Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.214
Filter
1.
Cell Death Dis ; 15(8): 588, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138149

ABSTRACT

Proteasome inhibitors (PIs), such as bortezomib and calfizomib, were backbone agents in the treatment of multiple myeloma (MM). In this study, we investigated bortezomib interactors in MM cells and identified dihydrolipoamide dehydrogenase (DLD) as a molecular target of bortezomib. DLD catalyzes the oxidation of dihydrolipoamide to form lipoamide, a reaction that also generates NADH. Our data showed that bortezomib bound to DLD and inhibited DLD's enzymatic function in MM cells. DLD knocked down MM cells (DLD-KD) had decreased levels of NADH. Reduced NADH suppressed assembly of proteasome complex in cells. As a result, DLD-KD MM cells had decreased basal-level proteasome activity and were more sensitive to bortezomib. Since PIs were used in many anti-MM regimens in clinics, we found that high expression of DLD correlated with inferior prognosis of MM. Considering the regulatory role of DLD in proteasome assembly, we evaluated DLD targeting therapy in MM cells. DLD inhibitor CPI-613 showed a synergistic anti-MM effect with bortezomib in vitro and in vivo. Overall, our findings elucidated DLD as an alternative molecular target of bortezomib in MM. DLD-targeting might increase MM sensitivity to PIs.


Subject(s)
Bortezomib , Dihydrolipoamide Dehydrogenase , Multiple Myeloma , Bortezomib/pharmacology , Humans , Dihydrolipoamide Dehydrogenase/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Multiple Myeloma/metabolism , Multiple Myeloma/enzymology , Animals , Cell Line, Tumor , Proteasome Endopeptidase Complex/metabolism , Antineoplastic Agents/pharmacology , Mice , Proteasome Inhibitors/pharmacology , Xenograft Model Antitumor Assays , NAD/metabolism , Female , Male , Molecular Targeted Therapy
2.
Sci Rep ; 14(1): 18772, 2024 08 13.
Article in English | MEDLINE | ID: mdl-39138277

ABSTRACT

Computational pharmacogenomics can potentially identify new indications for already approved drugs and pinpoint compounds with similar mechanism-of-action. Here, we used an integrated drug repositioning approach based on transcriptomics data and structure-based virtual screening to identify compounds with gene signatures similar to three known proteasome inhibitors (PIs; bortezomib, MG-132, and MLN-2238). In vitro validation of candidate compounds was then performed to assess proteasomal proteolytic activity, accumulation of ubiquitinated proteins, cell viability, and drug-induced expression in A375 melanoma and MCF7 breast cancer cells. Using this approach, we identified six compounds with PI properties ((-)-kinetin-riboside, manumycin-A, puromycin dihydrochloride, resistomycin, tegaserod maleate, and thapsigargin). Although the docking scores pinpointed their ability to bind to the ß5 subunit, our in vitro study revealed that these compounds inhibited the ß1, ß2, and ß5 catalytic sites to some extent. As shown with bortezomib, only manumycin-A, puromycin dihydrochloride, and tegaserod maleate resulted in excessive accumulation of ubiquitinated proteins and elevated HMOX1 expression. Taken together, our integrated drug repositioning approach and subsequent in vitro validation studies identified six compounds demonstrating properties similar to proteasome inhibitors.


Subject(s)
Bortezomib , Drug Repositioning , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Drug Repositioning/methods , Bortezomib/pharmacology , Transcriptome , Proteasome Endopeptidase Complex/metabolism , Cell Line, Tumor , MCF-7 Cells , Molecular Docking Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Puromycin/pharmacology , Gene Expression Profiling , Cell Survival/drug effects
3.
PLoS One ; 19(8): e0308330, 2024.
Article in English | MEDLINE | ID: mdl-39116074

ABSTRACT

The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery. ONX-0914, a selective inhibitor of the immunoproteasome subunit ß5i, enhanced immunogenicity dose-dependently at low concentrations without cytotoxicity. In addition, CD8+ T lymphocytes recognizing WT1 showed greater cytotoxicity against MESO-4 pre-treated with ONX-0914. MESO-4 expresses a standard proteasome (SP) and immunoproteasome (IP). Notably, IP has distinct catalytic activity from SP, favoring the generation of antigenic peptides with high affinity for MHC-I in antigen-presenting cells and cancer cells. In vitro, immunoproteasome digestion assay and mass spectrometry analysis showed that IP cleaved WT1235 internally after the hydrophobic residues. Importantly, this internal cleavage of the WT1235 epitope was mitigated by ONX-0914. These results suggest that ONX-0914 prevents the internal destructive cleavage of WT1235 by IP, thereby promoting the specific presentation of the WT1 epitope by MESO-4. In conclusion, selective IP inhibitors might offer a means to modulate cancer cell immunogenicity by directing the presentation of particular tumor epitopes.


Subject(s)
Mesothelioma , Proteasome Endopeptidase Complex , Proteasome Inhibitors , WT1 Proteins , Humans , Cell Line, Tumor , WT1 Proteins/immunology , Proteasome Inhibitors/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/immunology , Mesothelioma/immunology , Mesothelioma/drug therapy , Epitopes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , HLA-A24 Antigen/immunology , Mesothelioma, Malignant/immunology , Mesothelioma, Malignant/drug therapy , Epitopes, T-Lymphocyte/immunology , Oligopeptides
4.
BMC Res Notes ; 17(1): 216, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095914

ABSTRACT

OBJECTIVE: Proteasomes are conserved proteases crucial for proteostasis in eukaryotes and are promising drug targets for protozoan parasites. Yet, the proteasomes of Entamoeba histolytica remain understudied. The study's objective was to analyse the differences in the substrate binding pockets of amoeba proteasomes from those of host, and computational modelling of ß5 catalytic subunit, with the goal of finding selective inhibitors. RESULTS: Comparative sequence analysis revealed differences in substrate binding sites of E. histolytica proteasomes, especially in the S1 and S3 pockets of the catalytic beta subunits, implying differences in substrate preference and susceptibility to inhibitors from host proteasomes. This was strongly supported by significantly lower sensitivity to MG132 mediated inhibition of amoebic proteasome ß5 subunit's chymotryptic activity compared to human proteasomes, also reflected in lower sensitivity of E. histolytica to MG132 for inhibition of proliferation. Computational models of ß4 and ß5 subunits, and a docked ß4-ß5 model revealed a binding pocket between ß4-ß5, similar to that of Leishmania tarentolae. Selective inhibitors for visceral leishmaniasis, LXE408 and compound 8, docked well to this pocket. This functional and sequence-based analysis predicts differences between amoebic and host proteasomes that can be utilized to develop rationally designed, selective inhibitors against E. histolytica.


Subject(s)
Entamoeba histolytica , Proteasome Endopeptidase Complex , Entamoeba histolytica/enzymology , Entamoeba histolytica/metabolism , Proteasome Endopeptidase Complex/metabolism , Humans , Binding Sites , Leupeptins/pharmacology , Substrate Specificity , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Proteasome Inhibitors/pharmacology , Molecular Docking Simulation , Amino Acid Sequence , Catalytic Domain , Protein Binding , Models, Molecular
5.
Cancer Med ; 13(14): e7435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031941

ABSTRACT

OBJECTIVE: TQB3602 is a novel orally bioavailable proteasome inhibitor. This study is the first-in-human phase I clinical trial to evaluate the safety, tolerability, pharmacokinetics, and preliminary efficacy of TQB3602 in relapsed/refractory multiple myeloma (RRMM). METHODS: This is a multicenter phase I clinical trial consisting of the 3+3 dose-escalation phase and dose expansion phase. Patients with MM who have received ≥2 prior antimyeloma therapies were enrolled. TQB3602 is administered at a dose of 0.5~7mg on days 1, 8, 15 in 28-day cycle. RESULTS: Twenty-five RRMM patients who relapsed or failed ≥2 lines of therapies were enrolled in the dose escalation phase. Two patients in the 7.0 mg dose group developed dose-limiting toxicity events (one with grade 2 peripheral neuropathy [PN] complicated by pain and one with diarrhea and abdominal pain), leading to a maximum tolerated dose of 6.0 mg. Any-grade adverse events (AEs) occurred in 24 (96.0%) patients, while grade ≥3 AEs occurred in 13 (52.0%). The most common grade ≥3 AEs was anemia (6, 24.0%). The incidence rate of PN was 16% with no grade ≥3 PN occurred. TQB3602 was rapidly absorbed, resulting in a time-to-plasma peak concentration of 0.8-1.5 h. The mean half-life was approximately 82 h. The AUClast and Cmax were approximately 1.9 times higher on day 15 than on day 1. Among 22 response-evaluable patients, 63.7% achieved stable disease or better. CONCLUSIONS: TQB3602 is well tolerated, with a favorable neurotoxicity profile, and has shown preliminary efficacy in patients with RRMM. The anticipated therapeutic dose was 6 mg and was adopted for an ongoing dose-expansion phase.


Subject(s)
Multiple Myeloma , Proteasome Inhibitors , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Male , Middle Aged , Female , Aged , Proteasome Inhibitors/therapeutic use , Proteasome Inhibitors/pharmacokinetics , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/administration & dosage , Administration, Oral , Maximum Tolerated Dose , Treatment Outcome , Neoplasm Recurrence, Local/drug therapy , Adult , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm
6.
ACS Chem Neurosci ; 15(14): 2532-2544, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38970802

ABSTRACT

It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.


Subject(s)
Microglia , Neuroinflammatory Diseases , Proteasome Endopeptidase Complex , Microglia/metabolism , Microglia/drug effects , Humans , Proteasome Endopeptidase Complex/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Inflammation/metabolism , Inflammation/immunology
7.
Mar Drugs ; 22(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39057424

ABSTRACT

Malignant melanoma-a tumor originating from melanocytes-is characterized by dynamic growth and frequent metastases in the early stage of development. Current therapy methods are still insufficient, and there is a need to search for new ways of treating this malady. The induction of apoptosis-physiological cell death-by proteasome inhibitors is recognized as an effective method of non-invasive elimination of cancer cells. In our research, we wanted to check the potential of marizomib (MZB, salinosporamide A, NPI-0052)-an irreversible proteasome inhibitor derived from the marine actinomycete Salinispora tropica-to induce apoptosis in A375 and G361 malignant melanoma cells. We determined the cytotoxic activity of marizomib by performing an MTT test. Ethidium bromide and acridine orange staining demonstrated the disruption of membrane integrity in the examined cell lines. We confirmed the proapoptotic activity of marizomib by flow cytometry with the use of an FITC-Annexin V assay. A Western blot analysis presented an increase in the expression of proteins related to endoplasmic reticulum (ER) stress as well as markers of the apoptosis. The gathered findings suggest that marizomib induced the ER stress in the examined melanoma cancer cells and directed them towards the apoptosis pathway.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Lactones , Melanoma , Pyrroles , Humans , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Lactones/pharmacology , Endoplasmic Reticulum Stress/drug effects , Pyrroles/pharmacology , Antineoplastic Agents/pharmacology , Proteasome Inhibitors/pharmacology
8.
Pathol Res Pract ; 260: 155443, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981348

ABSTRACT

Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.


Subject(s)
Glioblastoma , Ubiquitin-Specific Proteases , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/enzymology , Glioblastoma/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/antagonists & inhibitors , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Molecular Targeted Therapy/methods , Proteasome Endopeptidase Complex/metabolism , Antineoplastic Agents/therapeutic use , Animals , Proteasome Inhibitors/therapeutic use , Proteasome Inhibitors/pharmacology
9.
Signal Transduct Target Ther ; 9(1): 181, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992067

ABSTRACT

Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.


Subject(s)
Bortezomib , Cell Cycle Proteins , Mitosis , Proteasome Endopeptidase Complex , Protein-Tyrosine Kinases , Pyroptosis , Pyroptosis/drug effects , Humans , Mice , Animals , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Mitosis/drug effects , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Bortezomib/pharmacology , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Proteasome Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Xenograft Model Antitumor Assays , Gasdermins , Pyrimidinones
10.
J Muscle Res Cell Motil ; 45(3): 155-169, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39080182

ABSTRACT

Pyruvate dehydrogenase kinase (PDK), which phosphorylates the pyruvate dehydrogenase complex, regulates glucose metabolism in skeletal muscle. PDK1, an isozyme whose expression is controlled by hypoxia-inducible factor-1α (HIF-1α), is thought to play a role in muscle adaptation to hypoxia. While transcriptional upregulation of PDK1 by HIF-1α is well characterised, mechanisms controlling proteolysis of PDK1 in skeletal muscle have not been thoroughly investigated. Proteasome inhibitor MG132 paradoxically reduced the abundance of PDK1 in human cancer cells and rat L6 myotubes, suggesting that MG132 might direct PDK1 towards autophagic degradation. The objectives of our current study were to determine (1) whether MG132 suppresses PDK1 levels in primary human myotubes, (2) whether chloroquine, an inhibitor of autophagy, prevents MG132-induced suppression of PDK1 in L6 myotubes, and (3) whether PYR-41, an inhibitor of ubiquitination, suppresses PDK1 in L6 myotubes. Using qPCR and/or immunoblotting, we found that despite markedly upregulating HIF-1α protein, MG132 did not alter the PDK1 expression in cultured primary human myotubes, while it suppressed both PDK1 mRNA and protein in L6 myotubes. The PDK1 levels in L6 myotubes were suppressed also during co-treatment with chloroquine and MG132. PYR-41 markedly increased the abundance of HIF-1α in primary human and L6 myotubes, while reducing the abundance of PDK1. In L6 myotubes treated with PYR-41, chloroquine increased the abundance of the epidermal growth factor receptor, but did not prevent the suppression of PDK1. Collectively, our results suggest that cultured myotubes degrade PDK1 via a pathway that cannot be inhibited by MG132, PYR-41, and/or chloroquine.


Subject(s)
Muscle Fibers, Skeletal , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Animals , Humans , Rats , Cells, Cultured , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Leupeptins/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Ubiquitin/metabolism
11.
Cancer Cell ; 42(7): 1157-1159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981436

ABSTRACT

KRASG12D is the most frequent KRAS mutation in human cancer. In this issue, Zhou et al. describe a novel KRASG12D inhibitor, HRS-4642, that shows potent and selective anti-tumor activity across various models and synergizes with proteasome inhibitors. Responses have also been observed in patients during an ongoing phase 1 trial.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use
12.
Cell Biol Toxicol ; 40(1): 60, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073694

ABSTRACT

Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.


Subject(s)
Acetylcysteine , Apoptosis , Diterpenes , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Epoxy Compounds , Lipopolysaccharides , Phenanthrenes , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Reactive Oxygen Species , Phenanthrenes/pharmacology , Phenanthrenes/toxicity , Diterpenes/pharmacology , Diterpenes/toxicity , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Lipopolysaccharides/toxicity , Epoxy Compounds/toxicity , Epoxy Compounds/pharmacology , Animals , Reactive Oxygen Species/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Acetylcysteine/pharmacology , Activating Transcription Factor 4/metabolism , Phenylbutyrates/pharmacology , Mice , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Liver/metabolism , Caspase 3/metabolism , Male , Leupeptins
13.
J Cancer Res Clin Oncol ; 150(7): 334, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969842

ABSTRACT

PURPOSE: Proteasome inhibitors (PIs), which cause cell death via tumor suppressor and pro-apoptotic proteins, are integral to treatment of many hematologic malignancies but are limited by their gastrointestinal adverse effects. Evidence regarding these PI-related adverse effects is scant. In this study, we evaluated gastrointestinal adverse events caused by PIs and compared gastrointestinal toxicities between bortezomib, carfilzomib, and ixazomib. METHODS: We conducted a retrospective study of cancer patients treated with PIs at a tertiary care cancer center to investigate the clinical characteristics of PI-related gastrointestinal adverse events. RESULTS: Our sample comprised 973 patients with PI exposure and stool studies ordered between January 2017 and December 2022. Of these, 193 patients (20%) had PI-related gastrointestinal toxicity based on clinical symptoms and stool study results. The most common symptom was diarrhea, present in 169 (88% of those with gastrointestinal toxicity). Twenty-two (11%) required hospitalization, and 71 (37%) developed recurrence of symptoms. Compared to bortezomib or carfilzomib, ixazomib had a longer interval from PI initiation to the onset of gastrointestinal symptoms (313 days vs 58 days vs 89 days, p = 0.002) and a significantly lower percentage of diarrhea-predominant presentation of gastrointestinal toxicity (71% vs 96% vs 91%, p = 0.048). CONCLUSION: While PI-related gastrointestinal toxicities have various presentations and courses based on different regimens, the vast majority of patients presented with milder disease behavior. Despite a considerably high rate of hospitalization and recurrence after treatment necessitating optimization of clinical management, our cohort demonstrates favorable outcomes without long-term consequences.


Subject(s)
Boron Compounds , Bortezomib , Gastrointestinal Diseases , Glycine , Proteasome Inhibitors , Humans , Proteasome Inhibitors/adverse effects , Male , Female , Retrospective Studies , Middle Aged , Boron Compounds/adverse effects , Boron Compounds/therapeutic use , Aged , Glycine/analogs & derivatives , Glycine/adverse effects , Bortezomib/adverse effects , Bortezomib/administration & dosage , Gastrointestinal Diseases/chemically induced , Oligopeptides/adverse effects , Adult , Aged, 80 and over
14.
Molecules ; 29(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064934

ABSTRACT

Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Humans , Substrate Specificity , Protein Binding , Proteolysis , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Ubiquitin/metabolism , Animals
15.
Cancer Cell ; 42(7): 1286-1300.e8, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38942026

ABSTRACT

KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.


Subject(s)
Mutation , Proteasome Inhibitors , Proto-Oncogene Proteins p21(ras) , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Animals , Xenograft Model Antitumor Assays , Oligopeptides/pharmacology , Cell Line, Tumor , Female , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice, Nude
17.
Mol Biol Rep ; 51(1): 770, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896168

ABSTRACT

BACKGROUND: MG132, a proteasome inhibitor, is widely used to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity by proteasome-mediated degradation of IκB. It has been marketed as a specific, reversible, cell-permeable and low-cost inhibitor. However, adverse effects of the compound have been reported in the literature. We recently discovered and characterised a point mutation in the acute phase protein serum amyloid A (SAA) in chickens, by overexpressing the protein in chicken hepatocellular carcinoma (LMH) cells. This serine to arginine exchange at amino acid position 90 (SAA.R90S) leads to intra- and extracellular accumulation of SAA, which is surprisingly counteracted by MG132 treatment, independent of SAA's intrinsic promoter. METHODS AND RESULTS: To test, whether low proteasomal degradation of SAA.R90S is responsible for the observed intra- and extracellular SAA accumulation, we intended to inhibit the proteasome in SAA wild type (SAA.WT) overexpressing cells with MG132. However, we observed an unexpected drastic decrease in SAA protein expression at the transcript level. NF-κB gene expression was unchanged by MG132 at the measured time point. CONCLUSIONS: The observed results demonstrate that MG132 inhibits SAA expression at the transcript level, independent of its endogenous promoter. Further, the data might indicate that NF-κB is not involved in the observed MG132-induced inhibition of SAA expression. We, consequently, question in this brief report whether MG132 should truly be categorised as a specific ubiquitin proteasome inhibitor and recommend the usage of alternative compounds.


Subject(s)
Carcinoma, Hepatocellular , Chickens , Leupeptins , Liver Neoplasms , NF-kappa B , Promoter Regions, Genetic , Serum Amyloid A Protein , Animals , Leupeptins/pharmacology , Chickens/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Promoter Regions, Genetic/genetics , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , NF-kappa B/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
18.
Bioorg Med Chem ; 109: 117790, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38906067

ABSTRACT

The immunoproteasome subunit LMP7 (ß5i)/LMP2 (ß1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit ß5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over ß5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.


Subject(s)
Boronic Acids , Cryoelectron Microscopy , Proteasome Endopeptidase Complex , Proteasome Inhibitors , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/chemistry , Animals , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/chemical synthesis , Mice , Boronic Acids/chemistry , Boronic Acids/pharmacology , Boronic Acids/chemical synthesis , Humans , Structure-Activity Relationship , Cysteine Endopeptidases/metabolism , Molecular Structure , Molecular Dynamics Simulation , Drug Discovery
19.
Bioorg Med Chem ; 108: 117773, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38850999

ABSTRACT

In this study, we have developedsmall molecule drug conjugates (SMDCs)consisting ofa prostate specific membrane antigen (PSMA) ligandand syringolin derivatives, which are potent proteasome inhibitors, to selectively deliver syringolin derivatives to prostate cancer cells. Two parent compounds were used for syringolin derivatives with different linkage sites. These SMDCs exhibited PSMA-expressing cell-selective cytotoxicity and they could potentially be used for safer treatment of cancer.


Subject(s)
Antigens, Surface , Antineoplastic Agents , Glutamate Carboxypeptidase II , Proteasome Inhibitors , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/chemical synthesis , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antigens, Surface/metabolism , Structure-Activity Relationship , Molecular Structure , Drug Screening Assays, Antitumor , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism
20.
Eur J Pharmacol ; 977: 176716, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38849039

ABSTRACT

The immune system has a strong connection to tumors. When a tumor cell is recognized as an abnormal cell by the immune system, the immune system may initiate an immune response to kill the tumor cell. In this study, RNA sequencing was performed on multiple myeloma (MM) cells treated with the proteasome inhibitor FHND6091. The transcriptional changes induced by FHND6091 in RPMI8226 cells aligned notably with immune response activation and results indicated upregulation of cGAS-STING pathway-related genes in the FHND6091-treated group. In vivo and in vitro experiments had demonstrated that FHND6091 stimulated the immunoreaction of MM cells via activation of the cyclic guanosine monophosphate-adenosine synthase/stimulator of interferon genes (cGAS-STING) pathway. This activation resulted in the generation of type-I interferons and the mobilization of natural killer (NK) cells. Notably, FHND6091 upregulated the levels of calreticulin and the protein ligands UL16-binding protein 2/5/6, MHC class I chain-related A (MICA), and MICB on the surface of MM cells. Subsequently, upon engaging with the surface activation receptors of NK cells, these ligands triggered NK cell activation, leading to the subsequent elimination of tumor cells. Thus, our findings elucidated the mechanism whereby FHND6091 exerted its immunotherapeutic activity as a STING agonist, enhancing the killing ability of NK cells against tumor cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Multiple Myeloma , Proteasome Inhibitors , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Proteasome Inhibitors/pharmacology , Cell Line, Tumor , Membrane Proteins/genetics , Membrane Proteins/metabolism , Animals , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Mice , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , Calreticulin/metabolism , Calreticulin/genetics , Signal Transduction/drug effects , Cytotoxicity, Immunologic/drug effects , Interferon Type I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL