Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
BMC Pharmacol Toxicol ; 25(1): 72, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354569

ABSTRACT

BACKGROUND: Pregabalin is an antiepileptic drug that binds to the alpha-2/delta unit at presynaptic voltage-dependent calcium channels. We aimed to investigate the effect of acute and chronic pregabalin administration on anxiety and depression-like behaviors. METHODS: Fifty-six male Wistar albino rats were divided into seven groups: control, vehicle, and five different dose groups (5, 10, 30, 60, and 100 mg/kg). Pregabalin was administered for two weeks. Depression-like behaviors were evaluated by Forced swimming test. Anxiety-like behavior (ALB) was evaluated by Open field test (OFT), Elevated Plus Maze (EPM), and light-dark box. Subjects underwent the forced swimming test (FST) after the first dose, while the open field test (OFT), elevated plus maze (EPM), and light-dark box (LDB) were performed after two weeks of treatment. Further sucrose preference test was conducted to evaluate anhedonia until the end of the experiment. RESULTS: In the forced swimming test, depression-like behaviors increased after acute single-dose administration of 10, 30, 60, 100 mg/kg pregabalin. According to OFT results, chronic 100 mg/kg pregabalin showed anxiolytic effects by decreasing grooming, and freezing behaviors. In addition, 100 mg/kg chronic pregabalin administration significantly increased the time spent in the central region, the number of entries to the center, and the unsupported rearing number without causing any change in locomotor activity. According to EPM results, both chronic 60 and 100 mg/kg pregabalin treatments showed anxiolytic effects by increasing open arm time and head dipping behavior. In addition, 60 and 100 mg/kg chronic pregabalin administration significantly decreased stretch attend posture. All pregabalin administrations between 5 and 100 mg/kg displayed anxiolytic effects in the LDB. Sucrose preference was above 65% for the duration of all experiments and subjects did not show anhedonia. CONCLUSION: Acute pregabalin treatment triggered depression-like behaviors. Anhedonia, which may be associated with depression, was not observed during chronic treatment. Moreover, chronic treatment with pregabalin revealed potent anxiolytic effects in different behavior patterns and doses for all tests of unconditional anxiety. In particular, 100 mg/kg chronic pregabalin administration decreased anxiety-like behaviors in all experiment setups. Although the anxiolytic effect was demonstrated in chronic treatment, acute treatment of pregabalin induced depression-like behaviors, and thus in clinical practice should be done with caution, especially in patients with anxiety-depression comorbidity.


Subject(s)
Anxiety , Behavior, Animal , Depression , Pregabalin , Rats, Wistar , Animals , Pregabalin/therapeutic use , Pregabalin/pharmacology , Male , Anxiety/drug therapy , Depression/drug therapy , Depression/psychology , Behavior, Animal/drug effects , Rats , Swimming , Anti-Anxiety Agents/therapeutic use , Anti-Anxiety Agents/pharmacology , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology
2.
Proc Natl Acad Sci U S A ; 121(34): e2405465121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39145932

ABSTRACT

Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.


Subject(s)
Analgesics, Opioid , Cyclic AMP , Gabapentin , Neuralgia , Signal Transduction , Spinal Cord Injuries , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Cyclic AMP/metabolism , Rats , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Analgesics, Opioid/pharmacology , Gabapentin/pharmacology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Male , Calcium Channels, L-Type/metabolism , Calcium/metabolism , Pregabalin/pharmacology , Pregabalin/therapeutic use , Drug Synergism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects
3.
Mol Brain ; 17(1): 54, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113108

ABSTRACT

NVA1309 is a non-brain penetrant next-generation gabapentinoid shown to bind Cavα2δ at R243 within a triple Arginine motif forming the binding site for gabapentin and pregabalin. In this study we have compared the effects of NVA1309 with Mirogabalin, a gabapentinoid drug with higher affinity for the voltage-gated calcium channel subunit Cavα2δ-1 than pregabalin which is approved for post-herpetic neuralgia in Japan, Korea and Taiwan. Both NVA1309 and mirogabalin inhibit Cav2.2 currents in vitro and decrease Cav2.2 plasma membrane expression with higher efficacy than pregabalin. Mutagenesis of the classical binding residue arginine R243 and the newly identified binding residue lysine K615 reverse the effect of mirogabalin on Cav2.2 current, but not that of NVA1309.


Subject(s)
Gabapentin , Humans , Gabapentin/pharmacology , Animals , Protein Binding , Protein Subunits/metabolism , Protein Subunits/chemistry , HEK293 Cells , gamma-Aminobutyric Acid/metabolism , Cell Membrane/metabolism , Cell Membrane/drug effects , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Pregabalin/pharmacology , Calcium Channels/metabolism , Bridged Bicyclo Compounds
4.
Eur J Pharmacol ; 978: 176792, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38950834

ABSTRACT

The lithium-pilocarpine model is commonly used to recapitulate characteristics of human intractable focal epilepsy. In the current study, we explored the impact of topiramate (TPM) alone and in combination with pregabalin and lacosamide administration for 6 weeks on the evolution of spontaneous recurrent seizures (SRS) and disease-modifying potential on associated neuropsychiatric comorbidities. In addition, redox impairments and neurodegeneration in hippocampus regions vulnerable to temporal lobe epilepsy (TLE) were assessed by cresyl violet staining. Results revealed that acute electrophysiological (EEG) profiling of the ASD cocktail markedly halted sharp ictogenic spikes as well as altered dynamics of brain wave oscillations thus validating the need for polytherapy vs. monotherapy. In TLE animals, pharmacological intervention for 6 weeks with topiramate 10 mg/kg in combination with PREG and LAC at the dose of 20 mg/kg exhibited marked protection from SRS incidence, improved body weight, offensive aggression, anxiety-like behavior, cognitive impairments, and depressive-like behavior (p < 0.05). Moreover, combination therapy impeded redox impairments as evidenced by decreased MDA and AchE levels and increased activity of antioxidant SOD, GSH enzymes. Furthermore, polytherapy rescued animals from SE-induced neurodegeneration with increased neuronal density in CA1, CA3c, CA3ab, hilus, and granular cell layer (GCL) of the dentate gyrus. In conclusion, early polytherapy with topiramate in combination with pregabalin and lacosamide prompted synergy and prevented epileptogenesis with associated psychological and neuropathologic alterations.


Subject(s)
Disease Models, Animal , Electroencephalography , Lacosamide , Neuroprotective Agents , Pregabalin , Topiramate , Animals , Lacosamide/pharmacology , Lacosamide/therapeutic use , Topiramate/pharmacology , Topiramate/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats , Behavior, Animal/drug effects , Drug Resistant Epilepsy/drug therapy , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/physiopathology , Hippocampus/pathology , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Status Epilepticus/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/physiopathology , Rats, Wistar , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/chemically induced
5.
Pain Manag ; 14(5-6): 273-281, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38995181

ABSTRACT

Aim: Diabetic peripheral neuropathy (DPN) induces chronic neuropathic pain in diabetic patients. Current treatments like pregabalin and duloxetine offer limited efficacy. This study evaluates combining pregabalin and duloxetine versus pregabalin alone for DPN pain relief, and explores gene modulation (PPARγ and Akt) to understand neuropathic pain's molecular basis.Materials & methods: Diabetic patients with DPN were randomized into groups receiving combination therapy or pregabalin alone for 4 weeks. Pain intensity, gene expression and quality of life were assessed.Results: Combination therapy significantly reduced pain, improved quality of life and upregulated PPARγ and Akt genes compared with monotherapy.Conclusion: Pregabalin and duloxetine combination therapy in DPN led to PPARγ mRNA upregulation and negative correlation of Akt gene expression with pain scores. This combination therapy effectively reduced pain and improved quality of life.Clinical Trial Registration: CTRI/2021/02/031068.


Combining medicines to reduce nerve pain in diabetic patientsWhat is this article about? People with diabetes often have nerve pain called diabetic peripheral neuropathy (DPN). Some medicines like pregabalin and duloxetine help, but are not enough. This study tested if using both medicines together works better than using just pregabalin. The study also looked at how these medicines affect certain genes.What were the results? Patients with DPN took either both medicines or just pregabalin for 4 weeks. The combined treatment reduced pain, improved life quality and affected certain genes.What do the results of the study mean? Using pregabalin and duloxetine together can reduce DPN pain more effectively. This offers hope for better treatment options.


Subject(s)
Analgesics , Diabetic Neuropathies , Drug Therapy, Combination , Duloxetine Hydrochloride , PPAR gamma , Pregabalin , Duloxetine Hydrochloride/administration & dosage , Humans , Pregabalin/administration & dosage , Pregabalin/pharmacology , Diabetic Neuropathies/drug therapy , Male , Middle Aged , Female , Analgesics/administration & dosage , Analgesics/pharmacology , PPAR gamma/genetics , Aged , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Neuralgia/drug therapy , Neuralgia/genetics , Quality of Life , Adult , Pain Measurement
6.
J Feline Med Surg ; 26(7): 1098612X241250245, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39073981

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the efficacy of a single dose of oral pregabalin (PGB) for sedation and its impact on physiological and echocardiographic variables in healthy cats. METHODS: This study was a randomised, blinded, crossover trial. Eight cats were randomly assigned to receive PGB or placebo, with a 1-week washout period between each administration. Cats in the treatment group received oral PGB at varying doses (low dose: 2.5 mg/kg, medium dose: 5 mg/kg, high dose: 10 mg/kg). Systolic blood pressure (SBP), pulse rate (PR), respiratory rate (RR) and sedation score were measured at intervals of 30 mins after administration. Echocardiography was performed 120 mins after administration. RESULTS: Oral administration of PGB 2.5 mg/kg and 5 mg/kg significantly increased sedation scores starting at 150 mins, while 10 mg/kg PGB showed a significant increase in sedation scores starting at 120 mins compared with placebo. PGB 5 mg/kg and 10 mg/kg resulted in a significant reduction in SBP compared with placebo, with minimal impact on PR and RR. In addition, PGB 10 mg/kg resulted in significant changes in the peak velocity of late diastolic transmitral flow (A) and the ratio of peak velocity of early diastolic transmitral flow and A; however, these changes were of marginal clinical significance. CONCLUSIONS AND RELEVANCE: A single dose of oral PGB could cause mild to moderate sedation. Hypotension was more prevalent in the PGB 5 mg/kg and 10 mg/kg groups among the majority of cats, but it was less frequently observed in the PGB 2.5 mg/kg group.


Subject(s)
Cross-Over Studies , Echocardiography , Pregabalin , Animals , Cats , Pregabalin/administration & dosage , Pregabalin/pharmacology , Administration, Oral , Echocardiography/veterinary , Male , Female , Blood Pressure/drug effects , Heart Rate/drug effects , Respiratory Rate/drug effects , Analgesics/administration & dosage , Analgesics/pharmacology , Dose-Response Relationship, Drug , Random Allocation
7.
Eur J Pharmacol ; 977: 176738, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38876275

ABSTRACT

Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.


Subject(s)
Analgesics , Disease Models, Animal , Drug Synergism , Gabapentin , Inflammation , Nefopam , Neuralgia , Osteoarthritis , Animals , Neuralgia/drug therapy , Neuralgia/chemically induced , Nefopam/pharmacology , Nefopam/therapeutic use , Mice , Gabapentin/pharmacology , Gabapentin/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Male , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pregabalin/pharmacology , Pregabalin/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/chemically induced , Carrageenan
8.
Vet Anaesth Analg ; 51(4): 391-398, 2024.
Article in English | MEDLINE | ID: mdl-38719760

ABSTRACT

OBJECTIVE: To investigate the effect of three different doses of oral pregabalin on minimum alveolar concentration of isoflurane (MACISO) in cats. STUDY DESIGN: Prospective, randomized, placebo-controlled, blinded, crossover trial. ANIMALS: A group of eight healthy adult cats aged 24-48 months. METHODS: Cats were randomly assigned to three oral doses of pregabalin (low dose: 2.5 mg kg-1, medium dose: 5 mg kg-1, high dose: 10 mg kg-1) or placebo 2 hours before MACISO determination, with the multiple treatments administered with a minimum 7 day washout period. Anesthesia was induced and maintained with isoflurane in oxygen until endotracheal intubation was achieved, and maintained with isoflurane with volume-controlled ventilation. MACISO was determined in triplicate using the bracketing technique and tail clamp method 120 minutes after pregabalin or placebo administration. Physiologic variables (including heart rate and blood pressure) recorded during MACISO determination were averaged and compared between the pregabalin and placebo treatments. One-way analysis of variance and the Friedman test were used to assess the difference for normally and non-normally distributed data, respectively. The Tukey test was used as a post hoc analysis. Values of p < 0.05 were considered significant. RESULTS: The MACISO with the medium- and high-dose pregabalin treatments were 1.33 ± 0.21% and 1.23 ± 0.17%, respectively. These were significantly lower than MACISO after placebo treatment (1.62 ± 0.13%; p = 0.014, p < 0.001, respectively), representing a decrease of 18 ± 9% and 24 ± 6%. The mean plasma pregabalin concentration was negatively correlated with MACISO values. Physiologic variables did not differ significantly between treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Doses of 5 or 10 mg kg-1 pregabalin, administered orally 2 hours before determining MACISO, had a significant isoflurane-sparing effect in cats.


Subject(s)
Anesthetics, Inhalation , Cross-Over Studies , Isoflurane , Pregabalin , Pulmonary Alveoli , Animals , Cats , Female , Male , Administration, Oral , Analgesics/administration & dosage , Analgesics/pharmacology , Analgesics/pharmacokinetics , Anesthesia, Inhalation/veterinary , Anesthetics, Inhalation/administration & dosage , Anesthetics, Inhalation/pharmacokinetics , Anesthetics, Inhalation/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Isoflurane/administration & dosage , Isoflurane/pharmacokinetics , Pregabalin/administration & dosage , Pregabalin/pharmacology , Pulmonary Alveoli/metabolism
9.
Int J Med Sci ; 21(7): 1265-1273, 2024.
Article in English | MEDLINE | ID: mdl-38818478

ABSTRACT

This study investigated the effects of pregabalin on microglial differentiation in rats with neuropathic pain (NP) induced by sciatic nerve ligation and transection. After confirming NP, the rats were randomly allocated to either a pregabalin or control group. The pregabalin group received intraperitoneal injections of 10 mg/kg pregabalin, while the control group received an equivalent volume of normal saline following surgery. On postoperative day 28, neuronal damage, microglial activity, and microglial differentiation were assessed. The pregabalin group exhibited significantly less neuronal damage compared to the control group, along with a significant decrease in activated microglial expression in both the brain and spinal cord. Pregabalin treatment also significantly altered the microglial phenotype expression, with a decrease in the M1 phenotype percentage and an increase in the M2 phenotype percentage in both the brain (M1 phenotype: 43.52 ± 12.16% and 18.00 ± 8.57% in the control and pregabalin groups, respectively; difference: 27.26 [15.18-42.10], p = 0.002; M2 phenotype: 16.88 ± 6.47% and 39.63 ± 5.82% in the control and pregabalin groups, respectively; difference 22.04 [17.17-32.70], p < 0.001) and the spinal cord ipsilateral to nerve injury (M1 phenotype: 44.35 ± 12.12% and 13.78 ± 5.39% in the control and pregabalin groups, respectively; difference 30.46 [21.73-44.45], p < 0.001; M2 phenotype: 7.64 ± 3.91% and 33.66 ± 7.95% in the control and pregabalin groups, respectively; difference 27.41 [21.21-36.30], p < 0.001). Overall, pregabalin treatment significantly decreased the microglial M1 phenotype while increasing the microglial M2 phenotype in NP rats.


Subject(s)
Cell Differentiation , Microglia , Neuralgia , Pregabalin , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Microglia/drug effects , Microglia/pathology , Neuralgia/drug therapy , Neuralgia/pathology , Neuralgia/etiology , Rats , Cell Differentiation/drug effects , Male , Spinal Cord/drug effects , Spinal Cord/pathology , Disease Models, Animal , Analgesics/pharmacology , Analgesics/therapeutic use , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Rats, Sprague-Dawley , Humans , Brain/drug effects , Brain/pathology
10.
Acta Derm Venereol ; 104: adv39950, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751178

ABSTRACT

Pruritus in the elderly, particularly those cases without skin dryness or other identifiable causes, makes treatment challenging due to the lack of evidence regarding the therapeutic effects of antipruritics. This study proposes an age-related alloknesis mouse model for an evaluation system for such cases, and aimed to investigate the effectiveness and mechanisms of action of several drugs commonly used as antipruritics in Japan, utilizing this model. Mice 69-80 weeks old were used as aged mice, and the level of mechanical alloknesis was counted as the number of scratching behaviours in response to innocuous stimuli. Bepotastine, neurotropin, pregabalin, baricitinib, and abrocitinib were used as antipruritics, and yohimbine and methysergide as inhibitors of the descending inhibitory pathway. The findings suggest that mechanical alloknesis in aged mice is a suitable animal model for assessing pruritus in the elderly without xerosis, and pregabalin, neurotropin, baricitinib, and abrocitinib may be effective antipruritics in the elderly through activating both the noradrenergic and serotonergic descending inhibitory pathways. These findings may be useful for the selection of antipruritics for pruritus in the elderly without skin lesions or dryness.


Subject(s)
Antipruritics , Disease Models, Animal , Pruritus , Animals , Pruritus/drug therapy , Antipruritics/pharmacology , Antipruritics/therapeutic use , Chronic Disease , Behavior, Animal/drug effects , Mice , Age Factors , Male , Sulfonamides/pharmacology , Pregabalin/pharmacology , Pregabalin/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Purines/pharmacology , Purines/therapeutic use , Aging/drug effects , Azetidines/pharmacology , Azetidines/therapeutic use
11.
Scand J Pain ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38557595

ABSTRACT

OBJECTIVES: Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS: Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS: tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS: tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.


Subject(s)
Fibromyalgia , Transcranial Direct Current Stimulation , Humans , Adult , Rats , Male , Animals , Transcranial Direct Current Stimulation/methods , Fibromyalgia/drug therapy , Pregabalin/pharmacology , Brain-Derived Neurotrophic Factor , Rats, Wistar , Tumor Necrosis Factor-alpha , Nociception/physiology , Reserpine , Pain , Anxiety/drug therapy , Biomarkers
12.
Biomed Pharmacother ; 174: 116472, 2024 May.
Article in English | MEDLINE | ID: mdl-38531121

ABSTRACT

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Subject(s)
Calcium Channels, L-Type , Neuralgia , Neuralgia/drug therapy , Neuralgia/metabolism , Animals , Ligands , Humans , Male , Calcium Channels/metabolism , Calcium Channels/genetics , Gabapentin/pharmacology , Rats, Sprague-Dawley , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Rats , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Analgesics/pharmacology , Disease Models, Animal , Pregabalin/pharmacology
13.
Exp Clin Psychopharmacol ; 32(4): 485-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38236222

ABSTRACT

Gabapentin is used for the treatment of many conditions, including seizures, pain, and anxiety. Increasing reports of nonprescribed use suggest that gabapentin may elicit positive subjective effects. The present study was conducted to examine the subjective effects of gabapentin using rats trained to discriminate either a 30.0 mg/kg or 300.0 mg/kg dose of gabapentin versus vehicle on a two-choice drug discrimination task. Both doses of gabapentin were established as discriminative stimuli, and the 300.0 mg/kg dose was more readily established compared to the 30.0 mg/kg dose. Full substitution (> 80% gabapentin-lever responding) occurred by the training drug and by the gabapentinoid compound pregabalin. Partial substitution (> 20% gabapentin-lever responding) was shown by the opioid compounds morphine and fentanyl, and dose combinations of the opioid receptor antagonist naltrexone with the gabapentin training doses reduced the percentage of gabapentin-lever responding to below 80%. Partial substitution for both training doses of gabapentin occurred with the cannabinoid Δ9-tetrahydrocannabinol. The barbiturate compound pentobarbital and the benzodiazepine compound diazepam were only tested for substitution for the 300.0 mg/kg dose of gabapentin and these compounds produced full substitution. These findings demonstrate that gabapentin establishes a robust discriminative cue and exhibits stimulus effects closely similar to pregabalin, pentobarbital, and diazepam. Since pregabalin, pentobarbital, and diazepam carry a risk of problematic use and are classified as controlled substances, further evaluations of gabapentin's risks in this regard are warranted. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Amines , Diazepam , Gabapentin , Pentobarbital , Pregabalin , Rats, Sprague-Dawley , gamma-Aminobutyric Acid , Animals , Gabapentin/pharmacology , Gabapentin/administration & dosage , Pregabalin/pharmacology , Pregabalin/administration & dosage , Rats , Male , Diazepam/pharmacology , Diazepam/administration & dosage , gamma-Aminobutyric Acid/pharmacology , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/administration & dosage , Pentobarbital/pharmacology , Pentobarbital/administration & dosage , Amines/pharmacology , Amines/administration & dosage , Dose-Response Relationship, Drug , Cyclohexanecarboxylic Acids/pharmacology , Cyclohexanecarboxylic Acids/administration & dosage , Discrimination, Psychological/drug effects , Drug Substitution/methods , Discrimination Learning/drug effects
14.
Immunopharmacol Immunotoxicol ; 46(1): 55-66, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37606510

ABSTRACT

OBJECTIVE: We investigated the protective effects of pregabalin (PRG) on kidney and renal endothelial damage in sepsis induced by Lipopolysaccharide (LPS). MATERIALS AND METHODS: Rats were randomly divided into three groups as control, LPS and LPS+PRG. Saline solution was administered 30 mg/kg orally and 5 mg/kg intraperitoneally (i.p.) to the control group. LPS was applied as 5 mg/kg, i.p. to the LPS group. In the LPS+PRG group, PRG at 30 mg/kg orally and one hour before LPS administration, one hour later 5 mg/kg i.p. LPS was applied. Rats were sacrificed 6 hours after LPS administration. RESULTS: White Blood Cell (WBC), granulocyte, Blood Urea Nitrogen (BUN), creatinine, uric asid, Total Oxidant Status (TOS) and Oxidative Stress Index (OSI) significantly increased (p<0.05); platelets (PLT), activated partial thromboplastin time (aPTT) and Total Antioxidant Status (TAS) significantly decreased in the LPS group compared to the control group (p<0.05). In the LPS+PRG group WBC, granulocyte, BUN, creatinine, uric asid, TOS and OSI significantly decreased (p<0.05); PLT, aPTT and TAS significantly increased compared to the LPS group(p<0.05). Histopathological examinations showed that kidney and renal endothelial damage in the LPS group decreased in the LPS+PRG group. Immunohistochemically IL1-ß, IL-6, IL-10, TNF-α expressions in kidney tissue and Toll-Like Receptors-4 (TLR-4) and NF-κB expressions in the renal endothelial tissue significantly increased in the LPS group compared to the control group and significantly decreased in the LPS+PRG group compared to the LPS group (p<0.001). CONCLUSIONS: Sepsis causes kidney and renal endothelial damage and PRG reduces this damage. Therefore PRG can be used in prophylactic treatment in sepsis, supported by more studies.


In this study, kidney and renal endothelial damage in sepsis was investigated. The effect of pregabalin on kidney and renal endothelial damage in sepsis was evaluated.


Subject(s)
Lipopolysaccharides , Sepsis , Rats , Animals , Lipopolysaccharides/toxicity , Pregabalin/pharmacology , Creatinine , Kidney , Antioxidants/pharmacology , Sepsis/metabolism
15.
J Am Vet Med Assoc ; 262(3): 359-363, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38134455

ABSTRACT

OBJECTIVE: To compare the effects of oral pregabalin versus gabapentin on sedation quality and anesthesia recovery times in cats in a typical perioperative setting. ANIMALS: 50 healthy cats with > 1 kg body weight presenting for elective surgery. METHODS: In this randomized, prospective clinical trial, cats presenting to the University of California-Davis Veterinary Medical Teaching Hospital were assigned to receive buprenorphine 0.02 mg/kg IM followed by 1 of 2 oral sedation treatments: pregabalin 4 mg/kg or gabapentin 10 mg/kg. Cats were then anesthetized using a standardized protocol. Physical examination parameters and behavioral scores were measured by 2 treatment-blinded veterinarians to compare sedation levels before and after drug administration. Inadequate sedation for handling or IV catheter placement was addressed by dexmedetomidine administration. After surgery was completed, anesthesia recovery times and quality were assessed by the same veterinarians. The effects of pregabalin versus gabapentin on body temperature, respiratory rate, and heart rate were analyzed using Student t tests; behavioral assessments were analyzed using Wilcoxon signed-rank tests; and drug treatment effects on dexmedetomidine sedation rescue and frequency of delirium during anesthetic recovery were analyzed using Fisher exact tests. A P < .05 indicated statistical significance. RESULTS: There was no significant difference in change of physiologic parameters or sedation scores before and after sedation between groups. The need for rescue sedation for IV catheter placement and the incidence of emergence delirium were infrequent and similar for both treatments. CLINICAL RELEVANCE: At the doses studied, oral pregabalin and gabapentin produced indistinguishable effects as adjunctive perioperative sedation agents in cats.


Subject(s)
Anesthesia , Dexmedetomidine , Cats , Animals , Gabapentin/pharmacology , Pregabalin/pharmacology , Pregabalin/therapeutic use , Dexmedetomidine/pharmacology , Prospective Studies , Anesthesia/veterinary , Heart Rate
16.
Eur Rev Med Pharmacol Sci ; 27(21): 10322-10333, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37975356

ABSTRACT

OBJECTIVE: Ischemia-reperfusion injury is thought to be the most important factor affecting the success of liver surgery. Pregabalin has been studied to prevent ischemic reperfusion injury in many organs. The aim of this study was to investigate the role of pregabalin in preventing liver ischemic injury. MATERIALS AND METHODS: 40 male Wistar-Albino rats, 6-8 weeks old, were divided into 5 groups. Four groups other than the sham group were subjected to hepatic ischemia for 1 hour, followed by 2 hours of reperfusion. Effects of 30 mg/and 60 mg/kg pregabalin were evaluated by aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor α (TNF-α), nuclear factor-kappa B (NF-кB), interleukin (IL)-6 levels, measured in blood samples collected before and after ischemia. Apoptosis was measured by caspase-3, and tissue samples were evaluated for ischemia by histopathologic examination. RESULTS: The 60 mg pregabalin group was significantly superior (p=0.024) to the N-acetylcysteine group and the 30 mg pregabalin group for AST levels (p=0.612 and p=0.807, respectively). The difference between before and after ischemia-reperfusion blood TNF-α levels was higher in the 60 mg pregabalin group, but not significantly different from the 30 mg pregabalin and N-acetylcysteine groups (p>0.05). Tissue TNF-α levels showed that 60 mg and 30 mg pregabalin treatment was more effective than no-treatment (p=0.011, p=0.033, respectively), but not superior to N-acetylcysteine (p>0.05). CONCLUSIONS: It has been found that ischemia-reperfusion causes damage to the liver, and this damage may be irreversible if no treatment is given. Our study group, pregabalin molecule was found to be significantly effective in preventing ischemia-reperfusion injury and may have a therapeutic advantage over N-acetylcysteine.


Subject(s)
Acetylcysteine , Reperfusion Injury , Rats , Male , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats, Wistar , Acetylcysteine/pharmacology , Tumor Necrosis Factor-alpha , Liver/pathology , Analgesics/pharmacology , Analgesics/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Ischemia/pathology , Alanine Transaminase , Aspartate Aminotransferases
17.
Eur J Pharmacol ; 960: 176140, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37925132

ABSTRACT

BACKGROUNDS: Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS: Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS: We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS: Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.


Subject(s)
Antineoplastic Agents , Neuralgia , Rats , Animals , Pregabalin/pharmacology , Pregabalin/therapeutic use , Astrocytes , TRPV Cation Channels/metabolism , Calcium/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Antineoplastic Agents/pharmacology , Calcium Signaling , Inflammation/drug therapy
18.
Mol Brain ; 16(1): 76, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37924146

ABSTRACT

Familial hemiplegic migraine type-1 (FHM-1) is a form of migraine with aura caused by mutations in the P/Q-type (Cav2.1) voltage-gated calcium channel. Pregabalin, used clinically in the treatment of chronic pain and epilepsy, inhibits P/Q-type calcium channel activity and recent studies suggest that it may have potential for the treatment of migraine. Spreading Depolarization (SD) is a neurophysiological phenomenon that can occur during migraine with aura by propagating a wave of silenced neuronal function through cortex and sometimes subcortical brain structures. Here, utilizing an optogenetic stimulation technique optimized to allow for non-invasive initiation of cortical SD, we demonstrate that chronic pregabalin administration [12 mg/kg/day (s.c.)] in vivo increased the threshold for cortical spreading depolarization in transgenic mice harboring the clinically-relevant Cav2.1S218L mutation (S218L). In addition, chronic pregabalin treatment limited subcortical propagation of recurrent spreading depolarization events to the striatum and hippocampus in both wild-type and S218L mice. To examine contributing underlying mechanisms of action of chronic pregabalin, we performed whole-cell patch-clamp electrophysiology in CA1 neurons in ex vivo brain slices from mice treated with chronic pregabalin vs vehicle. In WT mice, chronic pregabalin produced a decrease in spontaneous excitatory postsynaptic current (sEPSC) amplitude with no effect on frequency. In contrast, in S218L mice chronic pregabalin produced an increase in sEPSC amplitude and decreased frequency. These electrophysiological findings suggest that in FHM-1 mice chronic pregabalin acts through both pre- and post-synaptic mechanisms in CA1 hippocampal neurons to elicit FHM-1 genotype-specific inhibitory action. The results highlight the potential of chronic pregabalin to limit recurrent SD to subcortical brain structures during pathophysiological events in both the genetically-normal and FHM-1 brain. The work further provides insights into FHM-1 pathophysiology and the potential for chronic pregabalin treatment to prevent SD in migraineurs.


Subject(s)
Migraine Disorders , Migraine with Aura , Mice , Animals , Migraine with Aura/drug therapy , Migraine with Aura/genetics , Pregabalin/pharmacology , Pregabalin/therapeutic use , Migraine Disorders/drug therapy , Migraine Disorders/genetics , Mice, Transgenic , Hippocampus
19.
Reprod Fertil Dev ; 35(18): 750-759, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37995339

ABSTRACT

CONTEXT: Pregabalin is an anticonvulsant drug with analgesic activity for the treatment of neuropathic pain. AIMS: To valuate the toxicity of pregabalin in reproductive parameters, spermatogenesis, and teratogenicity in the offspring of mice. METHODS: Twenty male mice were randomly distributed into two groups: PGB group and group C (n =10 per group). The animals in the PGB group received, via gavage, 200mg/kg of pregabalin diluted in distilled water daily, for a period of 45days. Group C received distilled water under the same experimental design. KEY RESULTS: In the paternal parameters of the PGB group, there was a significant increase in the size of the testicles, morphological alterations in the spermatozoa, a decrease in the Johnsen score, an increase in the Leydig cells, and a decrease in the serum level of testosterone. In the intrauterine development parameters of females mated with males from the PGB group, a significant decrease in placental weight, weight and length of fetuses, and fetal viability rate was observed. There was a significant increase in the number of resorptions and post-implantation losses. The significant anomalies observed in the offspring were alteration in the size of the kidneys, absent metacarpals and phalanges, alteration in the sternum, and supernumerary thoracic vertebrae. CONCLUSION: Results suggest that pregabalin had toxic effects on the reproductive function of male mice and teratogenic potential. IMPLICATIONS: The findings of this study may provide new hypotheses, taking into account the risk-benefit ratio for male reproduction and offspring health.


Subject(s)
Placenta , Teratogenesis , Male , Mice , Female , Animals , Pregnancy , Pregabalin/pharmacology , Analgesics/adverse effects , Reproduction , Water
20.
Agri ; 35(4): 236-243, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37886867

ABSTRACT

OBJECTIVES: Pregabalin (PGB) is used in drug-resistant epilepsy. Also, it has analgesic effects in painful syndromes. Depression and anxiety are commonly seen in epilepsy and neuropathic pain patients. PGB is often combined with anxiolytics and antidepressants. We aimed to investigate the antidepressant and anxiolytic effects of PGB and compare its effects with those of antidepressant and anxiolytic drugs and their combined use. METHODS: Wistar Albino rats were used, and PGB (5, 10, 20, and 40 mg/kg), amitriptylin (AMT), fluoxetine (FLX), ketamine (KET), and diazepam (DZM), as well as combinations of PGB (20 mg/kg) with AMT, FLX, KET, and DZM, were administered. Elevated plus maze, forced swimming, and locomotor activity tests were performed. RESULTS: In the elevated plus maze, PGB10, 20, 40, AMT, FLX, and DZM increased open arm time. The PGB20+FLX combination increased compared to PGB20. In forced swimming, PGB doses increased immobility time. AMT, FLX, DZM, and KET decreased compared to control and PGB doses. Other combinations of PGB20 reversed immobility time, except FLX. In locomotor activity, PGB20, AMT, KET, and DZM decreased distance. CONCLUSION: PGB had a depressant effect in all doses and a dose-dependently anxiolytic effect. In combinations of PGB with AMT, KET, and DZM, it reversed their antidepressant effects. We assumed FLX could be preferred instead of AMT in patients using PGB. When PGB is used in combination, drug interactions should be considered. These results are also very remarkable in terms of pharmacoeconomics.


Subject(s)
Anti-Anxiety Agents , Epilepsy , Ketamine , Rats , Humans , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Pregabalin/pharmacology , Pregabalin/therapeutic use , Rats, Wistar , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Fluoxetine/pharmacology , Amitriptyline , Ketamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL