Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 173
1.
Res Vet Sci ; 175: 105321, 2024 Aug.
Article En | MEDLINE | ID: mdl-38843689

The aim of the present study was to determine the effects of the adipokines progranulin and omentin on the basic functions of feline ovarian cells. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the proliferation (accumulation of PCNA and cyclin B1), apoptosis (accumulation of Bax and caspase 3) and progesterone release of cultured feline ovarian granulosa cells by quantitative immunocytochemistry and enzyme-linked immunosorbent assays (ELISAs). Both progranulin and omentin increased cell proliferation and decreased apoptosis. Both progranulin and omentin promoted progesterone release. The present findings demonstrate that the adipokines progranulin and omentin can directly regulate basic feline ovarian cell functions.


Apoptosis , Cell Proliferation , Granulosa Cells , Animals , Female , Cats , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Progesterone/metabolism , Progesterone/pharmacology , Progranulins/metabolism , Cytokines/metabolism , Cells, Cultured , Lectins/metabolism , Lectins/pharmacology
2.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838131

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Brain , Dependovirus , Disease Models, Animal , Frontotemporal Lobar Degeneration , Mice, Knockout , Progranulins , Animals , Humans , Mice , Brain/metabolism , Brain/pathology , Dependovirus/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Genetic Therapy , Phosphorylation , Progranulins/metabolism , Progranulins/genetics , Receptors, Transferrin/metabolism
3.
Reprod Biol Endocrinol ; 22(1): 38, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575956

The present study aimed to examine the effects of progranulin and omentin on basic ovarian cell functions. For this purpose, we investigated the effects of the addition of progranulin and omentin (0, 0.1, 1, or 10 ng/ml) on the viability, proliferation, apoptosis and steroidogenesis of cultured rabbit ovarian granulosa cells. To determine the importance of the interrelationships between granulosa cells and theca cells, we compared the influence of progranulin and omentin on progesterone and estradiol release in cultured granulosa cells and ovarian fragments containing both granulosa cells and theca cells. Cell viability, proliferation, cytoplasmic apoptosis and release of progesterone and estradiol were measured by Cell Counting Kit-8 (CCK-8), BrdU incorporation, cell death detection, and ELISA. Both progranulin and omentin increased granulosa cell viability and proliferation and decreased apoptosis. Progranulin increased progesterone release by granulosa cells but reduced progesterone output by ovarian fragments. Progranulin decreased estradiol release by granulosa cells but increased it in ovarian fragments. Omentin reduced progesterone release in both models. Omentin reduced estradiol release by granulosa cells but promoted this release in ovarian fragments. The present observations are the first to demonstrate that progranulin and omentin can be direct regulators of basic ovarian cell functions. Furthermore, the differences in the effects of these adipokines on steroidogenesis via granulosa and ovarian fragments indicate that these peptides could target both granulosa and theca cells.


Adipokines , Progesterone , Female , Animals , Rabbits , Progesterone/metabolism , Progranulins/metabolism , Progranulins/pharmacology , Adipokines/metabolism , Adipokines/pharmacology , Ovary/metabolism , Granulosa Cells/metabolism , Estradiol/metabolism , Apoptosis , Cells, Cultured , Cell Proliferation
4.
J Transl Med ; 22(1): 407, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689292

BACKGROUND AND OBJECTIVE: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment. METHODS: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization. RESULTS: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization. CONCLUSIONS: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.


Cell Polarity , Macrophages , Periodontitis , Progranulins , Receptors, Tumor Necrosis Factor, Type II , Periodontitis/metabolism , Periodontitis/pathology , Macrophages/metabolism , Humans , Animals , Receptors, Tumor Necrosis Factor, Type II/metabolism , Progranulins/metabolism , Mice , RAW 264.7 Cells , Gingiva/metabolism , Gingiva/pathology , Male , Female , Adult , Macrophage Activation , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL
5.
Sci Rep ; 14(1): 9064, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643236

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Frontotemporal Dementia , Humans , Progranulins/metabolism , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Epigenesis, Genetic , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism
6.
Sci Total Environ ; 921: 171101, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38387595

Recent epidemiological and animal studies have indicated that ambient fine particulate matter (PM2.5) exposure during pregnancy is closely associated with intrauterine growth restriction (IUGR). However, the underlying mechanisms remain to be revealed. In this study, we found that gestational exposure to PM2.5 significantly decreased fetal weight and crown-rump length in mice, accompanied by insufficient placental trophoblast syncytialization and increased expression of progranulin (PGRN) in mice placenta. Administering PGRN neutralizing antibody to pregnant mice alleviated growth restriction and insufficient placental trophoblast syncytialization caused by PM2.5, accompanied with suppressed activation of the mTOR signaling pathway. Furthermore, in vitro experiments using human placental BeWo cells showed that 10 µg·mL-1 PM2.5 activated PGRN/mTOR signaling and suppressed forskolin-induced cell fusion, which was blocked by knockdown of PGRN. Taken together, our results demonstrated that PM2.5 exposure during pregnancy inhibited placental trophoblast syncytialization by activating PGRN/mTOR signaling, leading to abnormal placental development and IUGR. This study reveals a novel mechanism underlying the developmental toxicity of PM2.5 exposure during pregnancy.


Placenta , Trophoblasts , Pregnancy , Female , Humans , Animals , Mice , Placenta/metabolism , Progranulins/toxicity , Progranulins/metabolism , Trophoblasts/metabolism , Signal Transduction , Fetal Development , Fetal Growth Retardation , TOR Serine-Threonine Kinases/toxicity , TOR Serine-Threonine Kinases/metabolism
7.
Neuroreport ; 35(5): 320-327, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38305117

Sortilin is a single-pass type I transmembrane protein which can bind to various cargo proteins, regulating their surface location, secretion, or degradation in lysosomes. In our previous study, we found that sortilin can regulate progranulin expression by transporting it to lysosomes and reduce neuronal cell injury in hypoxia-ischemia, but the expression and function of sortilin in microglial cells during hypoxia-ischemia are unknown. The purpose of this study was to further investigate the function of sortilin in microglial cells and its effect on neuron cells. In rat BV2 microglial cells, sortilin was knocked down by lentivirus. After oxygen-glucose deprivation/reperfusion (OGD/R), expression of sortilin, progranulin (PGRN) and JNK pathway was detected by western blot, immunofluorescence was used to show the localization of PGRN, secretion of TNFα/IL-6 was measured by Elisa. Then co-culture microglial cells with neuron cells during hypoxia-ischemia and detected the neuron injury by CCK-8 and TUNEL. The expression of sortilin, mature and cleaved PGRN were all increased after OGD/R in microglial cells. Furthermore, sortilin inhibition accompany with less PGRN localization in lysosomes and more mature and less cleaved PGRN expression in microglial cells. Sortilin inhibition also can reduce the inflammatory response in microglial cells, but it does not alleviate neuronal injury in co-culture. This study demonstrated that sortilin can regulate the expression of PGRN and reduce the inflammatory response in microglial cells. However, only inhibiting sortilin in microglial cells did not have an impact on the survival of neurons during ischemia-hypoxia.


Microglia , Reperfusion Injury , Rats , Animals , Progranulins/metabolism , Coculture Techniques , Hypoxia/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Neurons/metabolism , Ischemia/metabolism , Oxygen/metabolism , Glucose/metabolism , Reperfusion Injury/metabolism
8.
Clin Immunol ; 261: 109940, 2024 04.
Article En | MEDLINE | ID: mdl-38365048

As the aging population increases, the focus on elderly patients with acute respiratory distress syndrome (ARDS) is also increasing. In this article, we found progranulin (PGRN) differential expression in ARDS patients and healthy controls, even in young and old ARDS patients. Its expression strongly correlates with several cytokines in both young and elderly ARDS patients. PGRN has comparable therapeutic effects in young and elderly mice with lipopolysaccharide-induced acute lung injury, manifesting as lung injury, apoptosis, inflammation, and regulatory T cells (Tregs) differentiation. Considering that Tregs differentiation relies on metabolic reprogramming, we discovered that Tregs differentiation was mediated by mitochondrial function, especially in the aged population. Furthermore, we demonstrated that PGRN alleviated the mitochondrial damage during Tregs differentiation through the AMPK/PGC-1α pathway in T cells. Collectively, PGRN may regulate mitochondria function to promote Tregs differentiation through the AMPK/PGC-1α pathway to improve ARDS.


Acute Lung Injury , Respiratory Distress Syndrome , Humans , Aged , Mice , Animals , Progranulins/metabolism , Progranulins/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , T-Lymphocytes, Regulatory/metabolism , Mitochondria/metabolism , Acute Lung Injury/metabolism
9.
J Neuroinflammation ; 21(1): 47, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38347588

BACKGROUND: Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS: To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS: iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS: Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.


Frontotemporal Dementia , Pick Disease of the Brain , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Haploinsufficiency , Lysosomes/metabolism , Microglia/pathology , Neuroinflammatory Diseases , Pick Disease of the Brain/metabolism , Progranulins/genetics , Progranulins/metabolism
10.
Hum Mol Genet ; 33(3): 245-253, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-37903062

Progranulin is an evolutionarily conserved protein that has been implicated in human neurodevelopmental and neurodegenerative diseases. Human progranulin is comprised of multiple cysteine-rich, biologically active granulin peptides. Granulin peptides accumulate with age and stress, however their functional contributions relative to full-length progranulin remain unclear. To address this, we generated C. elegans strains that produced quantifiable levels of both full-length progranulin/PGRN-1 protein and cleaved granulin peptide. Using these strains, we demonstrated that even in the presence of intact PGRN-1, granulin peptides suppressed the activity of the lysosomal aspartyl protease activity, ASP-3/CTSD. Granulin peptides were also dominant over PGRN-1 in compromising animal fitness as measured by progress through development and stress response. Finally, the degradation of human TDP-43 was impaired when the granulin to PGRN-1 ratio was increased, representing a disease-relevant downstream impact of impaired lysosomal function. In summary, these studies suggest that not only absolute progranulin levels, but also the balance between full-length progranulin and its cleavage products, is important in regulating lysosomal biology. Given its relevance in human disease, this suggests that the processing of progranulin into granulins should be considered as part of disease pathobiology and may represent a site of therapeutic intervention.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Granulins , Progranulins , Animals , Humans , Caenorhabditis elegans/physiology , Granulins/metabolism , Intercellular Signaling Peptides and Proteins , Neurodegenerative Diseases , Progranulins/metabolism , Caenorhabditis elegans Proteins/metabolism
11.
Biochem Biophys Res Commun ; 691: 149341, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38039836

Myocardial infarction (MI) induces structural and electrical cardiac remodeling in response to ischemic insult, causing lethal arrhythmias and sudden death. Progranulin (PGRN) is a glycoprotein mainly expressed in macrophages that modulates the immune responses. In this study, we investigated the direct influence of PGRN knockout (Grn-/-) macrophages on post-MI pathophysiology. An MI mouse model was established by ligating the left coronary artery for RNA sequencing and electrocardiographic analysis. Bone marrow-derived macrophages (BMDMs) were injected into mice and supernatant was collected for the measurement of reactive oxygen species (ROS) levels and extracellular flux analysis. Administration of Grn-/- BMDMs prolonged the QT intervals in the MI mouse model. Moreover, genes highly expressed in macrophages were upregulated in Grn-/- heart after MI. Post-hypoxic supernatant of Grn-/- BMDMs increased the oxygen-glucose deprivation-induced cardiomyocyte death. Grn-/- BMDMs exhibited increased ROS production, oxygen consumption, and extracellular acidification under hypoxia and inflammatory conditions. These findings suggest that PGRN deficiency causes cardiotoxicity via secretory components of macrophages that exhibit metabolic abnormalities under hypoxia.


Cardiotoxicity , Myocardial Infarction , Mice , Animals , Progranulins/metabolism , Cardiotoxicity/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism
12.
J Neuroinflammation ; 20(1): 286, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-38037070

BACKGROUND: Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY: It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION: PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.


Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Progranulins/metabolism , Neurodegenerative Diseases/metabolism , Glycoproteins/metabolism , Inflammation/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/metabolism
13.
Exp Mol Med ; 55(11): 2376-2389, 2023 11.
Article En | MEDLINE | ID: mdl-37907740

Osteoarthritis (OA) is a full-joint, multifactorial, degenerative and inflammatory disease that seriously affects the quality of life of patients due to its disabling and pain-causing properties. ER stress has been reported to be closely related to the progression of OA. The inositol-requiring enzyme 1α/X-box-binding protein-1 spliced (IRE1α/XBP1s) pathway, which is highly expressed in the chondrocytes of OA patients, promotes the degradation and refolding of abnormal proteins during ER stress and maintains the stability of the ER environment of chondrocytes, but its function and the underlying mechanisms of how it contributes to the progression of OA remain unclear. This study investigates the role of IRE1α/ERN1 in OA. Specific deficiency of ERN1 in chondrocytes spontaneously resulted in OA-like cartilage destruction and accelerated OA progression in a surgically induced arthritis model. Local delivery of AdERN1 relieved degradation of the cartilage matrix and prevented OA development in an ACLT-mediated model. Mechanistically, progranulin (PGRN), an intracellular chaperone, binds to IRE1α, promoting its phosphorylation and splicing of XBP1u to generate XBP1s. XBP1s protects articular cartilage through TNF-α/ERK1/2 signaling and further maintains collagen homeostasis by regulating type II collagen expression. The chondroprotective effect of IRE1α/ERN1 is dependent on PGRN and XBP1s splicing. ERN1 deficiency accelerated cartilage degeneration in OA by reducing PGRN expression and XBP1s splicing, subsequently decreasing collagen II expression and triggering collagen structural abnormalities and an imbalance in collagen homeostasis. This study provides new insights into OA pathogenesis and the UPR and suggests that IRE1α/ERN1 may serve as a potential target for the treatment of joint degenerative diseases, including OA.


Cartilage, Articular , Osteoarthritis , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Progranulins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Quality of Life , Osteoarthritis/metabolism , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Collagen/metabolism , Homeostasis , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
14.
J Biol Chem ; 299(12): 105446, 2023 Dec.
Article En | MEDLINE | ID: mdl-37949230

Increasing evidence suggests that aberrant regulation of sortilin ectodomain shedding can contribute to amyloid-ß pathology and frontotemporal dementia, although the mechanism by which this occurs has not been elucidated. Here, we probed for novel binding partners of sortilin using multiple and complementary approaches and identified two proteins of the neuron-specific gene (NSG) family, NSG1 and NSG2, that physically interact and colocalize with sortilin. We show both NSG1 and NSG2 induce subcellular redistribution of sortilin to NSG1- and NSG2-enriched compartments. However, using cell surface biotinylation, we found only NSG1 reduced sortilin cell surface expression, which caused significant reductions in uptake of progranulin, a molecular determinant for frontotemporal dementia. In contrast, we demonstrate NSG2 has no effect on sortilin cell surface abundance or progranulin uptake, suggesting specificity for NSG1 in the regulation of sortilin cell surface expression. Using metalloproteinase inhibitors and A disintegrin and metalloproteinase 10 KO cells, we further show that NSG1-dependent reduction of cell surface sortilin occurred via proteolytic processing by A disintegrin and metalloproteinase 10 with a concomitant increase in shedding of sortilin ectodomain to the extracellular space. This represents a novel regulatory mechanism for sortilin ectodomain shedding that is regulated in a neuron-specific manner. Furthermore, this finding has implications for the development of strategies for brain-specific regulation of sortilin and possibly sortilin-driven pathologies.


Adaptor Proteins, Vesicular Transport , Carrier Proteins , Metalloproteases , Nerve Tissue Proteins , Neurons , Adaptor Proteins, Vesicular Transport/metabolism , Biotinylation , Brain/cytology , Brain/metabolism , Brain/pathology , Carrier Proteins/metabolism , Disintegrins/deficiency , Disintegrins/genetics , Disintegrins/metabolism , Frontotemporal Dementia/metabolism , Metalloproteases/antagonists & inhibitors , Metalloproteases/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Progranulins/metabolism , Protein Binding , Proteolysis , Cell Membrane/metabolism , Amyloid beta-Peptides/metabolism
15.
J Biol Chem ; 299(11): 105272, 2023 11.
Article En | MEDLINE | ID: mdl-37739033

The cytoplasmic accumulation of the nuclear protein transactive response DNA-binding protein 43 kDa (TDP-43) has been linked to the progression of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 secreted into the extracellular space has been suggested to contribute to the cell-to-cell spread of the cytoplasmic accumulation of TDP-43 throughout the brain; however, the underlying mechanisms remain unknown. We herein demonstrated that the secretion of TDP-43 was stimulated by the inhibition of the autophagy-lysosomal pathway driven by progranulin (PGRN), a causal protein of frontotemporal lobar degeneration. Among modulators of autophagy, only vacuolar-ATPase inhibitors, such as bafilomycin A1 (Baf), increased the levels of the full-length and cleaved forms of TDP-43 and the autophagosome marker LC3-II (microtubule-associated proteins 1A/1B light chain 3B) in extracellular vesicle fractions prepared from the culture media of HeLa, SH-SY5Y, or NSC-34 cells, whereas vacuolin-1, MG132, chloroquine, rapamycin, and serum starvation did not. The C-terminal fragment of TDP-43 was required for Baf-induced TDP-43 secretion. The Baf treatment induced the translocation of the aggregate-prone GFP-tagged C-terminal fragment of TDP-43 and mCherry-tagged LC3 to the plasma membrane. The Baf-induced secretion of TDP-43 was attenuated in autophagy-deficient ATG16L1 knockout HeLa cells. The knockdown of PGRN induced the secretion of cleaved TDP-43 in an autophagy-dependent manner in HeLa cells. The KO of PGRN in mouse embryonic fibroblasts increased the secretion of the cleaved forms of TDP-43 and LC3-II. The treatment inducing TDP-43 secretion increased the nuclear translocation of GFP-tagged transcription factor EB, a master regulator of the autophagy-lysosomal pathway in SH-SY5Y cells. These results suggest that the secretion of TDP-43 is promoted by dysregulation of the PGRN-driven autophagy-lysosomal pathway.


Autophagy , DNA-Binding Proteins , Lysosomes , Progranulins , Humans , Autophagy/drug effects , Autophagy/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lysosomes/metabolism , Progranulins/genetics , Progranulins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Gene Expression Regulation/drug effects , Extracellular Vesicles/metabolism , Enzyme Inhibitors/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism
16.
Biol Pharm Bull ; 46(8): 1032-1040, 2023.
Article En | MEDLINE | ID: mdl-37532554

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms and neuropathological features, such as loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of alpha-synuclein (α-Syn). Progranulin (PGRN) is a secreted growth factor that exhibits anti-inflammatory properties and regulates lysosomal function. Although autophagy-lysosome pathway is the main degradative pathway for α-Syn, the molecular mechanistic relationship between PD and PGRN remains unclear. In this study, we investigated the role of PGRN in PD pathology. PGRN protein expression in striatum was increased in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model mice. Intracerebroventricular (i.c.v.) administration of PGRN ameliorated the decrease in expression of tyrosine hydroxylase, a dopaminergic neuron marker, in MPTP-treated mice. Furthermore, i.c.v. administration of PGRN ameliorated 6-hydroxydopamine-induced motor deficits. In SH-SY5Y human neuroblastoma cells, 1-methyl-4-phenylpyridinium ion (MPP+), an active metabolite of MPTP, increased α-Syn expression. In contrast, PGRN ameliorated MPP+-induced increase in α-Syn expression. Although PGRN decreased the levels of autophagy-related proteins Sequestosome-1 (p62) and MAP1LC3 (LC3)-II, PGRN did not influence the phosphorylation of AMP-activated protein kinase and mechanistic target of rapamycin, which are also proteins that regulate autophagy. Immunostaining analysis showed that PGRN ameliorated MPP+-induced increase of LC3 puncta, indicator of autophagosome, and co-localization of LC3 and α-Syn. The DALGreen assay showed that PGRN ameliorated MPP+-induced decreasing trend of autolysosomes. These results suggest that PGRN participates in α-Syn degradation via acceleration of the autophagy-lysosome pathway and is a potential therapeutic target for PD.


Neuroblastoma , Parkinson Disease , Animals , Humans , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , alpha-Synuclein/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , Lysosomes/metabolism , Mice, Inbred C57BL , Neuroblastoma/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Progranulins/metabolism
17.
Cell Mol Neurobiol ; 43(7): 3435-3447, 2023 Oct.
Article En | MEDLINE | ID: mdl-37561339

Stroke is a life-threatening medical condition and is a leading cause of disability. Cerebral ischemia is characterized by a distinct inflammatory response starting with the production of various cytokines and other inflammation-related agents. Progranulin (PGRN), a multifunctional protein, is critical in diverse physiological reactions, such as cell proliferation, inflammation, wound healing, and nervous system development. A mature PGRN is anti-inflammatory, while granulin, its derivative, conversely induces pro-inflammatory cytokine expression. PGRN is significantly involved in the brain tissue and its damage, for example, improving mood and cognitive disorders caused by cerebral ischemia. It may also have protective effects against nerve and spinal cord injuries by inhibiting neuroinflammatory response and apoptosis or it may be related to the proliferation, accumulation, differentiation, and activation of microglia. PGRN is a neurotrophic factor in the central nervous system. It may increase post-stroke neurogenesis of the subventricular zone (SVZ), which is particularly important in improving long-term brain function following cerebral ischemia. The neurogenesis enhanced via PGRN in the ischemic brain SVZ may be attributed to the induction of PI3K/AKT and MAPK/ERK signaling routes. PGRN can also promote the proliferation of neural stem/progenitor cells through PI3K/AKT signaling pathway. PGRN increases hippocampal neurogenesis, reducing anxiety and impaired spatial learning post-cerebral ischemia. PGRN alleviates cerebral ischemia/reperfusion injury by reducing endoplasmic reticulum stress and suppressing the NF-κB signaling pathway. PGRN can be introduced as a potent neuroprotective agent capable of improving post-ischemia neuronal actions, mainly by reducing and elevating the inflammatory and anti-inflammatory cytokines. Expression, storage, cleavage, and function of progranulin (PGRN) in the pathogenesis of ischemic stroke.


Brain Ischemia , Ischemic Stroke , Stroke , Humans , Progranulins/metabolism , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Brain Ischemia/metabolism , Stroke/complications , Cytokines/metabolism , Inflammation/metabolism
18.
Cells ; 12(13)2023 07 07.
Article En | MEDLINE | ID: mdl-37443837

Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3ß (GSK3ß) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3ß before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3ß-dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3ß inhibition. Lastly, GSK3ß inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3ß plays an important role in progranulin's neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin's protective capabilities in other neurodegenerative models.


Diabetes Mellitus, Type 2 , Hyperglycemia , Mice , Animals , Progranulins/metabolism , Diabetes Mellitus, Type 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hyperglycemia/complications , Hyperglycemia/metabolism , Glucose/toxicity , Glucose/metabolism , Neurons/metabolism
19.
Acta Neuropathol Commun ; 11(1): 52, 2023 03 27.
Article En | MEDLINE | ID: mdl-36967384

Heterozygous mutations in the GRN gene and hexanucleotide repeat expansions in C9orf72 are the two most common genetic causes of Frontotemporal Dementia (FTD) with TDP-43 protein inclusions. The triggers for neurodegeneration in FTD with GRN (FTD-GRN) or C9orf72 (FTD-C9orf72) gene abnormalities are unknown, although evidence from mouse and cell culture models suggests that GRN mutations disrupt lysosomal lipid catabolism. To determine how brain lipid metabolism is affected in familial FTD with TDP-43 inclusions, and how this is related to myelin and lysosomal markers, we undertook comprehensive lipidomic analysis, enzyme activity assays, and western blotting on grey and white matter samples from the heavily-affected frontal lobe and less-affected parietal lobe of FTD-GRN cases, FTD-C9orf72 cases, and age-matched neurologically-normal controls. Substantial loss of myelin-enriched sphingolipids (sulfatide, galactosylceramide, sphingomyelin) and myelin proteins was observed in frontal white matter of FTD-GRN cases. A less-pronounced, yet statistically significant, loss of sphingolipids was also observed in FTD-C9orf72. FTD-GRN was distinguished from FTD-C9orf72 and control cases by increased acylcarnitines in frontal grey matter and marked accumulation of cholesterol esters in both frontal and parietal white matter, indicative of myelin break-down. Both FTD-GRN and FTD-C9orf72 cases showed significantly increased lysosomal and phagocytic protein markers, however galactocerebrosidase activity, required for lysosomal catabolism of galactosylceramide and sulfatide, was selectively increased in FTD-GRN. We conclude that both C9orf72 and GRN mutations are associated with disrupted lysosomal homeostasis and white matter lipid loss, but GRN mutations cause a more pronounced disruption to myelin lipid metabolism. Our findings support the hypothesis that hyperactive myelin lipid catabolism is a driver of gliosis and neurodegeneration in FTD-GRN. Since FTD-GRN is associated with white matter hyperintensities by MRI, our data provides important biochemical evidence supporting the use of MRI measures of white matter integrity in the diagnosis and management of FTD.


C9orf72 Protein , Frontotemporal Dementia , Pick Disease of the Brain , Progranulins , Animals , Mice , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Galactosylceramides/metabolism , Lipid Metabolism/genetics , Mutation/genetics , Myelin Sheath/metabolism , Pick Disease of the Brain/metabolism , Progranulins/genetics , Progranulins/metabolism , Sulfoglycosphingolipids/metabolism , Humans
20.
Biosci Trends ; 17(2): 126-135, 2023 May 15.
Article En | MEDLINE | ID: mdl-36889696

Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates ß-glucosylceramide (ß-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and ß-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.


Gaucher Disease , Progranulins , Humans , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glucosylceramidase/therapeutic use , Lysosomes/metabolism , Mutation , Progranulins/genetics , Progranulins/metabolism , Progranulins/therapeutic use , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/therapeutic use
...