Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.181
1.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691185

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Agouti-Related Protein , Energy Metabolism , GTP-Binding Protein gamma Subunits , Homeostasis , Hypothalamus , Mice, Knockout , Pro-Opiomelanocortin , Rosiglitazone , Animals , Mice , Hypothalamus/metabolism , Energy Metabolism/drug effects , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/biosynthesis , Agouti-Related Protein/genetics , GTP-Binding Protein gamma Subunits/genetics , Rosiglitazone/pharmacology , Male , Neuroinflammatory Diseases/etiology , Mice, Inbred C57BL , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Neuropeptides/genetics , Neuropeptides/deficiency , Gene Expression Regulation/drug effects
2.
Endocrinology ; 165(7)2024 May 27.
Article En | MEDLINE | ID: mdl-38815086

The serotonin 2C receptor (5-HT2CR)-melanocortin pathway plays well-established roles in the regulation of feeding behavior and body weight homeostasis. Dysfunctions in this system, such as loss-of-function mutations in the Htr2c gene, can lead to hyperphagia and obesity. In this study, we aimed to investigate the potential therapeutic strategies for ameliorating hyperphagia, hyperglycemia, and obesity associated with a loss-of-function mutation in the Htr2c gene (Htr2cF327L/Y). We demonstrated that reexpressing functional 5-HT2CR solely in hypothalamic pro-opiomelanocortin (POMC) neurons is sufficient to reduce food intake and body weight in Htr2cF327L/Y mice subjected to a high-fat diet (HFD). In addition, 5-HT2CR expression restores the responsiveness of POMC neurons to lorcaserin, a selective agonist for 5-HT2CR. Similarly, administration of melanotan II, an agonist of the melanocortin receptor 4 (MC4R), effectively suppresses feeding and weight gain in Htr2cF327L/Y mice. Strikingly, promoting wheel-running activity in Htr2cF327L/Y mice results in a decrease in HFD consumption and improved glucose homeostasis. Together, our findings underscore the crucial role of the melanocortin system in alleviating hyperphagia and obesity related to dysfunctions of the 5-HT2CR, and further suggest that MC4R agonists and lifestyle interventions might hold promise in counteracting hyperphagia, hyperglycemia, and obesity in individuals carrying rare variants of the Htr2c gene.


Diet, High-Fat , Hyperphagia , Obesity , Pro-Opiomelanocortin , Receptor, Melanocortin, Type 4 , Receptor, Serotonin, 5-HT2C , Animals , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Male , Mice , Hyperphagia/metabolism , Hyperphagia/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Obesity/metabolism , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/agonists , alpha-MSH/pharmacology , alpha-MSH/analogs & derivatives , Loss of Function Mutation , Hypothalamus/metabolism , Body Weight/drug effects , Eating/drug effects , Eating/physiology , Eating/genetics , Neurons/metabolism , Neurons/drug effects , Disease Models, Animal , Hyperglycemia/metabolism , Hyperglycemia/genetics , Mice, Inbred C57BL , Benzazepines , Peptides, Cyclic
3.
Nat Commun ; 15(1): 3443, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658557

The hypothalamus contains a remarkable diversity of neurons that orchestrate behavioural and metabolic outputs in a highly plastic manner. Neuronal diversity is key to enabling hypothalamic functions and, according to the neuroscience dogma, it is predetermined during embryonic life. Here, by combining lineage tracing of hypothalamic pro-opiomelanocortin (Pomc) neurons with single-cell profiling approaches in adult male mice, we uncovered subpopulations of 'Ghost' neurons endowed with atypical molecular and functional identity. Compared to 'classical' Pomc neurons, Ghost neurons exhibit negligible Pomc expression and are 'invisible' to available neuroanatomical approaches and promoter-based reporter mice for studying Pomc biology. Ghost neuron numbers augment in diet-induced obese mice, independent of neurogenesis or cell death, but weight loss can reverse this shift. Our work challenges the notion of fixed, developmentally programmed neuronal identities in the mature hypothalamus and highlight the ability of specialised neurons to reversibly adapt their functional identity to adult-onset obesogenic stimuli.


Hypothalamus , Neurons , Obesity , Pro-Opiomelanocortin , Single-Cell Analysis , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Neurons/metabolism , Obesity/metabolism , Obesity/pathology , Male , Mice , Hypothalamus/metabolism , Hypothalamus/cytology , Disease Models, Animal , Diet, High-Fat , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis , Mice, Obese
4.
Mol Pain ; 20: 17448069241254201, 2024.
Article En | MEDLINE | ID: mdl-38670551

It has been widely recognized that electroacupuncture (EA) inducing the release of ß-endorphin represents a crucial mechanism of EA analgesia. The arcuate nucleus (ARC) in the hypothalamus is a vital component of the endogenous opioid peptide system. Serving as an integration center, the periaqueductal gray (PAG) receives neural fiber projections from the frontal cortex, insular cortex, and ARC. However, the specific mechanisms how EA facilitates the release of ß-endorphin within the ARC, eliciting analgesic effects are yet to be elucidated. In this study, we conducted in vivo and in vitro experiments by transcriptomics, microdialysis, photogenetics, chemical genetics, and calcium imaging, combined with transgenic animals. Firstly, we detected 2 Hz EA at the Zusanli (ST36) increased the level of ß-endorphin and transcriptional level of proopiomelanocortin (POMC). Our transcriptomics profiling demonstrated that 2 Hz EA at the ST36 modulates the expression of c-Fos and Jun B in ARC brain nuclear cluster, and the transcriptional regulation of 2 Hz EA mainly occur in POMC neurons by Immunofluorescence staining verification. Meaning while, 2 Hz EA specifically activated the cAMP-PKA-CREB signaling pathway in ARC which mediating the c-Fos and Jun B transcription, and 2 Hz EA analgesia is dependent on the activation of cAMP-PKA-CREB signaling pathway in ARC. In order to investigate how the ß-endorphin produced in ARC transfer to integration center PAG, transneuronal tracing technology was used to observe the 2 Hz EA promoted the neural projection from ARC to PAG compared to 100 Hz EA and sham mice. Inhibited PAGGABA neurons, the transfer of ß-endorphin from the ARC nucleus to the PAG nucleus through the ARCPOMC-PAGGABA neural circuit. Furthermore, by manipulating the excitability of POMC neurons from ARCPOMC to PAGGABA using inhibitory chemogenetics and optogenetics, we found that this inhibition significantly reduced transfer of ß-endorphin from the ARC nucleus to the PAG nucleus and the effectiveness of 2 Hz EA analgesia in neurological POMC cyclization recombination enzyme (Cre) mice and C57BL/6J mice, which indicates that the transfer of ß-endorphin depends on the activation of POMC neurons prefect from ARCPOMC to PAGGABA. These findings contribute to our understanding of the neural circuitry underlying the EA pain-relieving effects and maybe provide valuable insights for optimizing EA stimulation parameters in clinical pain treatment using the in vivo dynamic visual investigating the central analgesic mechanism.


Arcuate Nucleus of Hypothalamus , Electroacupuncture , Periaqueductal Gray , Pro-Opiomelanocortin , beta-Endorphin , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Periaqueductal Gray/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Electroacupuncture/methods , beta-Endorphin/metabolism , Male , Mice, Transgenic , Mice, Inbred C57BL , Mice , Proto-Oncogene Proteins c-fos/metabolism , Neurons/metabolism
5.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38652744

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Body Weight , Eating , Enhancer Elements, Genetic , Hypothalamus , Pro-Opiomelanocortin , Zebrafish , Animals , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Mice , Hypothalamus/metabolism , Eating/genetics , Eating/physiology , Zebrafish/genetics , Zebrafish/metabolism , Female , Male , Mice, Transgenic , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Mammals/metabolism , Mammals/genetics
6.
Am J Physiol Endocrinol Metab ; 326(5): E681-E695, 2024 May 01.
Article En | MEDLINE | ID: mdl-38597829

Hypothalamic proopiomelanocortin (POMC) neurons are sensors of signals that reflect the energy stored in the body. Inducing mild stress in proopiomelanocortin neurons protects them from the damage promoted by the consumption of a high-fat diet, mitigating the development of obesity; however, the cellular mechanisms behind these effects are unknown. Here, we induced mild stress in a proopiomelanocortin neuron cell line by inhibiting Crif1. In proopiomelanocortin neurons exposed to high levels of palmitate, the partial inhibition of Crif1 reverted the defects in mitochondrial respiration and ATP production; this was accompanied by improved mitochondrial fusion/fission cycling. Furthermore, the partial inhibition of Crif1 resulted in increased reactive oxygen species production, increased fatty acid oxidation, and reduced dependency on glucose for mitochondrial respiration. These changes were dependent on the activity of CPT-1. Thus, we identified a CPT-1-dependent metabolic shift toward greater utilization of fatty acids as substrates for respiration as the mechanism behind the protective effect of mild stress against palmitate-induced damage of proopiomelanocortin neurons.NEW & NOTEWORTHY Saturated fats can damage hypothalamic neurons resulting in positive energy balance, and this is mitigated by mild cellular stress; however, the mechanisms behind this protective effect are unknown. Using a proopiomelanocortin cell line, we show that under exposure to a high concentration of palmitate, the partial inhibition of the mitochondrial protein Crif1 results in protection due to a metabolic shift warranted by the increased expression and activity of the mitochondrial fatty acid transporter CPT-1.


Carnitine O-Palmitoyltransferase , Cell Cycle Proteins , Fatty Acids , Mitochondria , Animals , Mice , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cell Line , Fatty Acids/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Neurons/drug effects , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics , Reactive Oxygen Species/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism
7.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602078

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Glucocorticoids , Hypothalamo-Hypophyseal System , Larva , Optogenetics , Zebrafish , Animals , Optogenetics/methods , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/drug effects , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/genetics , Interrenal Gland/metabolism , Interrenal Gland/drug effects , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/genetics
8.
Mol Med ; 30(1): 34, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448811

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Insulin Resistance , Animals , Mice , Glucose , Hypothalamus , Insulin Resistance/genetics , Neurons , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/genetics
9.
Sci Adv ; 10(10): eadj3823, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38446876

Mutations that perturb leptin-melanocortin signaling are known to cause hyperphagia and obesity, but energy expenditure has not been well studied outside rodents. We report on a common canine mutation in pro-opiomelanocortin (POMC), which prevents production of ß-melanocyte-stimulating hormone (ß-MSH) and ß-endorphin but not α-MSH; humans, similar to dogs, produce α-MSH and ß-MSH from the POMC propeptide, but rodents produce only α-MSH. We show that energy expenditure is markedly lower in affected dogs, which also have increased motivational salience in response to a food cue, indicating increased wanting or hunger. There was no difference in satiety at a modified ad libitum meal or in their hedonic response to food, nor disruption of adrenocorticotropic hormone (ACTH) or thyroid axes. In vitro, we show that ß-MSH signals comparably to α-MSH at melanocortin receptors. These data implicate ß-MSH and ß-endorphin as important in determining hunger and moderating energy expenditure and suggest that this role is independent of the presence of α-MSH.


beta-Endorphin , beta-MSH , Humans , Dogs , Animals , beta-Endorphin/genetics , Basal Metabolism , Pro-Opiomelanocortin/genetics , Hunger , alpha-MSH/genetics
10.
Int J Dev Neurosci ; 84(3): 208-216, 2024 May.
Article En | MEDLINE | ID: mdl-38343101

Schizophrenia is a chronic mental disorder that affects millions of people and is believed to be caused by both environmental and genetic factors. Despite extensive research, the exact mechanisms underlying schizophrenia are still unclear. Studies have shown that numerous psychiatric disorders are associated with methylation of the POMC gene, which encodes adrenocorticotropic hormone, a critical player in the hypothalamic-pituitary-adrenal axis. However, the association between DNA methylation in POMC patients and schizophrenia remains unclear. In this study, we evaluated three fragments of the POMC promoter region, including 51 CpG sites, in the peripheral blood of schizophrenia patients and healthy controls. The POMC protein level was measured via enzyme-linked immunosorbent assay (ELISA). The schizophrenia group exhibited significantly greater levels of methylation of the POMC gene than those in the control group. The methylation level of the POMC-2 fragment was significantly greater in the patient group than in the control group. There were 17 significantly hypermethylated CpG sites in the patient group. After stratification by sex, POMC methylation levels were found to be significantly greater in male schizophrenia patients than in healthy controls; the methylation levels of POMC-2 fragments were greater in the male patient group; nine CpG sites were significantly hypermethylated in the male patient group; and only one CpG site was significantly hypermethylated in the female patient group. The POMC protein level in patients was significantly lower than that in healthy controls. These findings demonstrate that the DNA methylation of POMC might be associated with the pathophysiology of schizophrenia. Overall, studying the correlation between POMC methylation and schizophrenia may contribute to the diagnosis and evaluation of neuropsychiatric disorders.


CpG Islands , DNA Methylation , Pro-Opiomelanocortin , Schizophrenia , Adult , Female , Humans , Male , Middle Aged , Young Adult , Pro-Opiomelanocortin/genetics , Promoter Regions, Genetic , Schizophrenia/genetics , Schizophrenia/blood , Proprotein Convertases/genetics
12.
Brain Res Bull ; 208: 110898, 2024 Mar.
Article En | MEDLINE | ID: mdl-38360152

The involvement of androgens in the regulation of energy metabolism has been demonstrated. The main objective of the present research was to study the involvement of androgens in both the programming of energy metabolism and the regulatory peptides associated with feeding. For this purpose, androgen receptors and the main metabolic pathways of testosterone were inhibited during the first five days of postnatal life in male and female Wistar rats. Pups received a daily s.c. injection from the day of birth, postnatal day (P) 1, to P5 of Flutamide (a competitive inhibitor of androgen receptors), Letrozole (an aromatase inhibitor), Finasteride (a 5-alpha-reductase inhibitor) or vehicle. Body weight, food intake and fat pads were measured. Moreover, hypothalamic Agouti-related peptide (AgRP), neuropeptide Y (NPY), orexin, and proopiomelanocortin (POMC) were analyzed by quantitative real-time polymerase chain reaction assay. The inhibition of androgenic activity during the first five days of life produced a significant decrease in body weight in females at P90 but did not affect this parameter in males. Moreover, the inhibition of aromatase decreased hypothalamic AgRP mRNA levels in males while the inhibition of 5α-reductase decreased hypothalamic AgRP and orexin mRNA levels in female rats. Finally, food intake and visceral fat, but not subcutaneous fat, were affected in both males and females depending on which testosterone metabolic pathway was inhibited. Our results highlight the differential involvement of androgens in the programming of energy metabolism as well as the AgRP and orexin systems during development in male and female rats.


Androgens , Receptors, Androgen , Rats , Animals , Male , Female , Orexins/metabolism , Androgens/pharmacology , Androgens/metabolism , Rats, Wistar , Agouti-Related Protein/genetics , Receptors, Androgen/metabolism , Body Weight/physiology , Hypothalamus/metabolism , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Testosterone/pharmacology , Oxidoreductases/metabolism
13.
Steroids ; 203: 109367, 2024 Mar.
Article En | MEDLINE | ID: mdl-38266463

While the effects of progesterone on body weight and appetite in pre-menopausal conditions have been well elucidated, its effects in post-menopausal conditions have not been clarified. On the contrary, the effects of estrogen on body weight and appetite in post-menopausal conditions have been well established. In this study, the effects of progesterone treatment on body weight, appetite, and fat mass in ovariectomized rats were evaluated. In addition, the central and/or peripheral levels of oxytocin (OT), leptin, and their receptors, which are potent anorectic factors, were examined. Female rats were ovariectomized and divided into control, progesterone-treated, and estrogen-treated groups. Body weight, food intake, and subcutaneous fat mass were lower in both the progesterone and estrogen groups than in the control group. The estrogen group exhibited higher serum OT levels than the control group, whereas the OT levels of the progesterone and control groups did not differ. The serum leptin levels of both the progesterone and estrogen groups were lower than those of the control group. Gene expression analysis of OT, leptin, and their receptors in the hypothalamus and adipose tissue found few significant differences among the groups. Hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) mRNA levels involved in appetite regulation were slightly altered in the progesterone and estrogen groups. These findings suggest that progesterone treatment may have favorable effects on body weight, appetite, and fat mass regulation in post-menopausal conditions and that the mechanisms underlying these effects of progesterone differ from those underlying the effects of estrogen.


Leptin , Progesterone , Rats , Animals , Female , Leptin/metabolism , Progesterone/pharmacology , Progesterone/metabolism , Eating , Body Weight , Hypothalamus , Carrier Proteins , Estrogens/pharmacology , Estrogens/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Pro-Opiomelanocortin/pharmacology
14.
Behav Brain Res ; 461: 114863, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38224819

Methyl-CpG binding protein 2 (MeCP2) is an epigenetic factor associated with the neurodevelopmental disorders Rett Syndrome and MECP2 duplication syndrome. Previous studies have demonstrated that knocking out MeCP2 globally in the central nervous system leads to an obese phenotype and hyperphagia, however it is not clear if the hyperphagia is the result of an increased preference for food reward or due to an increase in motivation to obtain food reward. We show that mice deficient in MeCP2 specifically in pro-opiomelanocortin (POMC) neurons have an increased preference for high fat diet as measured by conditioned place preference but do not have a greater motivation to obtain food reward using a progressive ratio task, relative to wildtype littermate controls. We also demonstrate that POMC-Cre MeCP2 knockout (KO) mice have increased body weight after long-term high fat diet exposure as well as elevated plasma leptin and corticosterone levels compared to wildtype mice. Taken together, these results are the first to show that POMC-specific loss-of-function Mecp2 mutations leads to dissociable effects on the rewarding/motivational properties of food as well as changes to hormones associated with body weight homeostasis and stress.


Diet, High-Fat , Pro-Opiomelanocortin , Animals , Mice , Body Weight , Diet, High-Fat/adverse effects , Hyperphagia/genetics , Mice, Knockout , Phenotype , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism
15.
Nutrition ; 120: 112333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38271759

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Insulin Resistance , Neuropeptides , Rats , Animals , Leptin/metabolism , Insulin/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Diet, High-Fat/adverse effects , Agouti-Related Protein/metabolism , Insulin Receptor Substrate Proteins/metabolism , Receptor, Angiotensin, Type 2/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/genetics , DNA Methyltransferase 3A , Rats, Sprague-Dawley , Obesity/genetics , Obesity/metabolism , Hyperphagia/complications , Hypothalamus/metabolism , Neuropeptides/metabolism , Superoxide Dismutase/metabolism , Angiotensins/metabolism
16.
Function (Oxf) ; 5(1): zqad070, 2024.
Article En | MEDLINE | ID: mdl-38223458

The BBSome, a complex of several Bardet-Biedl syndrome (BBS) proteins including BBS1, has emerged as a critical regulator of energy homeostasis. Although the BBSome is best known for its involvement in cilia trafficking, through a process that involve BBS3, it also regulates the localization of cell membrane receptors underlying metabolic regulation. Here, we show that inducible Bbs1 gene deletion selectively in proopiomelanocortin (POMC) neurons cause a gradual increase in body weight, which was associated with higher fat mass. In contrast, inducible deletion of Bbs3 gene in POMC neurons failed to affect body weight and adiposity. Interestingly, loss of BBS1 in POMC neurons led to glucose intolerance and insulin insensitivity, whereas BBS3 deficiency in these neurons is associated with slight impairment in glucose handling, but normal insulin sensitivity. BBS1 deficiency altered the plasma membrane localization of serotonin 5-HT2C receptor (5-HT2CR) and ciliary trafficking of neuropeptide Y2 receptor (NPY2R).In contrast, BBS3 deficiency, which disrupted the ciliary localization of the BBSome, did not interfere with plasma membrane expression of 5-HT2CR, but reduced the trafficking of NPY2R to cilia. We also show that deficiency in BBS1, but not BBS3, alters mitochondria dynamics and decreased total and phosphorylated levels of dynamin-like protein 1 (DRP1) protein. Importantly, rescuing DRP1 activity restored mitochondria dynamics and localization of 5-HT2CR and NPY2R in BBS1-deficient cells. The contrasting effects on energy and glucose homeostasis evoked by POMC neuron deletion of BBS1 versus BBS3 indicate that BBSome regulation of metabolism is not related to its ciliary function in these neurons.


Bardet-Biedl Syndrome , Body Weight , Cilia , Pro-Opiomelanocortin , Humans , Cilia/genetics , Glucose/metabolism , Microtubule-Associated Proteins/genetics , Neurons/metabolism , Pro-Opiomelanocortin/genetics , Protein Transport/genetics , Serotonin/metabolism , Animals
17.
Mol Metab ; 79: 101840, 2024 Jan.
Article En | MEDLINE | ID: mdl-38036170

OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance. METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of brown adipose tissue (BAT) and molecular analysis of the hypothalamus, BAT, white adipose tissue (WAT) and liver were carried out. RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, reduced inflammation, and decreased endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis. CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and its associated metabolic disorders.


Fatty Acids, Nonesterified , Pro-Opiomelanocortin , Mice , Animals , Fatty Acids, Nonesterified/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Mice, Obese , Body Weight , Hypothalamus/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Energy Metabolism/physiology
18.
Mol Metab ; 79: 101839, 2024 Jan.
Article En | MEDLINE | ID: mdl-37979657

OBJECTIVE: G-protein-signaling modulator 1 (GPSM1) has been proved the potential role in brain tissues, however, whether GPSM1 in hypothalamic nuclei, especially in POMC neurons is essential for the proper regulation of whole-body energy balance remains unknown. The aim of our current study was to explore the role of GPSM1 in POMC neurons in metabolic homeostasis. METHODS: We generated POMC neuron specific GPSM1 deficiency mice and subjected them to a High Fat Diet to monitor metabolic phenotypes in vivo. By using various molecular, biochemical, immunofluorescent, immunohistochemical analyses, and cell culture studies to reveal the pathophysiological role of GPSM1 in POMC neurons and elucidate the underlying mechanisms of GPSM1 regulating POMC neurons activity. RESULTS: We demonstrated that mice lacking GPSM1 in POMC neurons were protected against diet-induced obesity, glucose dysregulation, insulin resistance, and hepatic steatosis. Mechanistically, GPSM1 deficiency in POMC neurons induced enhanced autophagy and improved leptin sensitivity through PI3K/AKT/mTOR signaling, thereby increasing POMC expression and α-MSH production, and concurrently enhancing sympathetic innervation and activity, thus resulting in decreased food intake and increased brown adipose tissue thermogenesis. CONCLUSIONS: Our findings identify a novel function of GPSM1 expressed in POMC neurons in the regulation of whole-body energy balance and metabolic homeostasis by regulating autophagy and leptin sensitivity, which suggests that GPSM1 in the POMC neurons could be a promising therapeutic target to combat obesity and obesity-related metabolic disorders.


Adipose Tissue, Brown , Adrenal Insufficiency , Leptin , Animals , Mice , Adipose Tissue, Brown/metabolism , Diet, High-Fat/adverse effects , Leptin/metabolism , Neurons/metabolism , Obesity/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Thermogenesis/genetics
19.
Peptides ; 173: 171138, 2024 Mar.
Article En | MEDLINE | ID: mdl-38147963

The hypothalamic neuropeptides linked to appetite and satiety were investigated in obese mice treated with cotadutide (a dual receptor agonist of glucagon-like peptide 1 (GLP-1R)/Glucagon (GCGR)). Twelve-week-old male C57BL/6 mice were fed a control diet (C group, n = 20) or a high-fat diet (HF group, n = 20) for ten weeks. Each group was further divided, adding cotadutide treatment and forming groups C, CC, HF, and HFC for four additional weeks. The hypothalamic arcuate neurons were labeled by immunofluorescence, and protein expressions (Western blotting) for neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related protein (AgRP), and cocaine- and amphetamine-regulated transcript (CART). Cotadutide enhanced POMC and CART neuropeptides and depressed NPY and AGRP neuropeptides. In addition, gene expressions (RT-qPCR) determined that Lepr (leptin receptor) and Calcr (calcitonin receptor) were diminished in HF compared to C but enhanced in CC compared to C and HFC compared to HF. Besides, Socs3 (suppressor of cytokine signaling 3) was decreased in HFC compared to HF, while Sst (somatostatin) was higher in HFC compared to HF; Tac1 (tachykinin 1) and Mc4r (melanocortin-4-receptor) were lower in HF compared to C but increased in HFC compared to HF. Also, Glp1r and Gcgr were higher in HFC compared to HF. In conclusion, the findings are compelling, demonstrating the effects of cotadutide on hypothalamic neuropeptides and hormone receptors of obese mice. Cotadutide modulates energy balance through the gut-brain axis and its associated signaling pathways. The study provides insights into the mechanisms underlying cotadutide's anti-obesity effects and its possible implications for obesity treatment.


Glucagon , Neuropeptides , Peptides , Mice , Animals , Male , Agouti-Related Protein , Glucagon/metabolism , Mice, Obese , Pro-Opiomelanocortin/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice, Inbred C57BL , Neuropeptides/genetics , Hypothalamus/metabolism , Neuropeptide Y/genetics , Glucagon-Like Peptide 1/metabolism
20.
Eur Rev Med Pharmacol Sci ; 27(19): 9132-9144, 2023 Oct.
Article En | MEDLINE | ID: mdl-37843327

OBJECTIVE: Osteoarthritis (OA) is a chronic degenerative disease of the joints, adversely affecting the quality of life for the patients. To better understand the mechanisms underlying the pathological changes in osteoarthritis and identify the key genes associated with osteoarthritis pathogenesis, we utilized a comprehensive bioinformatics approach to analyze the transcriptome between osteoarthritis synovial and control samples with public microarray datasets. MATERIALS AND METHODS: First, the GSE82107 microarray dataset containing ten osteoarthritis synovial and seven control samples were selected from the Gene Expression Omnibus (GEO) database. RESULTS: A total of 52 overlapped differentially expressed genes (DEGs) in GSE82107 and OA-associated genes in the Comparative Toxicogenomics Database were identified. These OA-associated DEGs were further incorporated into a protein-protein interaction (PPI) network. Gene proopiomelanocortin (POMC) was identified in the largest cluster of PPI network with Cytoscape. GO and KEGG analyses suggested that these genes were associated with multiple functions. Other GEO datasets of osteoarthritis synovial tissues, including GSE55235 and GSE55457, were used to validate the expression level of POMC. Quantitative polymerase chain reaction and western blot analyses were also used to test the expression levels of POMC in our osteoarthritis samples. We found POMC was positively associated with transporter complex, ion channel activity, and G protein-coupled receptor signaling pathway. CONCLUSIONS: This study highlighted the OA-associated gene POMC, and its related biological pathways, suggesting it served as a potential treatment target in osteoarthritis.


Osteoarthritis , Pro-Opiomelanocortin , Humans , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism , Gene Regulatory Networks , Gene Expression Profiling , Quality of Life , Databases, Genetic , Osteoarthritis/metabolism , Synovial Membrane/metabolism , Computational Biology
...