Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.326
1.
Front Immunol ; 15: 1369531, 2024.
Article En | MEDLINE | ID: mdl-38799429

Background: Desmoplastic melanoma (DM) is a rare subtype of melanoma characterized by high immunogenicity which makes it particularly suitable for immune checkpoint inhibitors (ICIs) treatment. Case presentation: We report the case of a 53-year-old man with metastatic DM successfully treated with the combination of anti-CTLA-4 and anti-PD-1 antibodies, who developed serious immune-related adverse events (irAEs). The primary tumor was characterized by absent PD-L1 expression and no-brisk lymphocytes infiltration. NGS showed absence of BRAF mutation, a high tumor mutational burden, and an UV-induced DNA damage signature. Metastatic lesions regressed rapidly after few cycles of ICIs until complete response, however the patient developed serious irAEs including hypothyroidism, adrenal deficiency, and acute interstitial nephritis which led to the definitive suspension of treatment. Currently, the patient has normal renal functionality and no disease relapse after 26 months from starting immunotherapy, and after 9 months from its definitive suspension. Conclusion: Efficacy and toxicity are two sides of the same coin of high sensitivity to ICIs in DM. For this reason, these patients should be closely monitored during ICIs therapy to promptly identify serious side effects and to correctly manage them.


Immune Checkpoint Inhibitors , Melanoma , Humans , Male , Melanoma/drug therapy , Melanoma/immunology , Middle Aged , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Immunotherapy/methods , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , CTLA-4 Antigen/antagonists & inhibitors , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors
2.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Article En | MEDLINE | ID: mdl-38703767

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Immune Checkpoint Inhibitors , Lung Neoplasms , Precision Medicine , Programmed Cell Death 1 Receptor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Precision Medicine/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/immunology , Lab-On-A-Chip Devices , Immunotherapy/methods , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor
3.
Front Immunol ; 15: 1370771, 2024.
Article En | MEDLINE | ID: mdl-38707906

Introduction: Anti-PD-1/PD-L1 inhibitors therapy has become a promising treatment for hepatocellular carcinoma (HCC), while the therapeutic efficacy varies significantly among effects for individual patients are significant difference. Unfortunately, specific predictive biomarkers indicating the degree of benefit for patients and thus guiding the selection of suitable candidates for immune therapy remain elusive.no specific predictive biomarkers are available indicating the degree of benefit for patients and thus screening the preferred population suitable for the immune therapy. Methods: Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) considered is an important method for analyzing biological samples, since it has the advantages of high rapid, high sensitivity, and high specificity. Ultra-high-pressure liquid chromatography-mass spectrometry (UHPLC-MS) has emerged as a pivotal method for analyzing biological samples due to its inherent advantages of rapidity, sensitivity, and specificity. In this study, potential metabolite biomarkers that can predict the therapeutic effect of HCC patients receiving immune therapy were identified by UHPLC-MS. Results: A partial least-squares discriminant analysis (PLS-DA) model was established using 14 glycerophospholipid metabolites mentioned above, and good prediction parameters (R2 = 0.823, Q2 = 0.615, prediction accuracy = 0.880 and p < 0.001) were obtained. The relative abundance of glycerophospholipid metabolite ions is closely related to the survival benefit of HCC patients who received immune therapy. Discussion: This study reveals that glycerophospholipid metabolites play a crucial role in predicting the efficacy of immune therapy for HCC.


B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Hepatocellular , Immune Checkpoint Inhibitors , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/immunology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/blood , Chromatography, High Pressure Liquid/methods , Male , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/blood , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/blood , Female , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mass Spectrometry/methods , Aged , Metabolomics/methods , Glycerophospholipids/blood
4.
World J Gastroenterol ; 30(19): 2496-2501, 2024 May 21.
Article En | MEDLINE | ID: mdl-38817664

Immune checkpoint inhibitor therapy has dramatically improved patient prognosis, and thereby transformed the treatment in various cancer types including esophageal squamous cell carcinoma (ESCC) in the past decade. Monoclonal antibodies that selectively inhibit programmed cell death-1 (PD-1) activity has now become standard of care in the treatment of ESCC in metastatic settings, and has a high expectation to provide clinical benefit during perioperative period. Further, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) monoclonal antibody has also been approved in the treatment of recurrent/metastatic ESCC in combination with anti-PD-1 antibody. Well understanding of the existing evidence of immune-based treatments for ESCC, as well as recent clinical trials on various combinations with chemotherapy for different clinical settings including neoadjuvant, adjuvant, and metastatic diseases, may provide future prospects of ESCC treatment for better patient outcomes.


CTLA-4 Antigen , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immune Checkpoint Inhibitors , Immunotherapy , Neoadjuvant Therapy , Humans , Esophageal Neoplasms/therapy , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Neoadjuvant Therapy/methods , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Treatment Outcome , Chemotherapy, Adjuvant/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prognosis , Neoplasm Recurrence, Local/prevention & control , Neoplasm Recurrence, Local/immunology
5.
J Immunol Res ; 2024: 3604935, 2024.
Article En | MEDLINE | ID: mdl-38774604

Objective: Immunotherapy has proven effective in treating advanced gastric cancer (AGC), yet its benefits are limited to a subset of patients. Our aim is to swiftly identify prognostic biomarkers using cytokines to improve the precision of clinical guidance and decision-making for PD-1 inhibitor-based cancer immunotherapy in AGC. Materials and Methods: The retrospective study compared 36 patients with AGC who received combined anti-PD-1 immunotherapy and chemotherapy (immunochemotherapy) with a control group of 20 patients who received chemotherapy alone. The concentrations of TNF-α, IL-1ß, IL-2R, IL-6, IL-8, IL-10, and IL-17 in the serum were assessed using chemiluminescence immunoassay at three distinct time intervals following the commencement of immunochemotherapy. Results: When compared to controls, patients undergoing immunochemotherapy demonstrated a generalized rise in cytokine levels after the start of treatment. However, patients who benefited from immunochemotherapy showed a decrease in IL-6 or IL-8 concentrations throughout treatment (with varied trends observed for IL-1ß, IL-2R, IL-10, IL-17, and TNF-α) was evident in patients benefiting from immunochemotherapy but not in those who did not benefit. Among these markers, the combination of IL-6, IL-8, and CEA showed optimal predictive performance for short-term efficacy of immunochemotherapy in AGC patients. Conclusion: Reductions in IL-6/IL-8 levels observed during immunochemotherapy correlated with increased responsiveness to treatment effectiveness. These easily accessible blood-based biomarkers are predictive and rapid and may play a crucial role in identifying individuals likely to derive benefits from PD-1 blockade immunotherapy.


Biomarkers, Tumor , Immune Checkpoint Inhibitors , Interleukin-6 , Interleukin-8 , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/diagnosis , Stomach Neoplasms/therapy , Stomach Neoplasms/immunology , Female , Male , Middle Aged , Aged , Biomarkers, Tumor/blood , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-6/blood , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Interleukin-8/blood , Retrospective Studies , Treatment Outcome , Adult , Prognosis , Immunotherapy/methods , Neoplasm Staging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
6.
Front Immunol ; 15: 1366335, 2024.
Article En | MEDLINE | ID: mdl-38707904

Background: Immune checkpoint inhibitors (ICPis) induce autoimmune diseases, including autoimmune polyendocrine syndrome type 2 (APS-2), which is defined as a combination of at least two of the following endocrinopathies: autoimmune thyroid disease, type 1 diabetes, and Addison's disease. Cases with the full triad are rare. We present a case of an elderly woman who developed APS-2 with the complete triad shortly after starting anti-programmed cell death 1 (anti-PD1) treatment and review the related literature. Case: A 60-year-old woman, without any personal or family history of autoimmune and endocrine diseases, started the immunotherapy of anti-PD1 (camrelizumab) for squamous cell carcinoma of the urethral meatus. She developed primary hypothyroidism with elevated antibodies to thyroid peroxidase and thyroglobulin after 25 weeks of treatment, and developed primary adrenal insufficiency with adrenal crisis and fulminant type 1 diabetes with ketoacidosis after 45 weeks. Therefore, this patient met the diagnosis of APS-2 and was given multiple hormone replacement including glucocorticoid, levothyroxine and insulin therapy. Continuous improvement was achieved through regular monitoring and titration of the dosage. Conclusions: Different components of APS-2 may appear at different time points after anti-PD1 administration, and can be acute and life-threatening. A good prognosis can be obtained by appropriate replacement with multiple hormones. Insights: With the clinical application of ICPis to APS-2, the complexity of its treatment should be paid enough attention.


Immune Checkpoint Inhibitors , Polyendocrinopathies, Autoimmune , Humans , Female , Polyendocrinopathies, Autoimmune/drug therapy , Polyendocrinopathies, Autoimmune/diagnosis , Middle Aged , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/diagnosis
7.
Cancer Immunol Immunother ; 73(7): 125, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733402

BACKGROUND: Despite the success of PD-1 blockade in recurrent/metastatic nasopharyngeal carcinoma (NPC), its effect for locoregionally advanced NPC (LANPC) remains unclear. This study aimed to evaluate the benefit of adding PD-1 blockade to the current standard treatment (gemcitabine and cisplatin IC  plus cisplatin CCRT ) for LANPC patients. METHODS: From January 2020 to November 2022, 347 patients with non-metastatic high-risk LANPC (stage III-IVA, excluding T3-4N0) were included. Of the 347 patients, 268 patients were treated with standard treatment (IC-CCRT), and 79 received PD-1 blockade plus IC-CCRT (PD-1 group). For the PD-1 group, PD-1 blockade was given intravenously once every 3 weeks for up to 9 cycles (3 induction and 6 adjuvant). The primary endpoint was disease-free survival (DFS) (i.e. freedom from local/regional/distant failure or death). The propensity score matching (PSM) with the ratio of 1:2 was performed to control confounding factors. RESULTS: After PSM analysis, 150 patients receiving standard treatment and 75 patients receiving additional PD-1 blockade remained in the current analysis. After three cycles of IC, the PD-1 group had significantly higher rates of complete response (defined as disappearance of all target lesions; 24% vs. 9%; P = 0.006) and complete biological response (defined as undetectable cell-free Epstein-Barr virus DNA, cfEBV DNA; 79% vs. 65%; P = 0.046) than that in the standard group. And the incidence of grade 3-4 toxicity during IC was 47% in the PD-1 group and 41% in the standard group, with no significant difference (P = 0.396). During follow-up period, additional PD-1 blockade to standard treatment improved 3-year DFS from 84 to 95%, with marginal statistical significance (HR, 0.28; 95%CI, 0.06-1.19; P = 0.064). CONCLUSION: Additiaonl PD-1 blockade to gemcitabine and cisplatin IC and adjuvant treatment results in significant improvement in tumor regression, cfEBV DNA clearance, superior DFS, and comparable toxicity profiles in high-risk LANPC patients.


Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Propensity Score , Humans , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/drug therapy , Middle Aged , Chemoradiotherapy/methods , Adult , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/drug therapy , Induction Chemotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Cisplatin/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Retrospective Studies , Gemcitabine
8.
Sci Rep ; 14(1): 11325, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760458

The low response rate of immune checkpoint inhibitors (ICIs) is a challenge. The efficacy of ICIs is influenced by the tumour microenvironment, which is controlled by the gut microbiota. In particular, intestinal bacteria and their metabolites, such as short chain fatty acids (SCFAs), are important regulators of cancer immunity; however, our knowledge on the effects of individual SCFAs remains limited. Here, we show that isobutyric acid has the strongest effect among SCFAs on both immune activity and tumour growth. In vitro, cancer cell numbers were suppressed by approximately 75% in humans and mice compared with those in controls. Oral administration of isobutyric acid to carcinoma-bearing mice enhanced the effect of anti-PD-1 immunotherapy, reducing tumour volume by approximately 80% and 60% compared with those in the control group and anti-PD-1 antibody alone group, respectively. Taken together, these findings may support the development of novel cancer therapies that can improve the response rate to ICIs.


Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Female , Gastrointestinal Microbiome/drug effects , Immunotherapy/methods , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Drug Synergism
9.
J Immunother Cancer ; 12(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38702145

BACKGROUND: Skeletal morbidity in patients with cancer has a major impact on the quality of life, and preserving bone health while improving outcomes is an important goal of modern antitumor treatment strategies. Despite their widespread use in early disease stages, the effects of immune checkpoint inhibitors (ICIs) on the skeleton are still poorly defined. Here, we initiated a comprehensive investigation of the impact of ICIs on bone health by longitudinal assessment of bone turnover markers in patients with cancer and by validation in a novel bioengineered 3D model of bone remodeling. METHODS: An exploratory longitudinal study was conducted to assess serum markers of bone resorption (C-terminal telopeptide, CTX) and formation (procollagen type I N-terminal propeptide, PINP, and osteocalcin, OCN) before each ICI application (programmed cell death 1 (PD1) inhibitor or programmed death-ligand 1 (PD-L1) inhibitor) for 6 months or until disease progression in patients with advanced cancer and no evidence of bone metastases. To validate the in vivo results, we evaluated osteoclast (OC) and osteoblast (OB) differentiation on treatment with ICIs. In addition, their effect on bone remodeling was assessed by immunohistochemistry, confocal microscopy, and proteomics analysis in a dynamic 3D bone model. RESULTS: During the first month of treatment, CTX levels decreased sharply but transiently. In contrast, we observed a delayed increase of serum levels of PINP and OCN after 4 months of therapy. In vitro, ICIs impaired the maturation of preosteoclasts by inhibiting STAT3/NFATc1 signaling but not JNK, ERK, and AKT while lacking any direct effect on osteogenesis. However, using our bioengineered 3D bone model, which enables the simultaneous differentiation of OB and OC precursor cells, we confirmed the uncoupling of the OC/OB activity on exposure to ICIs by demonstrating impaired OC maturation along with increased OB differentiation. CONCLUSION: Our study indicates that the inhibition of the PD1/PD-L1 signaling axis interferes with bone turnover and may exert a protective effect on bone by indirectly promoting osteogenesis.


Bone Remodeling , Immune Checkpoint Inhibitors , Humans , Bone Remodeling/drug effects , Male , Female , Prospective Studies , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Aged , Longitudinal Studies , Neoplasms/drug therapy , Adult
10.
Nat Med ; 30(5): 1349-1362, 2024 May.
Article En | MEDLINE | ID: mdl-38724705

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology, but treatments are limited by immune-related adverse events, including checkpoint inhibitor colitis (irColitis). Little is understood about the pathogenic mechanisms driving irColitis, which does not readily occur in model organisms, such as mice. To define molecular drivers of irColitis, we used single-cell multi-omics to profile approximately 300,000 cells from the colon mucosa and blood of 13 patients with cancer who developed irColitis (nine on anti-PD-1 or anti-CTLA-4 monotherapy and four on dual ICI therapy; most patients had skin or lung cancer), eight controls on ICI therapy and eight healthy controls. Patients with irColitis showed expanded mucosal Tregs, ITGAEHi CD8 tissue-resident memory T cells expressing CXCL13 and Th17 gene programs and recirculating ITGB2Hi CD8 T cells. Cytotoxic GNLYHi CD4 T cells, recirculating ITGB2Hi CD8 T cells and endothelial cells expressing hypoxia gene programs were further expanded in colitis associated with anti-PD-1/CTLA-4 therapy compared to anti-PD-1 therapy. Luminal epithelial cells in patients with irColitis expressed PCSK9, PD-L1 and interferon-induced signatures associated with apoptosis, increased cell turnover and malabsorption. Together, these data suggest roles for circulating T cells and epithelial-immune crosstalk critical to PD-1/CTLA-4-dependent tolerance and barrier function and identify potential therapeutic targets for irColitis.


Colitis , Immune Checkpoint Inhibitors , Intestinal Mucosa , Single-Cell Analysis , Humans , Immune Checkpoint Inhibitors/adverse effects , Colitis/chemically induced , Colitis/immunology , Colitis/genetics , Colitis/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Female , Male , Gene Expression Profiling , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Transcriptome , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Colon/pathology , Colon/immunology , Colon/drug effects , Epithelial Cells/immunology , Epithelial Cells/drug effects , Epithelial Cells/pathology
11.
BMC Med ; 22(1): 207, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769543

BACKGROUND: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer. METHODS: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient. TILs were expanded ex vivo from minced tumors without feeder cells in the modified TIL therapy regimen. Patients underwent low-dose cyclophosphamide lymphodepletion followed by TIL infusion without intravenous IL-2. The primary endpoint was safety; the secondary endpoints included objective response rate, duration of response, and T cell persistence. RESULTS: In matched patient-derived xenografts (PDX) models, homologous TILs efficiently reduced tumor size (p < 0.0001) and underwent IL-2 absence in vivo. In the clinical section, all enrolled patients received TIL infusion using a modified TIL therapy regimen successfully with a manageable safety profile. Five (36%, 95% CI 16.3-61.2) out of 14 evaluable patients experienced objective responses, and three complete responses were ongoing at 19.5, 15.4, and 5.2 months, respectively. Responders had longer overall survival (OS) than non-responders (p = 0.036). Infused TILs showed continuous proliferation and long-term persistence in all patients and showed greater proliferation in responders which was indicated by the Morisita overlap index (MOI) of TCR clonotypes between infused TILs and peripheral T cells on day 14 (p = 0.004) and day 30 (p = 0.004). Higher alteration of the CD8+/CD4+ ratio on day 14 indicated a longer OS (p = 0.010). CONCLUSIONS: Our modified TIL therapy regimen demonstrated manageable safety, and TILs could survive and proliferate without IL-2 intravenous administration, showing potent efficacy in patients with advanced gynecologic cancer. TRIAL REGISTRATION: NCT04766320, Jan 04, 2021.


Interleukin-2 , Lymphocytes, Tumor-Infiltrating , Humans , Female , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Middle Aged , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , Animals , Aged , Adult , Mice , Genital Neoplasms, Female/therapy , Genital Neoplasms, Female/drug therapy , Treatment Outcome , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use
12.
Sci Rep ; 14(1): 10873, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740918

In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.


Adenocarcinoma of Lung , Anoikis , B7-H1 Antigen , Immunotherapy , Lung Neoplasms , Programmed Cell Death 1 Receptor , RNA-Seq , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Anoikis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Prognosis , Immunotherapy/methods , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Single-Cell Analysis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Biomarkers, Tumor/genetics
13.
Clin Respir J ; 18(5): e13763, 2024 May.
Article En | MEDLINE | ID: mdl-38717297

OBJECTIVE: This study aimed to investigate the efficacy and safety of PD-1/PD-L1 inhibitors in treatment of elderly patients with advanced non-small cell lung cancer (NSCLC). METHODS: Patients with advanced NSCLC ≥70 years old who received PD-1/PD-L1 inhibitors in our hospital were retrospectively analyzed. According to age, the patient were stratified as follows: 70-75 years old, 76-80 years old, and >80 years old. Kaplan-Meier method was used for survival analysis, and univariate and multivariate Cox proportional hazards regression models were used to analyze the correlation between different clinical characteristics and survival. RESULTS: A total of 58 elderly patients with advanced non-small cell cancer were enrolled in this study. Patients aged 70-75, 76-80, and >80 years old were 32, 19, and 7, respectively. For the all, median OS was 17.0 months, and PFS was 7.0 months. PFS and OS did not differ according to age (P = 0.396, 0.054, respectively). Univariate analysis showed that PS of 0-1, stage III, first-line therapy and irAEs were associated with longer PFS, and PS of 0-1, stage III, and first-line therapy were associated with longer OS. Multivariate analysis showed that patients with stage III had longer PFS. PFS and OS of patients with PS ≥ 2 were significantly shorter than those of patients with PS of 0-1. CONCLUSIONS: In the present real-world retrospective cohort, PD-1/PD-L1 inhibitors are effective and well tolerated in elderly patients with advanced NSCLC. Immunotherapy should be actively used as early as possible in older patients advanced NSCLC.


Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Male , Female , Aged, 80 and over , Retrospective Studies , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Treatment Outcome , B7-H1 Antigen/antagonists & inhibitors , Neoplasm Staging , Kaplan-Meier Estimate
14.
Front Immunol ; 15: 1382576, 2024.
Article En | MEDLINE | ID: mdl-38779661

Monoclonal antibodies targeting immune checkpoints have revolutionized oncology. Yet, the effectiveness of these treatments varies significantly among patients, and they are associated with unexpected adverse events, including hyperprogression. The murine research model used in drug development fails to recapitulate both the functional human immune system and the population heterogeneity. Hence, a novel model is urgently needed to study the consequences of immune checkpoint blockade. Dogs appear to be uniquely suited for this role. Approximately 1 in 4 companion dogs dies from cancer, yet no antibodies are commercially available for use in veterinary oncology. Here we characterize two novel antibodies that bind canine PD-1 with sub-nanomolar affinity as measured by SPR. Both antibodies block the clinically crucial PD-1/PD-L1 interaction in a competitive ELISA assay. Additionally, the antibodies were tested with a broad range of assays including Western Blot, ELISA, flow cytometry, immunofluorescence and immunohistochemistry. The antibodies appear to bind two distinct epitopes as predicted by molecular modeling and peptide phage display. Our study provides new tools for canine oncology research and a potential veterinary therapeutic.


Antibodies, Monoclonal , Programmed Cell Death 1 Receptor , Dogs , Animals , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Antibodies, Monoclonal/immunology , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Epitopes/immunology , Dog Diseases/immunology , Dog Diseases/drug therapy , Protein Binding , Neoplasms/immunology , Neoplasms/veterinary , Neoplasms/drug therapy
15.
Front Immunol ; 15: 1366271, 2024.
Article En | MEDLINE | ID: mdl-38779675

A patient in his 40s with splenic angiosarcoma metastatic to the liver underwent splenectomy, chemotherapy, and partial hepatectomy before being treated on a clinical trial with CTLA4 and PD1 inhibitors. He had received pneumococcal and meningococcal vaccines post-splenectomy. On week 10, he developed grade 3 immune-related colitis, successfully treated with the anti-tumor necrosis factor-alpha inhibitor infliximab and steroids. After 4 cycles of treatment, scans showed partial response. He resumed anti-PD1 therapy, and 6 hours after the second dose of anti-PD1 he presented to the emergency room with hematemesis, hematochezia, hypotension, fever, and oxygen desaturation. Laboratory tests demonstrated acute renal failure and septicemia (Streptococcus pneumoniae). He died 12 hours after the anti-PD1 infusion from overwhelming post-splenectomy infection (OPSI). Autopsy demonstrated non-viable liver tumors among other findings. In conclusion, patients undergoing immunotherapy and with prior history of asplenia should be monitored closely for OPSI as they may be at increased risk.


Hemangiosarcoma , Liver Neoplasms , Splenectomy , Splenic Neoplasms , Humans , Splenectomy/adverse effects , Male , Hemangiosarcoma/therapy , Splenic Neoplasms/secondary , Splenic Neoplasms/therapy , Fatal Outcome , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Immunotherapy/methods , Adult , Pneumococcal Infections/etiology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors
16.
J Pharmacol Sci ; 155(3): 84-93, 2024 Jul.
Article En | MEDLINE | ID: mdl-38797537

The development of targeted cancer therapies based on monoclonal antibodies against tumor-associated antigens has progressed markedly over recent decades. This approach is dependent on the identification of tumor-specific, normal tissue-sparing antigenic targets. The transmembrane protein claudin-18 splice variant 2 (CLDN18.2) is frequently and preferentially displayed on the surface of primary gastric adenocarcinomas, making it a promising monoclonal antibody target. Phase 3 studies of zolbetuximab, a chimeric immunoglobulin G1 monoclonal antibody targeting CLDN18.2, combined with 5-fluorouracil/leucovorin plus oxaliplatin (modified FOLFOX6) or capecitabine plus oxaliplatin (CAPOX) in advanced or metastatic first-line gastric or gastroesophageal junction (G/GEJ) adenocarcinoma have demonstrated favorable clinical results with zolbetuximab. In studies using xenograft or syngeneic models with gastric cancer cell lines, zolbetuximab mediated death of CLDN18.2-positive human cancer cell lines via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro and demonstrated anti-tumor efficacy as monotherapy and combined with chemotherapy in vivo. Mice treated with zolbetuximab plus chemotherapy displayed a significantly higher frequency of tumor-infiltrating CD8+ T cells versus vehicle/isotype control-treated mice. Furthermore, zolbetuximab combined with an anti-mouse programmed cell death-1 antibody more potently inhibited tumor growth compared with either agent alone. These results support the potential of zolbetuximab as a novel treatment option for G/GEJ adenocarcinoma.


Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Claudins , Stomach Neoplasms , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/immunology , Animals , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Mice , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Disease Models, Animal , Xenograft Model Antitumor Assays , Antibody-Dependent Cell Cytotoxicity/drug effects
17.
J Cancer Res Clin Oncol ; 150(5): 262, 2024 May 19.
Article En | MEDLINE | ID: mdl-38762825

PURPOSE: Immune checkpoint inhibitors (ICIs) plus tyrosine kinase inhibitors (TKIs) has become first-line therapy for metastatic renal cell carcinoma patients. This study aims to investigate the effect of tumor infiltrating B lymphocytes (TIBs) on the combination therapy. METHODS: The retrospective analysis was conducted on the clinical records of 115 metastatic clear cell renal cell carcinoma (mccRCC) patients treated with anti-PD-1 antibody plus Axitinib between March 2020 and June 2023. Observation target: objective response rate (ORR), and overall survival (OS), progression-free survival (PFS) and immune profile. RESULTS: Patients with high TIBs portended lower ORR of the combination therapy (p = 0.033). TIBs was an independent predictor for poorer OS (p = 0.013) and PFS (p = 0.021) in mccRCC patients with combination treatment. TIBs infiltration was associated with more CD4+T (p < 0.001), CD8+T (p < 0.001), M2 macrophages (p = 0.020) and regulatory T cells (Tregs) (p = 0.004). In TIBs high patients, the percentages of PD-1, CTLA-4 and TIM-3 positive rate were significantly increased in CD4+T (p = 0.038, 0.029 and 0.002 respectively) and CD8+T cells (p = 0.006, 0.026 and < 0.001 respectively). CONCLUSIONS: Our study revealed TIBs infiltration predicted adverse outcomes in mccRCC patients treated with anti-PD-1 antibody plus Axitinib. As a corollary, TIBs positively associated with M2 macrophages and Tregs, leading to subsequent multiple immune checkpoints related exhaustion of T cells. Thus, only PD-1 blockade are inadequate to reverse T cells exhaustion effectively in high TIBs mccRCC patients.


Antineoplastic Combined Chemotherapy Protocols , Axitinib , B-Lymphocytes , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Axitinib/therapeutic use , Axitinib/administration & dosage , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Male , Female , Middle Aged , Retrospective Studies , Kidney Neoplasms/drug therapy , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/administration & dosage , Aged , Lymphocytes, Tumor-Infiltrating/immunology , B-Lymphocytes/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Aged, 80 and over
18.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791528

An immune checkpoint is a signaling pathway that regulates the recognition of antigens by T-cell receptors (TCRs) during an immune response. These checkpoints play a pivotal role in suppressing excessive immune responses and maintaining immune homeostasis against viral or microbial infections. There are several FDA-approved immune checkpoint inhibitors (ICIs), including ipilimumab, pembrolizumab, and avelumab. These ICIs target cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and programmed death ligand 1 (PD-L1). Furthermore, ongoing efforts are focused on developing new ICIs with emerging potential. In comparison to conventional treatments, ICIs offer the advantages of reduced side effects and durable responses. There is growing interest in the potential of combining different ICIs with chemotherapy, radiation therapy, or targeted therapies. This article comprehensively reviews the classification, mechanism of action, application, and combination strategies of ICIs in various cancers and discusses their current limitations. Our objective is to contribute to the future development of more effective anticancer drugs targeting immune checkpoints.


Immune Checkpoint Inhibitors , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Animals , CTLA-4 Antigen/antagonists & inhibitors , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immunomodulation/drug effects
19.
Oncoimmunology ; 13(1): 2355684, 2024.
Article En | MEDLINE | ID: mdl-38798746

Identifying tumor-relevant T cell subsets in the peripheral blood (PB) has become a potential strategy for cancer treatment. However, the subset of PB that could be used to treat cancer remains poorly defined. Here, we found that the CX3CR1+ T cell subset in the blood of patients with lung cancer exhibited effector properties and had a higher TCR matching ratio with tumor-infiltrating lymphocytes (TILs) compared to CX3CR1- T cells, as determined by paired single-cell RNA and TCR sequencing. Meanwhile, the anti-tumor activities, effector cytokine production, and mitochondrial function were enhanced in CX3CR1+ T cells both in vitro and in vivo. However, in the co-culture system of H322 cells with T cells, the percentages of apoptotic cells and Fas were substantially higher in CX3CR1+ T cells than those in CX3CR1- T cells. Fas-mediated apoptosis was rescued by treatment with an anti-PD-1 antibody. Accordingly, the combination of adoptive transfer of CX3CR1+ T cells and anti-PD-1 treatment considerably decreased Fas expression and improved the survival of lung xenograft mice. Moreover, an increased frequency of CX3CR1+ T cells in the PB correlated with a better response and prolonged survival of patients with lung cancer who received anti-PD-1 therapy. These findings indicate the promising potential of adoptive transfer of peripheral CX3CR1+ T cells as an individual cancer immunotherapy.


CX3C Chemokine Receptor 1 , Immune Checkpoint Inhibitors , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , CX3C Chemokine Receptor 1/metabolism , Humans , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Xenograft Model Antitumor Assays , Cell Line, Tumor , Female , Apoptosis/drug effects , Male , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
20.
Biomolecules ; 14(5)2024 May 18.
Article En | MEDLINE | ID: mdl-38786004

Current anti-cancer immune checkpoint therapy relies on antibodies that primarily target the PD-1/PD-L1(-L2) negative regulatory pathway. Although very successful in some cases for certain cancers, these antibodies do not help most patients who, presumably, should benefit from this type of therapy. Therefore, an unmet clinical need for novel, more effective drugs targeting immune checkpoints remains. We have developed a series of high-potency peptide inhibitors interfering with PD-1/PD-L1(-L2) protein-protein interaction. Our best peptide inhibitors are 12 and 14 amino acids long and show sub-micromolar IC50 inhibitory activity in the in vitro assay. The positioning of the peptides within the PD-1 binding site is explored by extensive modeling. It is further supported by 2D NMR studies of PD-1/peptide complexes. These results reflect substantial progress in the development of immune checkpoint inhibitors using peptidomimetics.


Immune Checkpoint Inhibitors , Peptides , Programmed Cell Death 1 Ligand 2 Protein , Programmed Cell Death 1 Receptor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemistry , Immune Checkpoint Inhibitors/therapeutic use , Humans , Peptides/chemistry , Peptides/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Ligand 2 Protein/antagonists & inhibitors , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Protein Binding , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Binding Sites , Neoplasms/drug therapy , Neoplasms/immunology
...