Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39258658

ABSTRACT

Rotavirus, a dsRNA virus in the Reoviridae family, shows a segmented genome. The VP1 gene encodes the RNA-dependent RNA polymerase (RdRp). This study aims to develop a multiepitope-based vaccine targeting RdRp using immunoinformatic approaches. In this study, 100 available nucleotide sequences of VP1-Rotavirus belonging to different strains across the world were retrieved from NCBI database. The selected sequences were aligned, and a global consensus sequence was developed by using CLC work bench. The study involved immunoinformatic approaches and molecular docking studies to reveal the promiscuous epitopes that can be eventually used as active vaccine candidates for Rotavirus. In total, 27 highly immunogenic, antigenic, and non-allergenic T-cell and B-cell epitopes were predicted for the Multiepitope vaccine (MEV) against rotavirus. It was also observed that MEV can prove to be effective worldwide due to its high population coverage, demonstrating the consistency of this vaccine. Moreover, there is a high docking interaction and immunological response with a binding score of -50.2 kcal/mol, suggesting the vaccine's efficacy. Toll-like receptors (TLRs) also suggest that the vaccine is physiologically and immunologically effective. Collectively, our data point to an effective MEV against rotavirus that can effectively reduce viral infections and improve the health status worldwide.


Subject(s)
Molecular Docking Simulation , Rotavirus Vaccines , Rotavirus , Vaccines, Subunit , Rotavirus/immunology , Rotavirus/genetics , Vaccines, Subunit/immunology , Vaccines, Subunit/genetics , Rotavirus Vaccines/immunology , RNA-Dependent RNA Polymerase/immunology , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/chemistry , Computational Biology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Humans , Epitopes/immunology , Epitopes/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Rotavirus Infections/prevention & control , Rotavirus Infections/immunology , Immunoinformatics , Protein Subunit Vaccines
2.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203441

ABSTRACT

Mapping B and T cell epitopes constitutes an important action for peptide vaccine design. PLD and CP40 virulence factors of Corynebacterium pseudotuberculosis biovar ovis, a causal agent of Caseous Lymphadenitis, have been evaluated in a murine model as good candidates for vaccine development. Therefore, the goal of this work was to in silico analyze B and T cell epitopes of the PLD and CP40 proteins of a Mexican isolate of Corynebacterium pseudotuberculosis ovis. The Immune Epitope Data Base and Resource website was employed to predict the linear and conformational B-cell, T CD4+, and T CD8+ epitopes of PLD and CP40 proteins of Corynebacterium pseudotuberculosis ovis Mexican strain 2J-L. Fifty B cell epitopes for PLD 2J-L and forty-seven for CP40 2J-L were estimated. In addition, T CD4+ and CD8+ cell epitopes were predicted for PLD 2J-L (MHC I:16 epitopes, MHC II:10 epitopes) and CP40 2J-L (MHC I: 15 epitopes, MHC II: 13 epitopes). This study provides epitopes, paying particular attention to sequences selected by different predictor programs and overlap sequences as B and T cell epitopes. PLD 2J-L and CP40 2J-L protein epitopes may aid in the design of a promising peptide-based vaccine against Caseous Lymphadenitis in Mexico.


Subject(s)
Corynebacterium Infections , Corynebacterium pseudotuberculosis , Lymphadenitis , Animals , Mice , Sheep , Epitopes, T-Lymphocyte , Mexico , Computational Biology , Corynebacterium Infections/prevention & control , Protein Subunit Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL