Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Sci Rep ; 12(1): 1407, 2022 01 26.
Article En | MEDLINE | ID: mdl-35082381

Female plants not only flower but also produce resource-rich seeds, fruits, and cones. Thus, it is generally considered that female plants allocate more resources to sexual reproduction than male plants and that this allocation difference can explain vegetative dimorphism, such as greater leaf size in females. We found significant sexual vegetative differences in the dioecious and serotinous species, Aulax umbellata and A. cancellata. Plant height, annual branch length and canopy spread were greater in males whereas leaf size, branch thickness and branch number were greater in females. Sex ratios and basal stem area were, however, equal in the sexes. Equal sex ratios imply equal allocation to sexual reproduction and equal stem areas imply equal resource use and biomass, and thus allocation to vegetative growth. Given equal allocation to reproduction and resource use, we suggest that the vegetative dimorphism is driven by intra-male-competition to be more visually conspicuous to pollinators. This implies that plant architecture is both a vegetative and a reproductive trait.


Flowers/anatomy & histology , Fruit/anatomy & histology , Plant Leaves/anatomy & histology , Plant Stems/anatomy & histology , Proteaceae/anatomy & histology , Biomass , Flowers/physiology , Fruit/physiology , Plant Leaves/physiology , Plant Stems/physiology , Pollination/physiology , Proteaceae/physiology , Sex Characteristics , South Africa
2.
Plant Cell Environ ; 44(4): 1257-1267, 2021 04.
Article En | MEDLINE | ID: mdl-33386607

Nutrient-poor ecosystems globally exhibit high plant diversity. One mechanism enabling the co-existence of species in such ecosystems is facilitation among plants with contrasting nutrient-acquisition strategies. The ecophysiological processes underlying these interactions remain poorly understood. We hypothesized that root positioning plays a role between sympatric species in nutrient-poor vegetation. We investigated how the growth traits of the focal mycorrhizal non-cluster-rooted Hibbertia racemosa change when grown in proximity of non-mycorrhizal Banksia attenuata, which produces cluster roots that increase nutrient availability, compared with growth with conspecifics. Focal plants were placed in the centre of rhizoboxes, and biomass allocation, root system architecture, specific root length (SRL), and leaf nutrient concentration were assessed. When grown with B. attenuata, focal plants decreased root investment, increased root growth towards B. attenuata, and positioned their roots near B. attenuata cluster roots. SRL was greater, and the degree of localized root investment correlated positively with B. attenuata cluster-root biomass. Total nutrient contents in the focal individuals were greater when grown with B. attenuata. Focal plants directed their root growth towards the putatively facilitating neighbour's cluster roots, modifying root traits and investment. Preferential root positioning and root morphological traits play important roles in positive plant-plant interactions.


Dilleniaceae/physiology , Nutrients/metabolism , Plant Roots/growth & development , Communication , Dilleniaceae/growth & development , Dilleniaceae/metabolism , Ecosystem , Mycorrhizae , Plant Roots/metabolism , Plant Roots/physiology , Proteaceae/growth & development , Proteaceae/metabolism , Proteaceae/physiology
3.
Proc Biol Sci ; 287(1919): 20192876, 2020 01 29.
Article En | MEDLINE | ID: mdl-31992170

The size of plant stomata (adjustable pores that determine the uptake of CO2 and loss of water from leaves) is considered to be evolutionarily important. This study uses fossils from the major Southern Hemisphere family Proteaceae to test whether stomatal cell size responded to Cenozoic climate change. We measured the length and abundance of guard cells (the cells forming stomata), the area of epidermal pavement cells, stomatal index and maximum stomatal conductance from a comprehensive sample of fossil cuticles of Proteaceae, and extracted published estimates of past temperature and atmospheric CO2. We developed a novel test based on stochastic modelling of trait evolution to test correlations among traits. Guard cell length increased, and stomatal density decreased significantly with decreasing palaeotemperature. However, contrary to expectations, stomata tended to be smaller and more densely packed at higher atmospheric CO2. Thus, associations between stomatal traits and palaeoclimate over the last 70 million years in Proteaceae suggest that stomatal size is significantly affected by environmental factors other than atmospheric CO2. Guard cell length, pavement cell area, stomatal density and stomatal index covaried in ways consistent with coordinated development of leaf tissues.


Biological Evolution , Plant Stomata/physiology , Proteaceae/physiology , Fossils , Plant Leaves
4.
Evolution ; 73(7): 1392-1410, 2019 07.
Article En | MEDLINE | ID: mdl-31125119

Mediterranean-type ecosystems (MTEs) contain exceptional plant diversity. Explanations for this diversity are usually classed as either "equilibrium," with elevated MTE diversity resulting from greater ecological carrying capacities, or "non-equilibrium," with MTEs having a greater accumulation of diversity over time than other types of ecosystems. These models have typically been considered as mutually exclusive. Here, we present a trait-based explanatory framework that incorporates both equilibrium and non-equilibrium dynamics. Using a large continental Australian plant radiation (Hakea) as a case study, we identify traits associated with niche partitioning in coexisting species (α-traits) and with environmental filtering (ß-traits), and reconstruct the mode and relative timing of diversification of these traits. Our results point to a radiation with an early non-equilibrium phase marked by divergence of ß-traits as Hakea diversified exponentially and expanded from the southwest Australian MTE into biomes across the Australian continent. This was followed from seven million years ago by an equilibrium phase, marked by diversification of α-traits and a slowdown in lineage diversification as MTE-niches became saturated. These results suggest that processes consistent with both equilibrium and non-equilibrium models have been important during different stages of the radiation of Hakea, and together they provide a richer explanation of present-day diversity patterns.


Biodiversity , Biological Evolution , Proteaceae/physiology , Australia , Ecosystem , Genetic Speciation , Life History Traits , Phylogeny , Proteaceae/genetics
5.
Am J Bot ; 106(2): 211-222, 2019 02.
Article En | MEDLINE | ID: mdl-30768876

PREMISE OF THE STUDY: Plant traits are often associated with the environments in which they occur, but these associations often differ across spatial and phylogenetic scales. Here we study the relationship between microenvironment, microgeographical location, and traits within populations using co-occurring populations of two closely related evergreen shrubs in the genus Protea. METHODS: We measured a suite of functional traits on 147 plants along a single steep mountainside where both species occur, and we used data-loggers and soil analyses to characterize the environment at 10 microsites spanning the elevational gradient. We used Bayesian path analyses to detect trait-environment relationships in the field for each species. We used complementary data from greenhouse grown seedlings derived from wild collected seed to determine whether associations detected in the field are the result of genetic differentiation. KEY RESULTS: Microenvironmental variables differed substantially across our study site. We found strong evidence for six trait-environment associations, although these differed between species. We were unable to detect similar associations in greenhouse-grown seedlings. CONCLUSIONS: Several leaf traits were associated with temperature and soil variation in the field, but the inability to detect these in the greenhouse suggests that differences in the field are not the result of genetic differentiation.


Microclimate , Proteaceae/physiology , Altitude , Ecosystem , Proteaceae/anatomy & histology , South Africa , Species Specificity
6.
J Integr Plant Biol ; 61(4): 417-432, 2019 Apr.
Article En | MEDLINE | ID: mdl-29993190

Trait divergence between populations is considered an adaptive response to different environments, but to what extent this response is accompanied by genetic differentiation is less clear since it may be phenotypic plasticity. In this study, we analyzed phenotypic variation between two Banksia attenuata growth forms, lignotuberous (shrub) and epicormic resprouting (tree), in fire-prone environments to identify the environmental factors that have driven this phenotypic divergence. We linked genotype with phenotype and traced candidate genes using differential gene expression analysis. Fire intervals determined the phenotypic divergence between growth forms in B. attenuata. A genome-wide association study identified 69 single nucleotide polymorphisms, putatively associated with growth form, whereas no growth form- or phenotype-specific genotypes were identified. Genomic differentiation between the two growth forms was low (Fst = 0.024). Differential gene expression analysis identified 37 genes/transcripts that were differentially expressed in the two growth forms. A small heat-shock protein gene, associated with lignotuber presence, was differentially expressed in the two forms. We conclude that different fire regimes induce phenotypic polymorphism in B. attenuata, whereas phenotypic trait divergence involves the differential expression of a small fraction of genes that interact strongly with the disturbance regime. Thus, phenotypic plasticity among resprouters is the general strategy for surviving varying fire regimes.


Adaptation, Physiological/genetics , Ecotype , Environment , Fires , Genome, Plant , Proteaceae/genetics , Quantitative Trait, Heritable , Gene Expression Regulation, Plant , Genetic Markers , Genotype , Models, Biological , Polymorphism, Single Nucleotide/genetics , Proteaceae/anatomy & histology , Proteaceae/growth & development , Proteaceae/physiology , Seedlings/genetics , Trees/anatomy & histology , Trees/growth & development
7.
New Phytol ; 221(2): 764-777, 2019 01.
Article En | MEDLINE | ID: mdl-30267566

Many Proteaceae are highly phosphorus (P)-sensitive and occur exclusively on old nutrient-impoverished acidic soils (calcifuge), whilst a few also occur on young calcareous soils (soil-indifferent) that are higher in available calcium (Ca) and P. Calcium increases the severity of P-toxicity symptoms, but its underlying mechanisms are unknown. We propose that Ca-enhanced P toxicity explains the calcifuge habit of most Proteaceae. Four calcifuge and four soil-indifferent Proteaceae from South-Western Australia were grown in hydroponics, at a range of P and Ca concentrations. Calcium increased the severity of P-toxicity symptoms in all species. Calcifuge Proteaceae were more sensitive to Ca-enhanced P toxicity than soil-indifferent ones. Calcifuges shared these traits: low leaf zinc concentration ([Zn]), low Zn allocation to leaves, low leaf [Zn]:[P], low root : shoot ratio, and high seed P content, compared with soil-indifferent species. This is the first demonstration of Ca-enhanced P toxicity across multiple species. Calcium-enhanced P toxicity provides an explanation for the calcifuge habit of most Proteaceae and is critical for the management of this iconic Australian family. This study represents a major advance towards an understanding of the physiological mechanisms of P toxicity and its role in the distribution of Proteaceae.


Bays , Calcium/pharmacology , Phosphorus/toxicity , Proteaceae/physiology , Soil/chemistry , Biomass , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/physiology , Plant Shoots/drug effects , Plant Shoots/physiology , Proteaceae/drug effects
8.
Ann Bot ; 122(3): 461-472, 2018 08 27.
Article En | MEDLINE | ID: mdl-29800073

Background and Aims: Trees adjust the configuration of their conductive system in response to changes in water availability, maximizing efficiency in wet environments and increasing safety in dry habitats. However, evidence of this general trend is not conclusive. Generalist species growing across broad climatic gradients provide an ideal framework to assess intra-specific xylem adjustments under contrasting environmental conditions. Our aims were to compare the response of xylem traits to variations in precipitation of two co-occurring generalist tree species, and to assess climate control on xylem trait variability and co-ordination. Methods: We evaluated xylem traits of Embothrium coccineum (Proteaceae, evergreen) and Nothofagus antarctica (Nothofagaceae, deciduous) in three areas across an abrupt precipitation gradient, from 500 to 2500 mm, in southern Chile. We measured wood density, vessel lumen area and density, percentage of conductive area and vessel grouping, and estimated the hydraulic function from anatomical measurements in 60 individuals per species. Key Results: Both species shared a common pattern of response along the precipitation gradient, with an increase in vessel density with dryness, but without changes in estimated hydraulic conductivity. Xylem traits in E. coccineum were more variable and more responsive to the climate gradient, decreasing vessel lumen area and increasing wood density, whereas vessel grouping showed contrasting patterns between species. Additionally, the analysis of trait co-ordination at the individual level revealed a tighter co-ordination among xylem traits in E. coccineum. Conclusions: Estimated xylem efficiency was maintained in combination with different levels of expected xylem safety within species. Reduction in vessel lumen area was compensated through large increases in vessel density, thus breaking the trade-off between xylem efficiency and safety. Otherwise, the existence of alternative internal adjustments in coexisting species to face similar climatic constraints might increase resilience of temperate forests against unpredictable changes in climatic conditions.


Fagales/physiology , Plant Transpiration/physiology , Proteaceae/physiology , Xylem/physiology , Ecosystem , Fagales/anatomy & histology , Forests , Phenotype , Proteaceae/anatomy & histology , Rain , Trees , Water/physiology , Wood , Xylem/anatomy & histology
9.
Plant Cell Environ ; 41(3): 605-619, 2018 03.
Article En | MEDLINE | ID: mdl-29314084

Plants allocate nutrients to specific leaf cell types; eudicots are thought to predominantly allocate phosphorus (P) to epidermal/bundle sheath cells. However, three Proteaceae species have been shown to preferentially allocate P to mesophyll cells instead. These Proteaceae species are highly adapted to P-impoverished habitats, with exceptionally high photosynthetic P-use efficiencies (PPUE). We hypothesized that preferential allocation of P to photosynthetic mesophyll cells is an important trait in species adapted to extremely P-impoverished habitats, contributing to their high PPUE. We used elemental X-ray mapping to determine leaf cell-specific nutrient concentrations for 12 Proteaceae species, from habitats of strongly contrasting soil P concentrations, in Australia, Brazil, and Chile. We found that only species from extremely P-impoverished habitats preferentially allocated P to photosynthetic mesophyll cells, suggesting it has evolved as an adaptation to their extremely P-impoverished habitat and that it is not a family-wide trait. Our results highlight the possible role of soil P in driving the evolution of ecologically relevant nutrient allocation patterns and that these patterns cannot be generalized across families. Furthermore, preferential allocation of P to photosynthetic cells may provide new and exciting strategies to improve PPUE in crop species.


Adaptation, Physiological , Calcium/metabolism , Phosphorus/metabolism , Proteaceae/physiology , Australia , Brazil , Chile , Ecosystem , Mesophyll Cells/metabolism , Phosphorus/analysis , Phosphorus/pharmacokinetics , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plant Transpiration , Proteaceae/cytology , Soil/chemistry
10.
Plant Biol (Stuttg) ; 20 Suppl 1: 224-230, 2018 Jan.
Article En | MEDLINE | ID: mdl-28960844

Interactions among plant species via pollinators vary from competitive to mutualistic and can influence the probability of stable coexistence of plant species. We aimed to determine the nature of the interaction via flower visitors between Leucospermum conocarpodendron and Mimetes fimbriifolius, two shrubs in the Proteaceae that share many ecological traits and coexist on the Cape Peninsula, South Africa. To assess the extent of pollinator sharing we analysed nectar properties and recorded the pollinator fauna, their behaviour and contribution to seed set. To test for competition via interspecific pollen transfer, we recorded the movement patterns of pollinators and quantified pollen loads. To determine the effect of co-flowering on visitation rates we recorded visits in stands that varied in the density of the two species. We found that the species produce similar rewards and share pollinating Cape Sugarbirds (Promerops cafer). Interspecific pollen transfer is avoided by placing pollen on different parts of the bird. Both species are visited by nectar-thieving Orange-breasted Sunbirds (Anthobaphes violacea). Insects and autonomous self-pollination contributed little to seed set. Pollinator visits increased with conspecific density in both species, and the slope of the increase was steepest in the presence of high densities of the co-occurring plant species. Nectar thief visits also increased with conspecific density in both species, but the slope declined with increasing density of the co-occurring species. Co-occurrence enhanced pollinator visits and alleviated nectar robbing in both plant species, consistent with mutualisms. Mutualism within a trophic level is unusual, but may help to explain the stable coexistence of ecologically similar species.


Birds/physiology , Proteaceae/physiology , Symbiosis , Animals , Climate , Ecosystem , Insecta/physiology , Plant Nectar/physiology , Pollination/physiology , South Africa
11.
Sci Rep ; 7: 41520, 2017 01 31.
Article En | MEDLINE | ID: mdl-28139668

Six Hakea species varying greatly in seed size were selected for cotyledon damage experiments. The growth of seedlings with cotyledons partially or completely removed was monitored over 90 days. All seedlings perished by the fifth week when both cotyledons were removed irrespective of seed size. Partial removal of cotyledons caused a significant delay in the emergence of the first leaf, and reduction in root and shoot growth of the large-seeded species. The growth of seedlings of small-seeded species was less impacted by cotyledon damage. The rate of survival, root and shoot lengths and dry biomass of the seedlings were determined after 90 days. When seedlings were treated with balanced nutrient solutions following removal of the cotyledons, survival was 95-98%, but 0% when supplied with nutrient solutions lacking N or P or with water only. The addition of a balanced nutrient solution failed to restore complete growth of any species, but the rate of root elongation for the small-seeded species was maintained. Cotyledons provide nutrients to support early growth of Hakea seedlings, but other physiological roles for the cotyledons are also implicated. In conclusion, small-seeded Hakea species can tolerate cotyledons loss better than large-seeded species.


Cotyledon/physiology , Proteaceae/anatomy & histology , Proteaceae/physiology , Seeds/anatomy & histology , Adaptation, Physiological , Biomass , Germination , Plant Roots/anatomy & histology , Plant Shoots/anatomy & histology , Species Specificity , Time Factors
12.
Evolution ; 71(3): 582-594, 2017 03.
Article En | MEDLINE | ID: mdl-28094438

The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches.


Biodiversity , Biological Evolution , Ecosystem , Iridaceae/physiology , Proteaceae/physiology , Australia , Climate , Phylogeny , South Africa
13.
Plant Cell Environ ; 40(2): 237-248, 2017 02.
Article En | MEDLINE | ID: mdl-28026874

Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. We used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (∆T) and temperature range across laminae (Trange ) during winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (we ), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but we strongly predicted τ and ∆T, whereas leaf area influenced Trange . Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we , has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.


Models, Biological , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Temperature , Air , Image Processing, Computer-Assisted , Proteaceae/anatomy & histology , Proteaceae/physiology , Time Factors
14.
Sci Adv ; 2(4): e1501648, 2016 Apr.
Article En | MEDLINE | ID: mdl-27386508

New Caledonia and New Zealand belong to the now largely submerged continent Zealandia. Their high levels of endemism and species richness are usually considered the result of transoceanic dispersal events followed by diversification after they re-emerged from the Pacific Ocean in the mid-Cenozoic. We explore the origin and evolutionary history of Beauprea (Proteaceae), which is now endemic to New Caledonia but was once spread throughout eastern Gondwana, including New Zealand. We review the extensive Beauprea-type pollen data in the fossil records and analyze the relationship of these fossil taxa to extant genera within Proteaceae. We further reconstruct the phylogenetic relations among nine extant species of Beauprea and estimate the age of the Beauprea clade. By incorporating extinct taxa into the Beauprea phylogenetic tree, we reconstruct the ancient distribution of this genus. Our analysis shows that Beauprea originated c. 88 Ma (million years ago) in Antarctica-Southeastern Australia and spread throughout Gondwana before its complete breakup. We propose that Beauprea, already existing as two lineages, was carried with Zealandia when it separated from the rest of Gondwana c. 82 Ma, thus supporting an autochthonous origin for Beauprea species now in New Caledonia and historically in New Zealand up to 1 Ma. We show that the presence of Beauprea through transoceanic dispersal is implausible. This means that neither New Caledonia nor New Zealand has been entirely submerged since the Upper Cretaceous; thus, possible vicariance and allopatry must be taken into account when considering the high levels of endemism and species richness of these island groups.


Biological Evolution , Genetic Speciation , Proteaceae/genetics , Fossils , New Caledonia , New Zealand , Proteaceae/physiology
15.
Ann Bot ; 118(2): 331-46, 2016 08.
Article En | MEDLINE | ID: mdl-27296132

BACKGROUND AND AIMS: The mechanisms involved in breaking seed dormancy in species with woody endocarps are poorly understood. In a landmark study examining the role of endocarps in regulating germination, our aim was to investigate the effects of the natural sequence of environmental conditions on dormancy break of a species with a woody endocarp (Persoonia longifolia). METHODS: The role of the endocarp in germination was investigated through imbibition and endocarp removal germination tests. The use of burial to break dormancy was examined and results from these experiments were used to guide laboratory investigations into the use of wet/dry cycling and stratification to break dormancy. KEY RESULTS: Endocarps were water-permeable. Germination increased from 0 to 92·5 % when endocarps were removed. During burial in the field and nursery, 41·6 and 63·7 % of the endocarps germinated, respectively, after 36 months. Ex situ post-burial germination was cyclical and highest after 30 months of burial (45·4 % nursery and 31·8 % field). Highest germination occurred in wet/dry trials when the dry summer was long (20 weeks), had fluctuating temperatures (30/50 °C) and two long (7 d) wet cycles and was followed by moist winters at 10/20 °C. A stratification trial found that highest germination occurred following incubation for 12 weeks at 30 °C (including 2 weeks moist) + 6 weeks moist at 8 °C then placement at 20/10 °C for germination. CONCLUSIONS: Summer conditions break physiological dormancy of the embryo and promote opening of the endocarp, allowing seeds to germinate during winter conditions. By closely monitoring the environment that endocarps are exposed to in nature, dormancy breaking mechanisms can be identified and used to improve germination. These results outline for the first time how dormancy and germination are regulated in a species with a hard woody endocarp, insights which will significantly improve our understanding of other species with similar reproductive features.


Germination/physiology , Proteaceae/physiology , Plant Dormancy/physiology , Seasons , Seeds/physiology , Water/physiology , Wood
16.
Sci Rep ; 6: 26315, 2016 05 23.
Article En | MEDLINE | ID: mdl-27210077

Substantial climate changes are evident across Australia, with declining rainfall and rising temperature in conjunction with frequent fires. Considerable species loss and range contractions have been predicted; however, our understanding of how genetic variation may promote adaptation in response to climate change remains uncertain. Here we characterized candidate genes associated with rainfall gradients, temperatures, and fire intervals through environmental association analysis. We found that overall population adaptive genetic variation was significantly affected by shortened fire intervals, whereas declining rainfall and rising temperature did not have a detectable influence. Candidate SNPs associated with rainfall and high temperature were diverse, whereas SNPs associated with specific fire intervals were mainly fixed in one allele. Gene annotation further revealed four genes with functions in stress tolerance, the regulation of stomatal opening and closure, energy use, and morphogenesis with adaptation to climate and fire intervals. B. attenuata may tolerate further changes in rainfall and temperature through evolutionary adaptations based on their adaptive genetic variation. However, the capacity to survive future climate change may be compromised by changes in the fire regime.


Proteaceae/genetics , Proteaceae/physiology , Acclimatization/genetics , Adaptation, Physiological/genetics , Australia , Biodiversity , Climate Change , Ecosystem , Evolution, Molecular , Fires , Genes, Plant , Genetic Variation , Polymorphism, Single Nucleotide , Rain , Temperature
17.
Ann Bot ; 117(1): 195-207, 2016 Jan.
Article En | MEDLINE | ID: mdl-26424782

BACKGROUND AND AIMS: Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. METHODS: In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. KEY RESULTS: Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. CONCLUSIONS: The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by increasing transpiration and cooling, but predominately in drier, hotter climates. This study uniquely shows context-dependent benefits of stomatal density--a trait rarely linked to local adaptation in plants.


Adaptation, Physiological , Desert Climate , Plant Stomata/physiology , Proteaceae/physiology , Quantitative Trait, Heritable , Climate , Fertility , Models, Biological , Regression Analysis , Seeds/physiology , Species Specificity
18.
Plant Biol (Stuttg) ; 18(1): 124-31, 2016 Jan.
Article En | MEDLINE | ID: mdl-25865269

Reproduction is a crucial stage in the naturalisation of introduced plant species. Here, using breeding system experiments and observations of floral visitors, we investigate whether a lack of pollinators or an inability to autonomously self-fertilise limits naturalisation in five Australian Banksia species and the co-familial Hakea salicifolia in South Africa. Banksia species were heavily utilised by native insects and nectar-feeding birds. Although Banksia produced fruit when pollinators were excluded, pollinators significantly increased seed set in four of the five species. H. salicifolia flowers were visited by 11 insect species; honeybees (Apis mellifera) were the main visitors. Flowers in naturalised H. salicifolia populations received almost four times the number of visits as flowers in non-naturalised populations; the latter showed both pollen limitation (PLI 0.40) and partial self-incompatibility. This should not prevent invasion, since H. salicifolia produces fruits via autonomous selfing in the absence of pollinators. The results suggest a limited role of breeding systems in mediating naturalisation of introduced Proteaceae species. Other factors, such as features of the recipient environments, appear to be more important. Spatial variation in rates of reproduction might, however, explain variation in the extent and rate of naturalisation of different populations.


Pollination/physiology , Proteaceae/physiology , Self-Fertilization/physiology , Animals , Australia , Bees , Flowers/physiology , Insecta , Introduced Species , Pollen , Seeds/growth & development , South Africa
19.
Evolution ; 70(1): 126-39, 2016 Jan.
Article En | MEDLINE | ID: mdl-26593965

Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind-pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect-pollinated species. Wind-pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination.


Biological Evolution , Pollination , Proteaceae/physiology , Animals , Flowers/growth & development , Insecta/physiology , Phenotype , Phylogeny , Proteaceae/growth & development , Wind
20.
Am J Bot ; 102(12): 2092-107, 2015 Dec.
Article En | MEDLINE | ID: mdl-26643888

PREMISE OF THE STUDY: The origin of biomes is of great interest globally. Molecular phylogenetic and pollen evidence suggest that several plant lineages that now characterize open, burnt habitats of the sclerophyll biome, became established during the Late Cretaceous of Australia. However, whether this biome itself dates to that time is problematic, fundamentally because of the near-absence of relevant, appropriately aged, terrestrial plant macro- or mesofossils. METHODS: We recovered, identified, and interpreted the ecological significance of fossil pollen, foliar and other remains from a section of core drilled in central Australia, which we dated as Late Campanian-Maastrichtian. KEY RESULTS: The sediments contain plant fossils that indicate nutrient-limited, open, sclerophyllous vegetation and abundant charcoal as evidence of fire. Most interestingly, >30 pollen taxa and at least 12 foliage taxa are attributable to the important Gondwanan family Proteaceae, including several minute, amphistomatic, and sclerophyllous foliage forms consistent with subfamily Proteoideae. Microfossils, including an abundance of Sphagnales and other wetland taxa, provided strong evidence of a fenland setting. The local vegetation also included diverse Ericaceae and Liliales, as well as a range of ferns and gymnosperms. CONCLUSIONS: The fossils provide strong evidence in support of hypotheses of great antiquity for fire and open vegetation in Australia, point to extraordinary persistence of Proteaceae that are now emblematic of the Mediterranean-type climate southwestern Australian biodiversity hotspot and raise the profile of open habitats as centers of ancient lineages.


Climate , Ecosystem , Fires , Fossils , Proteaceae/physiology , Fossils/anatomy & histology , Northern Territory , Proteaceae/classification
...