ABSTRACT
Monkeypox virus is a member of the family Poxviridae, as are variola virus and vaccinia virus. It has a linear double-strand DNA genome approximately 197 kb long, containing ~190 non-overlapping ORFs. Comparison of members of the Central and West African clades shows the presence of unique genes that are associated with different disease presentations, depending on the strain. The last smallpox vaccination efforts ended in the mid-1980s, and there is concern about the recent spread of human monkeypox disease around the world. Almost 87,000 human monkeypox cases have been diagnosed in the world, of which more than 10,900 were in Brazil. The aim of this study was to evaluate the epidemiology and molecular evolution of hMpxV. From computational biology analysis of 640 hMpxV genomes from 1962 to 2022, synteny breaks and gene conservation were observed between Central and West clade genomes, and strains belonged with the 2022 outbreak assigned to the West African clade. Evidence was found for diversifying selective pressure at specific sites within protein coding sequences, acting on immunomodulatory processes. The existence of different sites under diversifying and purifying selection in paralog genes indicates adaptive mechanisms underlying the host-pathogen interaction of monkeypox virus in humans.
Subject(s)
Mpox (monkeypox) , Poxviridae , Humans , Monkeypox virus/genetics , Mpox (monkeypox)/epidemiology , Poxviridae/genetics , Genomics , Evolution, MolecularABSTRACT
Cetacean poxviruses (CePVs) cause 'tattoo' skin lesions in small and large cetaceans worldwide. Although the disease has been known for decades, genomic data for these poxviruses are very limited, with the exception of CePV-Tursiops aduncus, which was completely sequenced in 2020. Using a newly developed pan-pox real-time PCR system targeting a conserved nucleotide sequence located within the Monkeypox virus D6R gene, we rapidly detected the CePV genome in typical skin lesions collected from two Peruvian common bottlenose dolphins (Tursiops truncatus) by-caught off Peru in 1993. Phylogenetic analyses based on the sequencing of the DNA polymerase and DNA topoisomerase genes showed that the two viruses are very closely related to each other, although the dolphins they infected pertained to different ecotypes. The poxviruses described in this study belong to CePV-1, a heterogeneous clade that infects many species of dolphins (Delphinidae) and porpoises (Phocoenidae). Among this clade, the T. truncatus CePVs from Peru were more related to the viruses infecting Delphinidae than to those detected in Phocoenidae. This is the first time that CePVs were identified in free-ranging odontocetes from the Eastern Pacific, surprisingly in 30-year-old samples. These data further suggest a close and long-standing pathogen-host co-evolution, resulting in different lineages of CePVs.
Subject(s)
Bottle-Nosed Dolphin , Chordopoxvirinae , Porpoises , Poxviridae , Animals , Bottle-Nosed Dolphin/genetics , Cetacea , Chordopoxvirinae/genetics , DNA Topoisomerases/genetics , DNA-Directed DNA Polymerase/genetics , Peru/epidemiology , Phylogeny , Porpoises/genetics , Poxviridae/genetics , Real-Time Polymerase Chain ReactionABSTRACT
Poxviruses (family: Poxviridae) infect many avian species, causing several disease outcomes, the most common of which are proliferative lesions on the legs, feet, and/or head. Few avian studies of poxvirus to date have combined molecular and ecological analyses to obtain a more comprehensive understanding of the identity and distribution of the disease in a population. Here, we describe patterns of poxvirus infection in an urban population of house finches (Haemorhous mexicanus) in Arizona (USA) and use high-throughput sequencing to determine the genome sequence of the virus. We found that poxvirus prevalence, based on visual identification of pox lesions, was 7.2% (17 infected birds out of a total of 235 sampled) in our population during summer 2021. Disease severity was low; 14 of the 17 infected birds had a single small lesion on the skin overlaying the eye, leg, and ear canal. All but two lesions were found on the feet; one bird had a lesion on the eye and the other in the ear opening. We also investigated possible temporal (i.e., date of capture) and biological correlates (e.g., age, sex, body condition, degree of infection with coccidian endoparasites) of poxvirus infection in urban-caught house finches during this time but found that none of these significantly correlated with poxvirus presence/absence. Two complete poxvirus genomes were determined from two infected birds. These genomes are â¼354,000 bp and share 99.7% similarity with each other, and 82% with a canarypox virus genome, the most closely related avipoxvirus. This novel finchpox virus is the first to be reported in house finches and has a similar genome organization to other avipoxviruses.
Subject(s)
Avipoxvirus , Bird Diseases , Finches , Poxviridae Infections , Poxviridae , Animals , Animals, Wild , Avipoxvirus/genetics , Finches/genetics , Poxviridae/genetics , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Sequence Analysis, DNA/veterinaryABSTRACT
The cassava hornworm Erinnyis ello ello (Lepidoptera: Sphingidae) is an important pest in Brazil. This insect feeds on host plants of several species, especially Manihot esculenta (cassava) and Hevia brasiliensis (rubber tree). Cassava hornworm outbreaks are quite common in Brazil and can cause great impact over crop production. Granulare and polyhedral-shaped occlusion bodies (OBs) were observed in extracts of dead E. ello larvae from rubber-tree plantations by light and scanning electron microscopy (SEM), suggesting a mixed infection. The polyhedral-shaped OB surface revealed indentations that resemble those found in cypovirus polyhedra. After OB nucleic acid extraction followed by cDNA production and Illumina deep-sequencing analysis, the results confirmed for the presence of a putative novel cypovirus that carries ten segments and also a betabaculovirus (Erinnyis ello granulovirus, ErelGV). Phylogenetic analysis of the predicted segment 1-enconded RdRP showed that the new cypovirus isolate is closely related to a member of species Cypovirus 2, which was isolated from Inachis io (Lepidoptera: Nymphalidae). Therefore, we named this new isolate Erinnyis ello cypovirus 2 (ErelCPV-2). Genome in silico analyses showed that ErelCPV-2 segment 8 (S8) has a predicted amino acid identity of 35.82â% to a hypothetical protein of betabaculoviruses. This putative protein has a cGAMP-specific nuclease domain related to the poxvirus immune nucleases (poxins) from the 2',3'-cGAMP-degrading enzyme family.
Subject(s)
Coinfection/genetics , Deoxyribonucleases/genetics , Granulovirus/genetics , Poxviridae/genetics , Reoviridae/genetics , Animals , Brazil , Cyclic GMP/genetics , Genome, Viral/genetics , Larva/virology , Lepidoptera/virology , Moths/virology , Occlusion Bodies, Viral/genetics , PhylogenyABSTRACT
Oryzoborus angolensis (Lesser Seed-Finch), Oryzoborus crassirostris (Large-billed Seed-Finch), and Sporophila intermedia (Grey Seedeater) are finch species native to the Caribbean island of Trinidad. These species are locally trapped and kept for their song, but with declining native populations, enthusiasts have turned to illegally importing birds from the South American mainland. The smuggling of wild birds from South America poses significant disease risks to the native bird species of Trinidad. Herein we describe the first case of poxviral infection in these illegally imported birds in Trinidad and partial genome sequence of the causative agent. Phylogenetic analysis of the 4b core protein sequence indicated that the avian poxvirus identified was most closely related to a 2012 avian pox sequence from Brazil, with 96.2% and 98.1% identity at the nucleotide and amino acid level.
Subject(s)
Bird Diseases/virology , Genome, Viral , Poxviridae Infections/veterinary , Poxviridae/genetics , Poxviridae/isolation & purification , Songbirds , Animal Distribution , Animals , Commerce , Finches , Phylogeny , Poxviridae/classification , Poxviridae Infections/virology , Sequence Analysis, DNA/veterinary , Trinidad and TobagoABSTRACT
The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.
Subject(s)
Evolution, Molecular , Host Specificity/genetics , Poxviridae/genetics , Poxviridae/physiology , Viral Proteins/genetics , Animals , Gene Transfer, Horizontal , Genome, Viral , Humans , Phylogeny , Virus ReplicationABSTRACT
INTRODUCTION: Breast cancer is the most common cancer in women all over the world. Furthermore, up to one third of breast tumors develop metastases that are resistant to standard therapies. Gene therapeutic strategies have been developed in order to specifically target cancer cells either directly or through the stimulation of antitumor immunity. Areas covered: This review describes the therapeutic strategies that are currently under development to treat this disease using engineered viral vectors including: adenovirus, adeno-associated virus, lentivirus, poxvirus, reovirus, baculovirus, herpesvirus and oncolytic viruses. Advantages and disadvantages of these multiple gene therapy platforms are discussed in detail. Expert opinion: Metastatic breast cancer is a perfect candidate for gene therapy approaches due to the presence of several tumor antigens and the aberrant expression of many molecular pathways. Oncolytic vectors are able to attack tumor cells while sparing normal cells and their activity is often enhanced by the administration of chemotherapy. However, more efforts are needed in order to reduce toxicity and to achieve better transduction efficiency. Improved preclinical models and a more critical patient selection for clinical trials, along with advances in gene therapy regulations, will surely facilitate the evolution of gene therapy for the treatment of metastatic breast cancer.
Subject(s)
Breast Neoplasms/therapy , Oncolytic Virotherapy , Adenoviridae/genetics , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Lentivirus/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Oncolytic Viruses/genetics , Poxviridae/geneticsABSTRACT
Poxvirus skin disease has been reported in several species of cetaceans, principally in odontocetes, and a single report in mysticetes. Southern right whales Eubalaena australis in Peninsula Valdes, Argentina, show a variety of skin lesions of unknown etiology, and the number of these lesions has increased in recent years. Samples from dead whales were taken in order to establish the etiology of these lesions. One calf and one adult presented ring-type lesions, characterized by a circumscribed and slightly raised area of skin. Lesions were histologically characterized by the presence of microvesicles and vacuolated cells in the stratum spinosum, along with hyperplasia of the stratum corneum and eosinophilic inclusion bodies in the cytoplasm of the epithelial cells. Transmission electron microscopy showed aggregations of virions with typical poxvirus morphology. PCR of cetacean poxvirus (CPV) DNA polymerase, DNA topoisomerase I and parapoxvirus DNA polymerase gene fragments was done, and confirmed the presence of poxvirus in one sample. Phylogenetic analysis showed that the detected poxvirus belongs to the CPV-2 group. This is the first confirmed report of poxvirus in southern right whales in Argentina.
Subject(s)
Phylogeny , Poxviridae Infections/veterinary , Poxviridae/genetics , Poxviridae/isolation & purification , Whales , Animals , DNA, Viral/genetics , Microscopy, Electron, Transmission , Poxviridae Infections/virologyABSTRACT
Infection of pigs with swinepox virus (SWPV) was reported in Brazil in 2011. SWPV causes a systemic pustular disease in pigs and the symptoms are clinically indistinguishable from those caused by vaccinia virus (VACV) infection. Pigs infected with VACV have been reported in various countries; however, VACV is endemic in Brazil, India and other countries, where it affects mainly dairy cows, dairy buffaloes and dairy workers causing localized pustules. The transmission of VACV to other susceptible hosts has also been detected in Brazil. Therefore, VACV should be investigated as a possible etiologic agent of pustular skin disorders in pigs. This work describes the development of a one-step duplex assay to detect swinepox and vaccinia viruses simultaneously in skin lesions of pigs with generalized pustular disease. The investigation of VACV infection in pigs is important in countries where this zoonosis is endemic and should be differentiated from SWPV infection.
Subject(s)
Polymerase Chain Reaction , Poxviridae Infections/veterinary , Poxviridae/genetics , Swine Diseases/diagnosis , Swine Diseases/virology , Vaccinia virus/genetics , Vaccinia/veterinary , Animals , DNA, Viral , Sensitivity and Specificity , SwineABSTRACT
Cotia virus (COTV) SPAn232 was isolated in 1961 from sentinel mice at Cotia field station, São Paulo, Brazil. Attempts to classify COTV within a recognized genus of the Poxviridae have generated contradictory findings. Studies by different researchers suggested some similarity to myxoma virus and swinepox virus, whereas another investigation characterized COTV SPAn232 as a vaccinia virus strain. Because of the lack of consensus, we have conducted an independent biological and molecular characterization of COTV. Virus growth curves reached maximum yields at approximately 24 to 48 h and were accompanied by virus DNA replication and a characteristic early/late pattern of viral protein synthesis. Interestingly, COTV did not induce detectable cytopathic effects in BSC-40 cells until 4 days postinfection and generated viral plaques only after 8 days. We determined the complete genomic sequence of COTV by using a combination of the next-generation DNA sequencing technologies 454 and Illumina. A unique contiguous sequence of 185,139 bp containing 185 genes, including the 90 genes conserved in all chordopoxviruses, was obtained. COTV has an interesting panel of open reading frames (ORFs) related to the evasion of host defense, including two novel genes encoding C-C chemokine-like proteins, each present in duplicate copies. Phylogenetic analysis revealed the highest amino acid identity scores with Cervidpoxvirus, Capripoxvirus, Suipoxvirus, Leporipoxvirus, and Yatapoxvirus. However, COTV grouped as an independent branch within this clade, which clearly excluded its classification as an Orthopoxvirus. Therefore, our data suggest that COTV could represent a new poxvirus genus.
Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing , Poxviridae/classification , Poxviridae/genetics , Amino Acid Sequence , Animals , Chick Embryo , Chlorocebus aethiops , Cross Reactions/immunology , Cytopathogenic Effect, Viral , Genes, Viral , Humans , Macaca mulatta , Mice , Molecular Sequence Data , Neutralization Tests , Phylogeny , Poxviridae/physiology , Rabbits , Rats , Sequence Alignment , Swine , Viral Tropism , Virus Replication/physiologyABSTRACT
Recombinant adenoviruses, poxviruses, and plasmid DNA vaccines encoding different hepatitis B virus (HBV)/murine cytomegalovirus (MCMV) protein chimeras were used to immunize mice. Processing of the chimeras resulted in presentation of a protective Ld/CD8+ T-cell epitope of the immediate early 1 protein pp89 (IE1 pp89) of MCMV to the immune system. Different levels of immunogenicity were observed depending on: (i) the type of viral vector used, (ii) whether the antigens were included in the cellular secretion pathway, and (iii) the location of the protective epitope within the chimeric protein. An adenovirus expressing a secretory HBV core protein with the MCMV epitope in its C-terminus induced the highest immune response. When the most immunogenic adenovirus and vaccinia virus were used in a heterologous prime-boost immunization protocol, even higher levels of epitope-specific T cells were obtained. Furthermore, responses were protective against a challenge with MCMV, inducing up to a 96% reduction of viral load in immunized animals, as determined by a sensitive real-time PCR assay. Together, these results confirmed previous observations of the efficient use of adenoviral and poxviral vectors in prime-boost protocols for immunization against diseases whose resolution depends on cellular immunity, as well as the aptness of correctly designed chimeric carrier proteins to facilitate this goal.
Subject(s)
Cytomegalovirus Infections/prevention & control , Genetic Vectors/immunology , Hepatitis B virus/immunology , Immediate-Early Proteins/metabolism , Immunization , Muromegalovirus/physiology , Viral Vaccines/immunology , Adenoviridae/genetics , Animals , Cell Line , Chimera , Genetic Vectors/administration & dosage , Hepatitis B virus/genetics , Mice , Mice, Inbred BALB C , Muromegalovirus/immunology , Plasmids/genetics , Plasmids/immunology , Poxviridae/genetics , Vaccination , Viral Vaccines/administration & dosageABSTRACT
Infections by intracellular pathogens such as viruses, some bacteria and many parasites, are cleared in most cases after activation of specific T cellular immune responses that recognize foreign antigens and eliminate infected cells. Vaccines against those infectious organisms have been traditionally developed by administration of whole live attenuated or inactivated microorganisms. Nowadays, research is focused on the development of subunit vaccines, containing the most immunogenic antigens from the particular pathogen. However, when purified subunit vaccines are administered using traditional immunization protocols, the levels of cellular immunity induced are mostly low and not capable of eliciting complete protection against diseases caused by intracellular microbes. In this review, we present a promising alternative to those traditional protocols, which is the use of recombinant viruses encoding subunit vaccines as immunization tools. Recombinant viruses have several interesting features that make them extremely efficient at inducing immune responses mediated by T-lymphocytes. This cellular immunity has recently been demonstrated to be of key importance for protection against malaria and AIDS, both of which are major targets of the World Health Organization for vaccine development. Thus, this review will focus in particular on the development of new vaccination protocols against these diseases.
Subject(s)
Infection Control , Vaccines, DNA , Viruses/genetics , Adenoviridae/genetics , Adenoviridae/immunology , DNA, Recombinant/genetics , Genetic Vectors , Humans , Immunity, Cellular , Infections/immunology , Orthomyxoviridae/immunology , Poxviridae/genetics , Poxviridae/immunology , Vaccination/methods , Vaccines, DNA/immunology , Viral Vaccines/immunology , Viruses/immunologyABSTRACT
The biological properties of poxvirus isolates from skin lesions on dairy cows and milkers during recent exanthem episodes in Cantagalo County, Rio de Janeiro State, Brazil, were more like vaccinia virus (VV) than cowpox virus. PCR amplification of the hemagglutinin (HA) gene substantiated the isolate classification as an Old World orthopoxvirus, and alignment of the HA sequences with those of other orthopoxviruses indicated that all the isolates represented a single strain of VV, which we have designated Cantagalo virus (CTGV). HA sequences of the Brazilian smallpox vaccine strain (VV-IOC), used over 20 years ago, and CTGV showed 98.2% identity; phylogeny inference of CTGV, VV-IOC, and 12 VV strains placed VV-IOC and CTGV together in a distinct clade. Viral DNA restriction patterns and protein profiles showed a few differences between VV-IOC and CTGV. Together, the data suggested that CTGV may have derived from VV-IOC by persisting in an indigenous animal(s), accumulating polymorphisms, and now emerging in cattle and milkers as CTGV. CTGV may represent the first case of long-term persistence of vaccinia in the New World.
Subject(s)
Cattle Diseases/virology , Disease Outbreaks/veterinary , Poxviridae Infections/veterinary , Poxviridae/classification , Smallpox Vaccine , Amino Acid Sequence , Animals , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , Chlorocebus aethiops , Exanthema/epidemiology , Exanthema/virology , Female , Hemagglutinins, Viral/genetics , Humans , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Poxviridae/genetics , Poxviridae/isolation & purification , Poxviridae Infections/virology , Sequence Alignment , Vaccinia virus/genetics , Vaccinia virus/immunology , Vero CellsABSTRACT
Rabies vaccines produced by means of molecular biology are described. Recombinant vaccines employing either viruses as vectors (vaccinia, adenovirus, poxvirus, baculovirus, plant viruses) or a plasmid vector carrying the rabies virus glycoprotein gene are discussed. Synthetic peptide technology directed to rabies vaccine production is also presented.
Subject(s)
Antigens, Viral , Rabies Vaccines/genetics , Rabies/prevention & control , Rabies/virology , Adenoviridae/genetics , Animals , Baculoviridae/genetics , DNA, Recombinant/genetics , Genetic Vectors , Glycoproteins/genetics , Humans , Models, Genetic , Plant Viruses/genetics , Poxviridae/genetics , Vaccines, Synthetic/genetics , Vaccinia virus/genetics , Viral Envelope Proteins/geneticsABSTRACT
BeAn 58058 virus (BAV) was isolated from an Oryzomis rodent in Brazil. BAV was shown to be antigenically related to another poxvirus also isolated in Brazil, the Cotia virus, but it remained ungrouped. Electron microscopy revealed that BAV has a typical poxvirus morphology. The Hind III DNA profile of BAV genome was similar with that of VV WR and Lister, but some differences in the profile were detected. We have also detected the presence of genes homologous to vaccinia virus (VV WR) genes in the genome of BAV. Genes related to vaccinia thymidine kinase (TK) gene and vaccinia growth factor (VGF) gene were found. The patterns of TK and VGF mRNA transcripts described for vaccinia virus infected cells were observed in BAV infected cells. Nucleotide sequence of BAV VGF homologous gene was similar to VV WR VGF sequences. This similarity was further seen when cross-hybridization of total genomes of BAV and VV was done. Polypeptide synthesis of BAV and vaccinia in infected cells also showed similar profiles. The genetic data was used to construct a phylogenetic tree where BAV and VV were placed at the same cluster. Based on our findings we propose that BAV is a vaccinia virus variant.