Cytokines/metabolism , Cytokines/genetics , Swine , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Potassium Channels, Inwardly Rectifying
14.
Methods Mol Biol ; 2796: 157-184, 2024.
Article in English | MEDLINE | ID: mdl-38856901

ABSTRACT

Kir channels are potassium (K+) channels responsible for the mechanism of inward rectification, which plays a fundamental role in maintaining the resting membrane potential. There are seven Kir subfamilies, and their opening and closing mechanism is regulated by different regulatory factors. Genetically inherited defects in Kir channels are responsible for several rare human diseases, and for most of them, there are currently no effective therapeutic treatments. High-resolution structural information is not available for several members within the Kir subfamilies. Recently, our group achieved a significant breakthrough by utilizing cryo-EM single-particle analysis to elucidate the first structure of the human Kir2.1 channel. We present here the data processing protocol of the cryo-EM data of the human Kir2.1 channel, which is applicable to the structural determination of other ion channels by cryo-EM single-particle analysis. We also introduce a protocol designed to assess the structural heterogeneity within the cryo-EM data, allowing for the identification of other possible protein structure conformations present in the collected data. Moreover, we present a protocol for conducting all-atom molecular dynamics (MD) simulations for K+ channels, which can be incorporated into various membrane models to simulate different environments. We also propose some methods for analyzing the MD simulations, with a particular emphasis on assessing the local mobility of protein residues.


Subject(s)
Cryoelectron Microscopy , Molecular Dynamics Simulation , Potassium Channels, Inwardly Rectifying , Cryoelectron Microscopy/methods , Potassium Channels, Inwardly Rectifying/chemistry , Potassium Channels, Inwardly Rectifying/metabolism , Humans , Protein Conformation
15.
Methods Mol Biol ; 2796: 191-210, 2024.
Article in English | MEDLINE | ID: mdl-38856903

ABSTRACT

ATP-sensitive potassium (KATP) channels function as metabolic sensors that link cell membrane excitability to the cellular energy status by controlling potassium ion (K+) flow across the cell membrane according to intracellular ATP and ADP concentrations. As such, KATP channels influence a broad spectrum of physiological processes, including insulin secretion and cardiovascular functions. KATP channels are hetero-octamers, consisting of four inward rectifier potassium channel subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors (SURs), SUR1, SUR2A, or SUR2B. Different Kir6 and SUR isoforms assemble into KATP channel subtypes with distinct tissue distributions and physiological functions. Mutations in the genes encoding KATP channel subunits underlie various human diseases. Targeted treatment for these diseases requires subtype-specific KATP channel modulators. Rubidium ions (Rb+) also pass through KATP channels, and Rb+ efflux assays can be used to assess KATP channel function and activity. Flame atomic absorption spectroscopy (Flame-AAS) combined with microsampling can measure Rb+ in small volume, which provides an efficient tool to screen for compounds that alter KATP channel activity in Rb+ efflux assays. In this chapter, we describe a detailed protocol for Rb+ efflux assays designed to identify new KATP channel modulators with potential therapeutic utilities.


Subject(s)
KATP Channels , Rubidium , KATP Channels/metabolism , KATP Channels/genetics , Humans , Rubidium/metabolism , Sulfonylurea Receptors/metabolism , Sulfonylurea Receptors/genetics , Animals , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics
16.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928025

ABSTRACT

Maturity-onset diabetes of the young (MODY) is part of the heterogeneous group of monogenic diabetes (MD) characterized by the non-immune dysfunction of pancreatic ß-cells. The diagnosis of MODY still remains a challenge for clinicians, with many cases being misdiagnosed as type 1 or type 2 diabetes mellitus (T1DM/T2DM), and over 80% of cases remaining undiagnosed. With the introduction of modern technologies, important progress has been made in deciphering the molecular mechanisms and heterogeneous etiology of MD, including MODY. The aim of our study was to identify genetic variants associated with MODY in a group of patients with early-onset diabetes/prediabetes in whom a form of MD was clinically suspected. Genetic testing, based on next-generation sequencing (NGS) technology, was carried out either in a targeted manner, using gene panels for monogenic diabetes, or by analyzing the entire exome (whole-exome sequencing). GKC-MODY 2 was the most frequently detected variant, but rare forms of KCNJ11-MODY 13, specifically, HNF4A-MODY 1, were also identified. We have emphasized the importance of genetic testing for early diagnosis, MODY subtype differentiation, and genetic counseling. We presented the genotype-phenotype correlations, especially related to the clinical evolution and personalized therapy, also emphasizing the particularities of each patient in the family context.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Counseling , Genetic Testing , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Genetic Testing/methods , Male , Female , Adult , Precision Medicine/methods , High-Throughput Nucleotide Sequencing/methods , Adolescent , Potassium Channels, Inwardly Rectifying/genetics , Young Adult , Child , Hepatocyte Nuclear Factor 4/genetics , Exome Sequencing/methods , Genetic Predisposition to Disease , Mutation
17.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791571

ABSTRACT

Congenital hyperinsulinism (CHI) is a rare disorder of glucose metabolism and is the most common cause of severe and persistent hypoglycemia (hyperinsulinemic hypoglycemia, HH) in the neonatal period and childhood. Most cases are caused by mutations in the ABCC8 and KCNJ11 genes that encode the ATP-sensitive potassium channel (KATP). We present the correlation between genetic heterogeneity and the variable phenotype in patients with early-onset HH caused by ABCC8 gene mutations. In the first patient, who presented persistent severe hypoglycemia since the first day of life, molecular genetic testing revealed the presence of a homozygous mutation in the ABCC8 gene [deletion in the ABCC8 gene c.(2390+1_2391-1)_(3329+1_3330-1)del] that correlated with a diffuse form of hyperinsulinism (the parents being healthy heterozygous carriers). In the second patient, the onset was on the third day of life with severe hypoglycemia, and genetic testing identified a heterozygous mutation in the ABCC8 gene c.1792C>T (p.Arg598*) inherited on the paternal line, which led to the diagnosis of the focal form of hyperinsulinism. To locate the focal lesions, (18)F-DOPA (3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine) positron emission tomography/computed tomography (PET/CT) was recommended (an investigation that cannot be carried out in the country), but the parents refused to carry out the investigation abroad. In this case, early surgical treatment could have been curative. In addition, the second child also presented secondary adrenal insufficiency requiring replacement therapy. At the same time, she developed early recurrent seizures that required antiepileptic treatment. We emphasize the importance of molecular genetic testing for diagnosis, management and genetic counseling in patients with HH.


Subject(s)
Congenital Hyperinsulinism , Genetic Heterogeneity , Hypoglycemia , Mutation , Phenotype , Sulfonylurea Receptors , Humans , Congenital Hyperinsulinism/genetics , Sulfonylurea Receptors/genetics , Female , Infant, Newborn , Male , Hypoglycemia/genetics , Infant , Potassium Channels, Inwardly Rectifying/genetics
18.
Br J Pharmacol ; 181(18): 3380-3400, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38763521

ABSTRACT

BACKGROUND AND PURPOSE: The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH: Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS: Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS: We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.


Subject(s)
Heart Ventricles , KATP Channels , Myocytes, Cardiac , Sarcolemma , Animals , KATP Channels/metabolism , Heart Ventricles/metabolism , Heart Ventricles/cytology , Heart Ventricles/drug effects , Sarcolemma/metabolism , Sarcolemma/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Male , Rats , Action Potentials/drug effects , Rats, Sprague-Dawley , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Patch-Clamp Techniques
19.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779755

ABSTRACT

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Subject(s)
Diabetes Mellitus, Experimental , Epithelial Sodium Channels , Potassium, Dietary , Potassium , Animals , Diabetes Mellitus, Experimental/metabolism , Potassium/metabolism , Potassium/urine , Male , Potassium, Dietary/metabolism , Epithelial Sodium Channels/metabolism , Mice, Inbred C57BL , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Mice , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/physiopathology , Kidney/metabolism , Kidney/drug effects , Kidney/physiopathology , Hypokalemia/metabolism , Amiloride/pharmacology , Renal Elimination/drug effects , Homeostasis , Solute Carrier Family 12, Member 3/metabolism , Solute Carrier Family 12, Member 3/genetics , Glucosides/pharmacology , Streptozocin , Benzhydryl Compounds , Sodium-Glucose Transporter 2
20.
Diabetes ; 73(8): 1244-1254, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38776417

ABSTRACT

During diabetes progression, ß-cell dysfunction due to loss of potassium channels sensitive to ATP, known as KATP channels, occurs, contributing to hyperglycemia. The aim of this study was to investigate if KATP channel expression or activity in the nervous system was altered in a high-fat diet (HFD)-fed mouse model of diet-induced obesity. Expression of two KATP channel subunits, Kcnj11 (Kir6.2) and Abcc8 (SUR1), were decreased in the peripheral and central nervous system of mice fed HFD, which was significantly correlated with mechanical paw-withdrawal thresholds. HFD mice had decreased antinociception to systemic morphine compared with control diet (CON) mice, which was expected because KATP channels are downstream targets of opioid receptors. Mechanical hypersensitivity in HFD mice was exacerbated after systemic treatment with glyburide or nateglinide, KATP channel antagonists clinically used to control blood glucose levels. Upregulation of SUR1 and Kir6.2, through an adenovirus delivered intrathecally, increased morphine antinociception in HFD mice. These data present a potential link between KATP channel function and neuropathy during early stages of diabetes. There is a need for increased knowledge of how diabetes affects structural and molecular changes in the nervous system, including ion channels, to lead to the progression of chronic pain and sensory issues.


Subject(s)
Diet, High-Fat , KATP Channels , Obesity , Potassium Channels, Inwardly Rectifying , Sulfonylurea Receptors , Animals , Obesity/metabolism , Diet, High-Fat/adverse effects , Mice , KATP Channels/metabolism , KATP Channels/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Male , Sulfonylurea Receptors/metabolism , Sulfonylurea Receptors/genetics , Mice, Inbred C57BL , Morphine/pharmacology , Analgesics, Opioid/pharmacology , Glyburide/pharmacology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL