Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Nat Commun ; 13(1): 1214, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241675

ABSTRACT

The omicron variant of SARS-CoV-2 has been spreading rapidly across the globe. The virus-surface spike protein plays a critical role in the cell entry and immune evasion of SARS-CoV-2. Here we determined the 3.0 Å cryo-EM structure of the omicron spike protein ectodomain. In contrast to the original strain of SARS-CoV-2 where the receptor-binding domain (RBD) of the spike protein takes a mixture of open ("standing up") and closed ("lying down") conformations, the omicron spike molecules are predominantly in the open conformation, with one upright RBD ready for receptor binding. The open conformation of the omicron spike is stabilized by enhanced inter-domain and inter-subunit packing, which involves new mutations in the omicron strain. Moreover, the omicron spike has undergone extensive mutations in RBD regions where known neutralizing antibodies target, allowing the omicron variant to escape immune surveillance aimed at the original viral strain. The stable open conformation of the omicron spike sheds light on the cell entry and immune evasion mechanisms of the omicron variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Cryoelectron Microscopy , Humans , Immune Evasion/genetics , Models, Molecular , Mutation , Pandemics , Protein Conformation , Protein Domains/genetics , Protein Domains/immunology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Internalization
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058363

ABSTRACT

Gram-positive organisms with their thick envelope cannot be lysed by complement alone. Nonetheless, antibody-binding on the surface can recruit complement and mark these invaders for uptake and killing by phagocytes, a process known as opsonophagocytosis. The crystallizable fragment of immunoglobulins (Fcγ) is key for complement recruitment. The cell surface of S. aureus is coated with Staphylococcal protein A (SpA). SpA captures the Fcγ domain of IgG and interferes with opsonization by anti-S. aureus antibodies. In principle, the Fcγ domain of therapeutic antibodies could be engineered to avoid the inhibitory activity of SpA. However, the SpA-binding site on Fcγ overlaps with that of the neonatal Fc receptor (FcRn), an interaction that is critical for prolonging the half-life of serum IgG. This evolutionary adaptation poses a challenge for the exploration of Fcγ mutants that can both weaken SpA-IgG interactions and retain stability. Here, we use both wild-type and transgenic human FcRn mice to identify antibodies with enhanced half-life and increased opsonophagocytic killing in models of S. aureus infection and demonstrate that antibody-based immunotherapy can be improved by modifying Fcγ. Our experiments also show that by competing for FcRn-binding, staphylococci effectively reduce the half-life of antibodies during infection. These observations may have profound impact in treating cancer, autoimmune, and asthma patients colonized or infected with S. aureus and undergoing monoclonal antibody treatment.


Subject(s)
Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Opsonization/immunology , Protein Engineering , Amino Acid Sequence , Antibody-Dependent Cell Cytotoxicity/immunology , Complement Activation , Dose-Response Relationship, Drug , Dose-Response Relationship, Immunologic , Humans , Phagocytosis/immunology , Protein Binding , Protein Engineering/methods , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , Receptors, Fc/genetics , Staphylococcal Protein A/immunology , Staphylococcus aureus/immunology
3.
Infect Immun ; 90(1): e0035921, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34724388

ABSTRACT

Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. Passive immunization of mice with antiserum against the Anopheles gambiae mosquito saliva protein TRIO (AgTRIO) offers significant protection against Plasmodium infection of mice. Furthermore, passive transfer of both AgTRIO antiserum and an anti-circumsporozoite protein monoclonal antibody provides synergistic protection. In this study, we generated monoclonal antibodies against AgTRIO to delineate the regions of AgTRIO associated with protective immunity. Monoclonal antibody 13F-1 markedly reduced Plasmodium infection in mice and recognized a region (VDDLMAKFN) in the carboxyl terminus of AgTRIO. 13F-1 is an IgG2a isotype monoclonal antibody, and the Fc region is required for protection. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.


Subject(s)
Anopheles/immunology , Antibodies, Monoclonal/immunology , Culicidae/immunology , Malaria/immunology , Malaria/prevention & control , Amino Acid Sequence , Animals , Disease Models, Animal , Immunization, Passive , Immunoglobulin Fc Fragments , Insect Proteins/chemistry , Insect Proteins/immunology , Malaria/parasitology , Mice , Plasmodium berghei/immunology , Protein Binding/immunology , Protein Interaction Domains and Motifs/immunology
4.
Biochem Biophys Res Commun ; 586: 87-92, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34837837

ABSTRACT

There is an urgent need to understand the functional effects of mutations in emerging variants of SARS-CoV-2. Variants of concern (alpha, beta, gamma and delta) acquired four patterns of spike glycoprotein mutations that enhance transmissibility and immune evasion: 1) mutations in the N-terminal domain (NTD), 2) mutations in the Receptor Binding Domain (RBD), 3) mutations at interchain contacts of the spike trimer, and 4) furin cleavage site mutations. Most distinguishing mutations among variants of concern are exhibited in the NTD, localized to sites of high structural flexibility. Emerging variants of interest such as mu, lambda and C.1.2 exhibit the same patterns of mutations as variants of concern. There is a strong likelihood that SARS-CoV-2 variants will continue to emerge with mutations in these defined patterns, thus providing a basis for the development of next line antiviral drugs and vaccine candidates.


Subject(s)
COVID-19/virology , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/transmission , Evolution, Molecular , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Models, Molecular , Pandemics , Protein Conformation , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
5.
Front Immunol ; 12: 795741, 2021.
Article in English | MEDLINE | ID: mdl-34925381

ABSTRACT

Glycan-masking the vaccine antigen by mutating the undesired antigenic sites with an additional N-linked glycosylation motif can refocus B-cell responses to desired epitopes, without affecting the antigen's overall-folded structure. This study examined the impact of glycan-masking mutants of the N-terminal domain (NTD) and receptor-binding domain (RBD) of SARS-CoV-2, and found that the antigenic design of the S protein increases the neutralizing antibody titers against the Wuhan-Hu-1 ancestral strain and the recently emerged SARS-CoV-2 variants Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Our results demonstrated that the use of glycan-masking Ad-S-R158N/Y160T in the NTD elicited a 2.8-fold, 6.5-fold, and 4.6-fold increase in the IC-50 NT titer against the Alpha (B.1.1.7), Beta (B.1.351) and Delta (B.1.617.2) variants, respectively. Glycan-masking of Ad-S-D428N in the RBD resulted in a 3.0-fold and 2.0-fold increase in the IC-50 neutralization titer against the Alpha (B.1.1.7) and Beta (B.1.351) variants, respectively. The use of glycan-masking in Ad-S-R158N/Y160T and Ad-S-D428N antigen design may help develop universal COVID-19 vaccines against current and future emerging SARS-CoV-2 variants.


Subject(s)
Antigens, Viral/immunology , COVID-19/immunology , Epitopes/immunology , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Disease Models, Animal , Dose-Response Relationship, Immunologic , Female , Genetic Engineering , Genetic Vectors/genetics , Humans , Immunization , Mice , Neutralization Tests , Polysaccharides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
6.
PLoS One ; 16(11): e0257089, 2021.
Article in English | MEDLINE | ID: mdl-34793485

ABSTRACT

Recombinant production of viral proteins can be used to produce vaccine antigens or reagents to identify antibodies in patient serum. Minimally, these proteins must be correctly folded and have appropriate post-translation modifications. Here we report the production of the SARS-CoV-2 spike protein Receptor Binding Domain (RBD) in the green algae Chlamydomonas. RBD fused to a fluorescent reporter protein accumulates as an intact protein when targeted for ER-Golgi retention or secreted from the cell, while a chloroplast localized version is truncated. The ER-retained RBD fusion protein was able to bind the human ACE2 receptor, the host target of SARS-CoV-2, and was specifically out-competed by mammalian cell-produced recombinant RBD, suggesting that the algae produced proteins are sufficiently post-translationally modified to act as authentic SARS-CoV-2 antigens. Because algae can be grown at large scale very inexpensively, this recombinant protein may be a low cost alternative to other expression platforms.


Subject(s)
Chlamydomonas reinhardtii , Protein Interaction Domains and Motifs , Recombinant Proteins , Spike Glycoprotein, Coronavirus , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Cloning, Molecular , Humans , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
7.
Microbiol Spectr ; 9(2): e0135221, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34643438

ABSTRACT

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/immunology , COVID-19 Vaccines/immunology , Crystallography, X-Ray , Disease Models, Animal , Female , Humans , Immunization, Passive/methods , Immunoglobulin G/blood , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Interaction Domains and Motifs/immunology , Viral Load/drug effects , COVID-19 Serotherapy
8.
Cell Rep ; 37(4): 109881, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34655519

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has necessitated the rapid development of antibody-based therapies and vaccines as countermeasures. Here, we use cryoelectron microscopy (cryo-EM) to characterize two protective anti-SARS-CoV-2 murine monoclonal antibodies (mAbs) in complex with the spike protein, revealing similarities between epitopes targeted by human and murine B cells. The more neutralizing mAb, 2B04, binds the receptor-binding motif (RBM) of the receptor-binding domain (RBD) and competes with angiotensin-converting enzyme 2 (ACE2). By contrast, 2H04 binds adjacent to the RBM and does not compete for ACE2 binding. Naturally occurring sequence variants of SARS-CoV-2 and corresponding neutralization escape variants selected in vitro map to our structurally defined epitopes, suggesting that SARS-CoV-2 might evade therapeutic antibodies with a limited set of mutations, underscoring the importance of combination mAb therapeutics. Finally, we show that 2B04 neutralizes SARS-CoV-2 infection by preventing ACE2 engagement, whereas 2H04 reduces host cell attachment without directly disrupting ACE2-RBM interactions, providing distinct inhibitory mechanisms used by RBD-specific mAbs.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Mice , Protein Interaction Domains and Motifs/immunology , Protein Structure, Quaternary , Spike Glycoprotein, Coronavirus/chemistry
9.
Biomed Pharmacother ; 142: 112011, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34388530

ABSTRACT

Since the start of the outbreak of coronavirus disease 2019 in Wuhan, China, there have been more than 150 million confirmed cases of the disease reported to the World Health Organization. The beta variant (B.1.351 lineage), the mutation lineages of SARS-CoV-2, had increase transmissibility and resistance to neutralizing antibodies due to multiple mutations in the spike protein. N501Y, K417N and E484K, in the receptor binding domain (RBD) region may induce a conformational change of the spike protein and subsequently increase the infectivity of the beta variant. The L452R mutation in the epsilon variant (the B.1.427/B.1.429 variants) also reduced neutralizing activity of monoclonal antibodies. In this study, we discovered that 300 µg/mL GB-2, from Tian Shang Sheng Mu of Chiayi Puzi Peitian Temple, can inhibit the binding between ACE2 and wild-type (Wuhan type) RBD spike protein. GB-2 can inhibit the binding between ACE2 and RBD with K417N-E484K-N501Y mutation in a dose-dependent manner. GB-2 inhibited the binding between ACE2 and the RBD with a single mutation (K417N or N501Y or L452R) except the E484K mutation. In the compositions of GB-2, glycyrrhiza uralensis Fisch. ex DC., theaflavin and (+)-catechin cannot inhibit the binding between ACE2 and wild-type RBD spike protein. Theaflavin 3-gallate can inhibit the binding between ACE2 and wild-type RBD spike protein. Our results suggest that GB-2 could be a potential candidate for the prophylaxis of some SARS-CoV-2 variants infection in the further clinical study because of its inhibition of binding between ACE2 and RBD with K417N-E484K-N501Y mutations or L452R mutation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biflavonoids/pharmacology , COVID-19 , Catechin/pharmacology , Gallic Acid/analogs & derivatives , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antioxidants/pharmacology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Drug Discovery , Gallic Acid/pharmacology , HEK293 Cells , Humans , Medicine, East Asian Traditional , Mutation , Protein Binding/physiology , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Front Immunol ; 12: 691715, 2021.
Article in English | MEDLINE | ID: mdl-34149735

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SAR-CoV-2) causes coronavirus disease 2019 (COVID19) that is responsible for short and long-term disease, as well as death, in susceptible hosts. The receptor binding domain (RBD) of the SARS-CoV-2 Spike (S) protein binds to cell surface angiotensin converting enzyme type-II (ACE2) to initiate viral attachment and ultimately viral pathogenesis. The SARS-CoV-2 S RBD is a major target of neutralizing antibodies (NAbs) that block RBD - ACE2 interactions. In this report, NAb-RBD binding epitopes in the protein databank were classified as C1, C1D, C2, C3, or C4, using a RBD binding profile (BP), based on NAb-specific RBD buried surface area and used to predict the binding epitopes of a series of uncharacterized NAbs. Naturally occurring SARS-CoV-2 RBD sequence variation was also quantified to predict NAb binding sensitivities to the RBD-variants. NAb and ACE2 binding studies confirmed the NAb classifications and determined whether the RBD variants enhanced ACE2 binding to promote viral infectivity, and/or disrupted NAb binding to evade the host immune response. Of 9 single RBD mutants evaluated, K417T, E484K, and N501Y disrupted binding of 65% of the NAbs evaluated, consistent with the assignment of the SARS-CoV-2 P.1 Japan/Brazil strain as a variant of concern (VoC). RBD variants E484K and N501Y exhibited ACE2 binding equivalent to a Wuhan-1 reference SARS-CoV-2 RBD. While slightly less disruptive to NAb binding, L452R enhanced ACE2 binding affinity. Thus, the L452R mutant, associated with the SARS-CoV-2 California VoC (B.1.427/B.1.429-California), has evolved to enhance ACE2 binding, while simultaneously disrupting C1 and C2 NAb classes. The analysis also identified a non-overlapping antibody pair (1213H7 and 1215D1) that bound to all SARS-CoV-2 RBD variants evaluated, representing an excellent therapeutic option for treatment of SARS-CoV-2 WT and VoC strains.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Binding Sites, Antibody , Epitopes, B-Lymphocyte/chemistry , Humans , Mutation , Protein Conformation , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
11.
Front Immunol ; 12: 616394, 2021.
Article in English | MEDLINE | ID: mdl-33995345

ABSTRACT

In tropical and subtropical regions, mosquito-borne dengue virus (DENV) infections can lead to severe dengue, also known as dengue hemorrhage fever, which causes bleeding, thrombocytopenia, and blood plasma leakage and increases mortality. Although DENV-induced platelet cell death was linked to disease severity, the role of responsible viral factors and the elicitation mechanism of abnormal platelet activation and cell death remain unclear. DENV and virion-surface envelope protein domain III (EIII), a cellular binding moiety of the virus particle, highly increase during the viremia stage. Our previous report suggested that exposure to such viremia EIII levels can lead to cell death of endothelial cells, neutrophils, and megakaryocytes. Here we found that both DENV and EIII could induce abnormal platelet activation and predominantly necrotic cell death pyroptosis. Blockages of EIII-induced platelet signaling using the competitive inhibitor chondroitin sulfate B or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK markedly ameliorated DENV- and EIII-induced thrombocytopenia, platelet activation, and cell death. These results suggest that EIII could be considered as a virulence factor of DENV, and that Nlrp3 inflammasome is a feasible target for developing therapeutic approaches against dengue-induced platelet defects.


Subject(s)
Blood Platelets/metabolism , Dengue Virus/physiology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Severe Dengue/complications , Thrombocytopenia/etiology , Thrombocytopenia/metabolism , Animals , Biomarkers , Blood Coagulation , Blood Coagulation Tests , Blood Platelets/immunology , Cell Death , Disease Models, Animal , Disease Susceptibility , Energy Metabolism , Immunophenotyping , Mice , Mice, Knockout , Mitochondria/metabolism , Platelet Activation , Protein Interaction Domains and Motifs/immunology , Severe Dengue/virology , Thrombocytopenia/blood , Thrombocytopenia/diagnosis , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
12.
J Immunother ; 44(6): 209-213, 2021.
Article in English | MEDLINE | ID: mdl-34010245

ABSTRACT

The costimulatory domains incorporated into second-generation and third-generation chimeric antigen receptors (CARs) strongly influence CAR-T-cell function. Here, we explored second-generation and third-generation CARs harboring the signaling domain of the CD40 receptor as a new costimulatory element in comparison with similar CARs carrying the 4-1BB domain. In CARs of both generations, CD40 was more potent than 4-1BB in triggering the NF-κB signaling pathway. In human T cells from 2 donors, CD40 was comparable to 4-1BB in upregulating costimulatory and activation markers, inducing proinflammatory cytokine secretion and mediating target cell killing. Interestingly, differences in the response pattern of T cells from the 2 donors with respect to CD40 and 4-1BB were evident. We conclude that in human T cells, the CD40 signaling domain is a potent costimulatory element in both second-generation and third-generation CARs.


Subject(s)
CD40 Antigens/immunology , Protein Interaction Domains and Motifs/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , CD40 Antigens/chemistry , CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line , Genetic Engineering , Humans , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Plasmids/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism
13.
Front Immunol ; 12: 660198, 2021.
Article in English | MEDLINE | ID: mdl-33968063

ABSTRACT

The worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unprecedented and the impact on public health and the global economy continues to be devastating. Although early therapies such as prophylactic antibodies and vaccines show great promise, there are concerns about the long-term efficacy and universal applicability of these therapies as the virus continues to mutate. Thus, protein-based immunogens that can quickly respond to viral changes remain of continued interest. The Spike protein, the main immunogen of this virus, displays a highly dynamic trimeric structure that presents a challenge for therapeutic development. Here, guided by the structure of the Spike trimer, we rationally design new Spike constructs that show a uniquely high stability profile while simultaneously remaining locked into the immunogen-desirable prefusion state. Furthermore, our approach emphasizes the relationship between the highly conserved S2 region and structurally dynamic Receptor Binding Domains (RBD) to enable vaccine development as well as the generation of antibodies able to resist viral mutation.


Subject(s)
Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , Binding Sites/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line , HEK293 Cells , Humans , Protein Domains/genetics , Protein Domains/immunology , Protein Stability , SARS-CoV-2/genetics
14.
Front Immunol ; 12: 618577, 2021.
Article in English | MEDLINE | ID: mdl-33815373

ABSTRACT

Abnormal immune responses and cytokine storm are involved in the development of severe dengue, a life-threatening disease with high mortality. Dengue virus-induced neutrophil NETosis response is associated with cytokine storm; while the role of viral factors on the elicitation of excessive inflammation mains unclear. Here we found that treatments of dengue virus envelope protein domain III (EIII), cellular binding moiety of virion, is sufficient to induce neutrophil NETosis processes in vitro and in vivo. Challenges of EIII in inflammasome Nlrp3-/- and Casp1-/- mutant mice resulted in less inflammation and NETosis responses, as compared to the wild type controls. Blockages of EIII-neutrophil interaction using cell-binding competitive inhibitor or selective Nlrp3 inflammasome inhibitors OLT1177 and Z-WHED-FMK can suppress EIII-induced NETosis response. These results collectively suggest that Nlrp3 inflammsome is a molecular target for treating dengue-elicited inflammatory pathogenesis.


Subject(s)
Extracellular Traps/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Interaction Domains and Motifs/immunology , Viral Envelope Proteins/immunology , Animals , Cell Line , Dengue/immunology , Dengue/metabolism , Dengue/virology , Dengue Virus/immunology , Immunophenotyping , Mice , Mice, Knockout , Mitochondria/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Recombinant Proteins , Viral Envelope Proteins/chemistry
15.
Front Immunol ; 12: 610108, 2021.
Article in English | MEDLINE | ID: mdl-33717094

ABSTRACT

Pregnant women infected with Plasmodium falciparum often produce antibodies (Abs) to VAR2CSA, a ligand that binds to placental chondroitin sulfate A causing placental malaria (PM). Antibodies to VAR2CSA are associated with improved pregnancy outcomes. Antibody avidity is a surrogate marker for the extent of maturation of the humoral immune response. Little is known about high avidity Abs to VAR2CSA for women living in urban African cities. Therefore, this study sought to determine: i) if high avidity Abs to full-length VAR2CSA (FV2) increase with gravidity in women in Yaoundé, Cameroon exposed to ~ 0.3-1.1 infectious mosquito bites per month, ii) if high avidity Abs to FV2 are directed against a specific region of VAR2CSA, and iii) if having high avidity Abs to FV2 improve pregnancy outcomes. Plasma samples collected at delivery from 695 women who had Abs to FV2 were evaluated. Ab levels and the Avidity Index (AI), defined as the percent Abs remaining bound to FV2 after incubation with 3M NH4SCN, were determined. Similar Ab levels to FV2 were present in women of all gravidities (G1 through 6+; p=0.80), except significantly lower levels were detected in PM-negative (PM-) primigravidae (p <0.001). Median Ab avidities increased between gravidity 1 and 2 (p<0.001) and remained stable thereafter (G3-G6+: p=0.51). These results suggest that B cell clonal expansion began during the first pregnancy, with clonal selection primarily occurring during the second. However, the majority of women (84%) had AI <35, a level of high avidity Abs previously reported to be associated with improved pregnancy outcomes. When plasma from 107 Cameroonian women was tested against 8 different regions of FV2, high avidity Abs were predominately restricted to DBL5 with median AI of 50 compared to AI <25 for the other domains. The only significance influence of high avidity Abs on pregnancy outcome was that babies born to mothers with AI above the median were 104 g heavier than babies born to women with AI below the median (p=0.045). These results suggest that a vaccine that boosts maturation of the immune response to VAR2CSA may be beneficial for women residing in urban areas.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Pregnancy Complications, Parasitic/epidemiology , Pregnancy Complications, Parasitic/immunology , Antibodies, Protozoan/blood , Antibody Affinity/immunology , Antigens, Protozoan/blood , Antigens, Protozoan/chemistry , Cameroon/epidemiology , Cities , Female , Humans , Malaria, Falciparum/blood , Pregnancy , Pregnancy Complications, Parasitic/blood , Pregnancy Outcome , Protein Interaction Domains and Motifs/immunology , Public Health Surveillance
16.
Front Immunol ; 12: 617251, 2021.
Article in English | MEDLINE | ID: mdl-33717109

ABSTRACT

Typically occurring during secondary dengue virus (DENV) infections, dengue hemorrhagic fever (DHF) causes abnormal immune responses, as well as endothelial vascular dysfunction, for which the responsible viral factor remains unclear. During peak viremia, the plasma levels of virion-associated envelope protein domain III (EIII) increases to a point at which cell death is sufficiently induced in megakaryocytes in vitro. Thus, EIII may constitute a virulence factor for endothelial damage. In this study, we examined endothelial cell death induced by treatment with DENV and EIII in vitro. Notably, pyroptosis, the major type of endothelial cell death observed, was attenuated through treatment with Nlrp3 inflammasome inhibitors. EIII injection effectively induced endothelial abnormalities, and sequential injection of EIII and DENV-NS1 autoantibodies induced further vascular damage, liver dysfunction, thrombocytopenia, and hemorrhage, which are typical manifestations in DHF. Under the same treatments, pathophysiological changes in the Nlrp3 inflammasome-deficient mice were notably reduced compared with those in the wild-type mice. These results suggest that the Nlrp3 inflammasome constitutes a potential therapeutic target for treating DENV-induced hemorrhage in DHF.


Subject(s)
Dengue Virus/physiology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Interaction Domains and Motifs/immunology , Severe Dengue/etiology , Severe Dengue/metabolism , Viral Envelope Proteins/immunology , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Apoptosis/immunology , Autoantibodies/immunology , Cytokines/metabolism , Dengue Virus/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nitriles/pharmacology , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Recombinant Proteins/immunology , Severe Dengue/pathology
17.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33547083

ABSTRACT

The profound consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mandate urgent development of effective vaccines. Here, we evaluated an Amphiphile (AMP) vaccine adjuvant, AMP-CpG, composed of diacyl lipid-modified CpG, admixed with the SARS-CoV-2 Spike-2 receptor binding domain protein as a candidate vaccine (ELI-005) in mice. AMP modification efficiently delivers CpG to lymph nodes, where innate and adaptive immune responses are generated. Compared to alum, immunization with AMP-CpG induced >25-fold higher antigen-specific T cells that produced multiple T helper 1 (TH1) cytokines and trafficked into lung parenchyma. Antibody responses favored TH1 isotypes (IgG2c and IgG3) and potently neutralized Spike-2-ACE2 receptor binding, with titers 265-fold higher than natural convalescent patient COVID-19 responses; T cell and antibody responses were maintained despite 10-fold dose reduction in Spike antigen. Both cellular and humoral immune responses were preserved in aged mice. These advantages merit clinical translation to SARS-CoV-2 and other protein subunit vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Cellular , Immunity, Humoral , Lymph Nodes/immunology , SARS-CoV-2/immunology , Surface-Active Agents/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Protein Interaction Domains and Motifs/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Treatment Outcome , Vaccination/methods , Vaccines, Subunit/immunology
18.
PLoS One ; 16(2): e0246901, 2021.
Article in English | MEDLINE | ID: mdl-33596252

ABSTRACT

The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Molecular Mimicry/physiology , Protein Interaction Domains and Motifs/immunology , Betacoronavirus/genetics , COVID-19/metabolism , COVID-19/virology , Coronavirus Infections/genetics , Databases, Genetic , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Domains , Protein Interaction Domains and Motifs/genetics , Proteome , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Viral Proteins/metabolism
19.
EBioMedicine ; 64: 103240, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33581644

ABSTRACT

BACKGROUND: Oncolytic virotherapy with vaccinia virus (VV) can lead to effective anti-tumor immunity by turning "cold" tumors into "hot" tumors. However, its therapeutic potential is affected by the tumor's local immunosuppressive tumor microenvironment (TME). Therefore, it is necessary to explore the use of immune checkpoint inhibitors to arm oncolytic VVs to enhance their anti-tumor efficacy. METHODS: A novel recombinant oncolytic VV, VV-α-TIGIT, which encoded a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT) was generated by homologous recombination with a shuttle plasmid. The anti-tumor efficacy of the VV-α-TIGIT was investigated in several subcutaneous and ascites tumor models. FINDINGS: The functional α-TIGIT was sufficiently produced and secreted by tumor cells infected with VV-α-TIGIT, which effectively replicated in tumor cells leading to significant oncolysis. Intratumoral injection of VV-α-TIGIT improved anti-tumor efficacy in several murine subcutaneous tumor models compared to VV-Control (without α-TIGIT insertion). Intraperitoneal injection of VV-α-TIGIT achieved approximately 70% of complete tumor regression in an ascites tumor model. At the same time, treatment with VV-α-TIGIT significantly increased the recruitment and activation of T cells in TME. Moreover, the in vivo anti-tumor activity of VV-α-TIGIT was largely dependent on CD8+ T cell-mediated immunity. Finally, the tumor-bearing mice cured of VV-α-TIGIT treatment resisted rechallenge with the same tumor cells, suggesting a long-term persistence of tumor-specific immunological memory. INTERPRETATION: The recombinant oncolytic virus VV-α-TIGIT successfully combines the advantages of oncolytic virotherapy and intratumorally expression of immune checkpoint inhibitor against TIGIT. This novel strategy can provide information on the optimal design of novel antibody-armed oncolytic viruses for cancer immunotherapy. FUNDING: This work was supported by the National Natural Science Foundation of China (81773255, 81472820, and 81700037), the Science and Technology Innovation Foundation of Nanjing University (14913414), and the Natural Science Foundation of Jiangsu Province of China (BK20171098).


Subject(s)
Antibodies, Monoclonal/genetics , Genetic Vectors/genetics , Immunotherapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Vaccinia virus/genetics , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Disease Models, Animal , Gene Order , Genetic Engineering , Genetic Vectors/administration & dosage , Humans , Immunologic Memory , Immunophenotyping , Male , Mice , Oncolytic Viruses/immunology , Protein Interaction Domains and Motifs/genetics , Protein Interaction Domains and Motifs/immunology , Receptors, Antigen, T-Cell/antagonists & inhibitors , T-Lymphocytes/metabolism , Transgenes , Treatment Outcome , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
20.
Sci Rep ; 10(1): 22370, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33353972

ABSTRACT

There are currently few approved effective treatments for SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Nanobodies are 12-15 kDa single-domain antibody fragments that can be delivered by inhalation and are amenable to relatively inexpensive large scale production compared to other biologicals. We have isolated nanobodies that bind to the SARS-CoV-2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) with 1-5 nM affinity. The lead nanobody candidate, NIH-CoVnb-112, blocks SARS-CoV-2 spike pseudotyped lentivirus infection of HEK293 cells expressing human ACE2 with an EC50 of 0.3 µg/mL. NIH-CoVnb-112 retains structural integrity and potency after nebulization. Furthermore, NIH-CoVnb-112 blocks interaction between ACE2 and several high affinity variant forms of the spike protein. These nanobodies and their derivatives have therapeutic, preventative, and diagnostic potential.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibody Affinity , COVID-19/metabolism , Drug Discovery/methods , Protein Interaction Domains and Motifs/immunology , SARS-CoV-2/chemistry , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/immunology , Binding Sites, Antibody/immunology , COVID-19/therapy , COVID-19/virology , Camelids, New World , HEK293 Cells , Humans , Immunization/methods , Male , Protein Binding , Signal Transduction/genetics , Spike Glycoprotein, Coronavirus/genetics , Transduction, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...