Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683095

ABSTRACT

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Subject(s)
Antigens, Plant , Profilins , Allergens/immunology , Amino Acid Sequence , Computer Simulation , Conserved Sequence , Models, Molecular , Phylogeny , Plant Proteins/immunology , Profilins/immunology , Profilins/genetics , Profilins/chemistry , Cucumis/chemistry , Cucumis/metabolism , Prunus persica/chemistry , Prunus persica/metabolism , Malus/chemistry , Malus/metabolism , Antigens, Plant/chemistry
2.
Cell Death Dis ; 14(4): 283, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085490

ABSTRACT

Glioblastoma (GBM), the most common aggressive brain tumor, is characterized by rapid cellular infiltration and is routinely treated with ionizing radiation (IR), but therapeutic resistance inevitably recurs. The actin cytoskeleton of glioblastoma cells provides their high invasiveness, but it remains unclear whether Rho GTPases modulate DNA damage repair and therapeutic sensitivity. Here, we irradiated glioblastoma cells with different p53 status and explored the effects of Rho pathway inhibition to elucidate how actin cytoskeleton disruption affects the DNA damage response and repair pathways. p53-wild-type and p53-mutant cells were subjected to Rho GTPase pathway modulation by treatment with C3 toxin; knockdown of mDia-1, PFN1 and MYPT1; or treatment with F-actin polymerization inhibitors. Rho inhibition increased the sensitivity of glioma cells to IR by increasing the number of DNA double-strand breaks and delaying DNA repair by nonhomologous end-joining in p53-wild-type cells. p53 knockdown reversed this phenotype by reducing p21 expression and Rho signaling activity, whereas reactivation of p53 in p53-mutant cells by treatment with PRIMA-1 reversed these effects. The interdependence between p53 and Rho is based on nuclear p53 translocation facilitated by G-actin and enhanced by IR. Isolated IR-resistant p53-wild-type cells showed an altered morphology and increased stress fiber formation: inhibition of Rho or actin polymerization decreased cell viability in a p53-dependent manner and reversed the resistance phenotype. p53 silencing reversed the Rho inhibition-induced sensitization of IR-resistant cells. Rho inhibition also impaired the repair of IR-damaged DNA in 3D spheroid models. Rho GTPase activity and actin cytoskeleton dynamics are sensitive targets for the reversal of acquired resistance in GBM tumors with wild-type p53.


Subject(s)
DNA Repair , Glioblastoma , rho GTP-Binding Proteins , Humans , DNA , DNA Repair/genetics , DNA Repair/radiation effects , Down-Regulation , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Neoplasm Recurrence, Local , Profilins/genetics , Radiation, Ionizing , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/radiation effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Commun Biol ; 5(1): 748, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35902770

ABSTRACT

Allergies have become a rising health problem, where plentiful substances can trigger IgE-mediated allergies in humans. While profilins are considered minor allergens, these ubiquitous proteins are primary molecules involved in cross-reactivity and pollen-food allergy syndrome. Here we report the first crystal structures of murine Fab/IgE, with its chains naturally paired, in complex with the allergen profilin from Hevea brasiliensis (Hev b 8). The crystallographic models revealed that the IgE's six complementarity-determining regions (CDRs) interact with the allergen, comprising a rigid paratope-epitope surface of 926 Å2, which includes an extensive network of interactions. Interestingly, we also observed previously unreported flexibility at Fab/IgE's elbow angle, which did not influence the shape of the paratope. The Fab/IgE exhibits a high affinity for Hev b 8, even when using 1 M NaCl in BLI experiments. Finally, based on the encouraging cross-reactivity assays using two mutants of the maize profilin (Zea m 12), this antibody could be a promising tool in IgE engineering for diagnosis and research applications.


Subject(s)
Food Hypersensitivity , Profilins , Allergens/chemistry , Allergens/metabolism , Amino Acid Sequence , Animals , Contractile Proteins/metabolism , Humans , Immunoglobulin E , Mice , Microfilament Proteins/metabolism , Profilins/genetics , Profilins/metabolism
4.
Electron. j. biotechnol ; Electron. j. biotechnol;54: 47-59, nov.2021. graf, ilus, tab
Article in English | LILACS | ID: biblio-1511064

ABSTRACT

BACKGROUND Profilin proteins (PRFs) are small (12­15 kD) actin-binding protein, which play a significant role in cytoskeleton dynamics and plant development via regulating actin polymerization. Profilins have been well documented in Arabidopsis, Zea mays L. as well as Phaseolus vulgaris, however no such fully characterization of rice (Oryza sativa L.) profilin gene family has been reported thus far. RESULTS In the present study, a comprehensive genome-wide analysis of rice PRF genes was completed and three members were identified. OsPRF1 and OsPRF2 shared 98.5% similarity (6 nucleotide divergence), but the deduced amino acid sequences of OsPRF1 and OsPRF2 are fully identical. In contrast, the OsPRF3 presents relatively lower similarity with OsPRF1 and OsPRF2. Phylogenetic analysis also support that OsPRF1 has a closer relationship with OsPRF2. Expression pattern analysis revealed the differential expression of OsPRFs in tissues of mature plant, which suggested the potential spatial functional specificity for rice profilin genes. Subcellular localization analysis revealed the OsPRFs were localized in cytoplasm and nucleus and all of them could bind actin monomers. Furthermore, abiotic stresses and hormones treatments assay indicated that the three OsPRF genes could be differentially regulated, suggesting that OsPRF genes might participate in different stress processes in rice. CONCLUSIONS Taken together, our study provides a comprehensive analysis of the OsPRF gene family and will provide a basis for further studies on their roles in rice development and in response to abiotic stresses


Subject(s)
Plant Proteins/genetics , Oryza/genetics , Genome, Plant , Profilins/genetics
5.
PLoS One ; 14(6): e0215723, 2019.
Article in English | MEDLINE | ID: mdl-31216283

ABSTRACT

Profilin 1 (PFN1) protein plays key roles in neuronal growth and differentiation, membrane trafficking, and regulation of the actin cytoskeleton. Four natural variants of PFN1 were described as related to ALS, the most common adult-onset motor neuron disorder. However, the pathological mechanism of PFN1 in ALS is not yet completely understood. The goal of this work is to thoroughly analyze the effects of the ALS-related mutations on PFN1 structure and function using computational simulations. Here, PhD-SNP, PMUT, PolyPhen-2, SIFT, SNAP, SNPS&GO, SAAP, nsSNPAnalyzer, SNPeffect4.0 and I-Mutant2.0 were used to predict the functional and stability effects of PFN1 mutations. ConSurf was used for the evolutionary conservation analysis, and GROMACS was used to perform the MD simulations. The mutations C71G, M114T, and G118V, but not E117G, were predicted as deleterious by most of the functional prediction algorithms that were used. The stability prediction indicated that the ALS-related mutations could destabilize PFN1. The ConSurf analysis indicated that the mutation C71G, M114T, E117G, and G118V occur in highly conserved positions. The MD results indicated that the studied mutations could affect the PFN1 flexibility at the actin and PLP-binding domains, and consequently, their intermolecular interactions. It may be therefore related to the functional impairment of PFN1 upon C71G, M114T, E117G and G118V mutations, and their involvement in ALS development. We also developed a database, SNPMOL (http://www.snpmol.org/), containing the results presented on this paper for biologists and clinicians to exploit PFN1 and its natural variants.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Polymorphism, Single Nucleotide , Profilins/chemistry , Actins/metabolism , Binding Sites , Conserved Sequence , Databases, Genetic , Humans , Molecular Dynamics Simulation , Mutation , Profilins/genetics , Profilins/metabolism , Protein Stability
6.
Biochem Biophys Res Commun ; 480(4): 709-714, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27756617

ABSTRACT

The role and regulation of actin in Trypanosoma cruzi and other related parasites is largely unknown. Based on early genome analysis, it was proposed that there was a reduced dependency on the acto-myosin system in the trypanosomatid parasites. However, more recent studies have extended the set of potential actin regulatory proteins, particularly for T. cruzi. One of the identified actin-binding proteins in trypanosomatids is profilin. In other systems, it is capable of simultaneously binding both monomeric actin and several actin-regulatory factors. Hence, the study of profilin and its ligands may help to identify novel pathways in which actin is involved. In T. cruzi, profilin is encoded by a single copy gene. In this work, we demonstrated that this gene is constitutively expressed in both insect and mammalian stages of the parasite, and that the protein is diffusely distributed. Furthermore, we identified some of its potential ligands by LC-MS using GST-profilin pull-down assays of parasite's protein extracts. Many of them were trypanosomatid specific proteins with unknown functions, although proteins from the carbohydrate metabolism, and two metallopeptidases were also detected. As expected, known ligands of profilin in other organisms were identified, including actin, the microtubule components, and the elongation factor 1-alpha. Our work suggests that profilin and the actin system may be regulated by unknown factors and participate in novel biological processes.


Subject(s)
Aging/metabolism , Gene Expression Regulation , Profilins/genetics , Protein Interaction Mapping , Protozoan Proteins/genetics , Trypanosoma cruzi/metabolism , Gene Expression Profiling , Ligands , Profilins/metabolism , Protozoan Proteins/metabolism
7.
Parasite Immunol ; 38(11): 663-669, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27512980

ABSTRACT

We demonstrated recently that immunization with recombinant Neospora caninum profilin (rNcPRO) induces limited protection and a regulatory T-cell response in mice. The aim of this study was to evaluate the immune response elicited by rNcPRO in cattle and assess a strategy to enhance its immunogenicity, combining the addition of T-cell epitopes and immune modulators. We developed a chimeric recombinant profilin fused to functional T-cell epitopes present in the N-terminal sequence of vesicular stomatitis virus (VSV) glycoprotein G (rNcPRO/G). Groups of three cattle were immunized with two doses (2 weeks apart) of rNcPRO or rNcPRO/G formulated with alum hydroxide or a nanoparticulated soya-based adjuvant enriched with Toll-like receptor (TLR) 2 and TLR9 agonists, aimed to tackle the MyD88 pathway (AVECplus). rNcPRO induced only a primary immune response (IgM mediated), while antibodies in rNcPRO/G-vaccinated animals switched to IgG1 after the booster. The vaccine formulated with rNcPRO/G and AVECplus improved the production of systemic IFN-γ and induced long-term recall B-cell responses. Overall, our study provides data supporting the use of T-cell epitopes from VSV glycoprotein G and TLR agonists to enhance and modulate immunity to peptide antigens in bovines, particularly when using small proteins from parasites for which immune responses are usually feeble.


Subject(s)
Cattle Diseases/immunology , Coccidiosis/veterinary , Neospora/physiology , Protozoan Vaccines/immunology , Toll-Like Receptors/agonists , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Protozoan/immunology , B-Lymphocytes/immunology , Cattle , Coccidiosis/immunology , Epitopes, T-Lymphocyte , Female , Immunoglobulin G , Interferon-gamma/immunology , Mice , Profilins/analysis , Profilins/genetics , Protozoan Vaccines/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Proteins/metabolism , T-Lymphocytes, Regulatory/immunology
8.
Rev Alerg Mex ; 60(3): 129-43, 2013.
Article in Spanish | MEDLINE | ID: mdl-24274609

ABSTRACT

INTRODUCTION: Profilins are small ubiquitous proteins of 12-19 kDa involved in actin dynamics. These proteins are found in all eukaryotic organisms studied to date. Profilins have aminoacid sequences and tridimensional structure highly conserved. Allergy patients to pollen frequently have symptoms of allergy when ingestion of plant-derived foods like fruits, vegetables, seeds, among others. This phenomenon is known as latex-pollen-fruit allergy and it's the main cause of oral allergy syndrome (OAS) which is attributed to the cross-reactivity. Allergens shared between different sources theses are called panallergens for example are profilins which representing at least 20% of all pollen allergic patients. This cross-reactivity is results from the high amino acid sequence identity of profilin from plants, which is between 70% and 85%, this may explain the exacerbation symptoms of allergic patients to profilins from plants. OBJECTIVE: We described some characteristics which show us the important participation of the profilins in the sensitization of people allergic, especially to plants, fruits and pollen. METHODS: We looked research aminoacid sequences of all allergenic profilins reported to date and these were analyzed. CONCLUSIONS: Profilins are important allergens that are underrated in clinical practice and contribute to cross-reactivity in sensitized individuals by profilins from other sources.


Subject(s)
Allergens , Hypersensitivity/immunology , Profilins , Allergens/genetics , Gene Expression Regulation , Humans , Molecular Conformation , Profilins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL