Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 646
Filter
1.
J Med Chem ; 67(16): 14210-14233, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39132828

ABSTRACT

Casitas B-lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that has an important role in effector T cell function, acting as a negative regulator of T cell, natural killer (NK) cell, and B cell activation. A discovery effort toward Cbl-b inhibitors was pursued in which a generative AI design engine, REINVENT, was combined with a medicinal chemistry structure-based design to discover novel inhibitors of Cbl-b. Key to the success of this effort was the evolution of the "Design" phase of the Design-Make-Test-Analyze cycle to involve iterative rounds of an in silico structure-based drug design, strongly guided by physics-based affinity prediction and machine learning DMPK predictive models, prior to selection for synthesis. This led to the accelerated discovery of a potent series of carbamate Cbl-b inhibitors.


Subject(s)
Carbamates , Drug Design , Proto-Oncogene Mas , Proto-Oncogene Proteins c-cbl , Proto-Oncogene Proteins c-cbl/antagonists & inhibitors , Proto-Oncogene Proteins c-cbl/metabolism , Carbamates/chemistry , Carbamates/pharmacology , Carbamates/chemical synthesis , Humans , Structure-Activity Relationship , Models, Molecular , Artificial Intelligence , Drug Discovery , Adaptor Proteins, Signal Transducing
2.
Cell Immunol ; 403-404: 104863, 2024.
Article in English | MEDLINE | ID: mdl-39186873

ABSTRACT

For adoptive therapy with T cell receptor engineered T (TCR-T) cells, the quantity and quality of the final cell product directly affect their anti-tumor efficacy. The post-transfer efficacy window of TCR-T cells is keen to optimizing attempts during the manufacturing process. Cbl-b is a E3 ubiquitin ligase previously shown with critical negative impact in T cell functions. This study investigated whether strategic inclusion of a commercially available small inhibitor targeting Cbl-b (Cbl-b-IN-1) prior to T cell activation could enhance the quality of the final TCR-T cell product. Examination with both PBMCs and TCR-T cells revealed that Cbl-b-IN-1 treatment promoted TCR expression efficiency, T cell proliferation potential and, specifically, cell survival capability post antigenic stimulation. Cbl-b-IN-1 exposure facilitated T cells in maintaining less differentiated states with enhanced cytokine production. Further, we found that Cbl-b-IN-1 effectively augmented the activation of TCR signaling, shown by increased phosphorylation levels of Zeta-chain-associated protein kinase 70 (ZAP70) and phospholipase c-γ1 (PLCγ1). In conclusion, our results evidence that the inclusion of Cbl-b inhibitor immediately prior to TCR-T cell activation may enhance their proliferation, survival, and function potentials, presenting an applicable optimization strategy for immunotherapy with adoptive cell transfer.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Cell Proliferation , Cytokines , Lymphocyte Activation , Proto-Oncogene Proteins c-cbl , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes , Proto-Oncogene Proteins c-cbl/metabolism , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Cytokines/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Proliferation/drug effects , Signal Transduction/drug effects , Phospholipase C gamma/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism , Phosphorylation/drug effects , Immunotherapy, Adoptive/methods , Phenotype , Cell Survival/drug effects
3.
J Transl Med ; 22(1): 654, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004726

ABSTRACT

BACKGROUND: Specific alterations in gut microbiota and metabolites have been linked to AMI, with CBLB potentially playing an essential role. However, the precise interactions remain understudied, creating a significant gap in our understanding. This study aims to address this by exploring these interactions in CBLB-intervened AMI mice using transcriptome sequencing, 16 S rDNA, and non-targeted metabolite analysis. METHODS: To probe the therapeutic potential and mechanistic underpinnings of CBLB overexpression in AMI, we utilized an integrative multi-omics strategy encompassing transcriptomics, metabolomics, and 16s rDNA sequencing. We selected these particular methods as they facilitate a holistic comprehension of the intricate interplay between the host and its microbiota, and the potential effects on the host's metabolic and gene expression profiles. The uniqueness of our investigation stems from utilizing a multi-omics approach to illuminate the role of CBLB in AMI, an approach yet unreported to the best of our knowledge. Our experimental protocol encompassed transfection of CBLB lentivirus-packaged vectors into 293T cells, followed by subsequent intervention in AMI mice. Subsequently, we conducted pathological staining, fecal 16s rDNA sequencing, and serum non-targeted metabolome sequencing. We applied differential expression analysis to discern differentially expressed genes (DEGs), differential metabolites, and differential microbiota. We performed protein-protein interaction analysis to identify core genes, and conducted correlation studies to clarify the relationships amongst these core genes, paramount metabolites, and key microbiota. RESULTS: Following the intervention of CBLB in AMI, we observed a significant decrease in inflammatory cell infiltration and collagen fiber formation in the infarcted region of mice hearts. We identified key changes in microbiota, metabolites, and DEGs that were associated with this intervention. The findings revealed that CBLB has a significant correlation with DEGs, differential metabolites and microbiota, respectively. This suggests it could play a pivotal role in the regulation of AMI. CONCLUSION: This study confirmed the potential of differentially expressed genes, metabolites, and microbiota in AMI regulation post-CBLB intervention. Our findings lay groundwork for future exploration of CBLB's role in AMI, suggesting potential therapeutic applications and novel research directions in AMI treatment strategies.


Subject(s)
Metabolomics , Mice, Inbred C57BL , Myocardial Infarction , Proto-Oncogene Proteins c-cbl , Transcriptome , Animals , Myocardial Infarction/microbiology , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Transcriptome/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male , Gastrointestinal Microbiome , Gene Expression Profiling , RNA, Ribosomal, 16S/genetics , DNA, Ribosomal/genetics , Mice , Metabolome , Humans
4.
Cell Chem Biol ; 31(7): 1239-1241, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029453

ABSTRACT

In a study published in the July issue of Immunity, Li et al.1 demonstrate that expression of the E3 ubiquitin ligases CBL and CBL-B is downregulated in Tfh cells in SLE with Tfh cell expansion and autoimmunity. This leads to reduced ubiquitination of the T cell costimulator ICOS which regulates proteostasis of the Tfh cell transcription factor BCL6 via chaperone-mediated autophagy.


Subject(s)
Autoimmunity , Down-Regulation , Proto-Oncogene Proteins c-cbl , Ubiquitination , Proto-Oncogene Proteins c-cbl/metabolism , Humans , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/immunology
5.
EMBO Mol Med ; 16(8): 1791-1816, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39030301

ABSTRACT

Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.


Subject(s)
Antigens, CD , Immunotherapy , Lymphocyte Activation Gene 3 Protein , Programmed Cell Death 1 Receptor , Proto-Oncogene Proteins c-cbl , Signal Transduction , Humans , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Immunotherapy/methods , Signal Transduction/drug effects , Antigens, CD/metabolism , Antigens, CD/genetics , Animals , Mice , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology
6.
Immunity ; 57(7): 1603-1617.e7, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38761804

ABSTRACT

Recent evidence reveals hyper T follicular helper (Tfh) cell responses in systemic lupus erythematosus (SLE); however, molecular mechanisms responsible for hyper Tfh cell responses and whether they cause SLE are unclear. We found that SLE patients downregulated both ubiquitin ligases, casitas B-lineage lymphoma (CBL) and CBLB (CBLs), in CD4+ T cells. T cell-specific CBLs-deficient mice developed hyper Tfh cell responses and SLE, whereas blockade of Tfh cell development in the mutant mice was sufficient to prevent SLE. ICOS was upregulated in SLE Tfh cells, whose signaling increased BCL6 by attenuating BCL6 degradation via chaperone-mediated autophagy (CMA). Conversely, CBLs restrained BCL6 expression by ubiquitinating ICOS. Blockade of BCL6 degradation was sufficient to enhance Tfh cell responses. Thus, the compromised expression of CBLs is a prevalent risk trait shared by SLE patients and causative to hyper Tfh cell responses and SLE. The ICOS-CBLs axis may be a target to treat SLE.


Subject(s)
Adaptor Proteins, Signal Transducing , Inducible T-Cell Co-Stimulator Protein , Lupus Erythematosus, Systemic , Mice, Knockout , Proto-Oncogene Proteins c-bcl-6 , Proto-Oncogene Proteins c-cbl , T Follicular Helper Cells , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Autophagy/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Mice, Inbred C57BL , Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/deficiency , Signal Transduction/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology , Ubiquitination
7.
FASEB J ; 38(10): e23662, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752545

ABSTRACT

The ubiquitination function in diabetic nephropathy (DN) has attracted much attention, but there is a lack of information on its ubiquitylome profile. To examine the differences in protein content and ubiquitination in the kidney between db/db mice and db/m mice, we deployed liquid chromatography-mass spectrometry (LC-MS/MS) to conduct analysis. We determined 145 sites in 86 upregulated modified proteins and 66 sites in 49 downregulated modified proteins at the ubiquitinated level. Moreover, 347 sites among the 319 modified proteins were present only in the db/db mouse kidneys, while 213 sites among the 199 modified proteins were present only in the db/m mouse kidneys. The subcellular localization study indicated that the cytoplasm had the highest proportion of ubiquitinated proteins (31.87%), followed by the nucleus (30.24%) and the plasma membrane (20.33%). The enrichment analysis revealed that the ubiquitinated proteins are mostly linked to tight junctions, oxidative phosphorylation, and thermogenesis. Podocin, as a typical protein of slit diaphragm, whose loss is a crucial cause of proteinuria in DN. Consistent with the results of ubiquitination omics, the K261R mutant of podocin induced the weakest ubiquitination compared with the K301R and K370R mutants. As an E3 ligase, c-Cbl binds to podocin, and the regulation of c-Cbl can impact the ubiquitination of podocin. In conclusion, in DN, podocin ubiquitination contributes to podocyte injury, and K261R is the most significant site. c-Cbl participates in podocin ubiquitination and may be a direct target for preserving the integrity of the slit diaphragm structure, hence reducing proteinuria in DN.


Subject(s)
Diabetic Nephropathies , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Podocytes , Proto-Oncogene Proteins c-cbl , Ubiquitination , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Podocytes/metabolism , Podocytes/pathology , Mice , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Male , Mice, Inbred C57BL
8.
J Exp Clin Cancer Res ; 43(1): 142, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745188

ABSTRACT

BACKGROUND: Mounting evidences shows that the ubiquitin‒proteasome pathway plays a pivotal role in tumor progression. The expression of 26S proteasome non-ATPase regulatory subunit 9 (PSMD9) is correlated with recurrence and radiotherapy resistance in several tumor types. However, the role and mechanism of PSMD9 in hepatocellular carcinoma (HCC) progression remain largely unclear. METHODS: PSMD9 was identified as a prognosis-related biomarker for HCC based on analysis of clinical characteristics and RNA-seq data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and the JP Project of the International Cancer Genome Consortium (ICGC-LIRI-JP). PSMD9 expression was analyzed in cancer tissues and adjacent noncancerous tissues via immunohistochemistry and Western blotting. Multiple in vivo and in vitro experimental techniques (such as CCK-8, colony formation, EdU, and Transwell assays; flow cytometry; Western blotting; quantitative RT-PCR; Coimmunoprecipitation assay and immunofluorescence confocal imaging) were used to assess the functions of PSMD9 in the pathogenesis of HCC. RESULTS: We found that the expression of PSMD9 was upregulated and associated with a poor prognosis in HCC patients. PSMD9 promoted HCC cell proliferation, migration, invasion and metastasis. Knockdown of PSMD9 significantly inhibited HCC cell proliferation by inducing G1/S cell cycle arrest and apoptosis. Mechanistically, we demonstrated that PSMD9 promoted HCC cell proliferation and metastasis via direct interaction with the E3 ubiquitin ligase c-Cbl, suppresses EGFR ubiquitination, influenced EGFR endosomal trafficking and degradation and subsequently activated ERK1/2 and Akt signaling. In addition, we showed that PSMD9 knockdown sensitized HCC cells to the tyrosine kinase inhibitor erlotinib in vitro and in vivo. CONCLUSIONS: Collectively, our results indicate that PSMD9 drives HCC progression and erlotinib resistance by suppressing c-Cbl mediated EGFR ubiquitination and therefore can be a potential therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , ErbB Receptors , Liver Neoplasms , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins c-cbl , Signal Transduction , Animals , Female , Humans , Male , Mice , Apoptosis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , ErbB Receptors/metabolism , ErbB Receptors/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice, Nude , Prognosis , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics
9.
Stem Cells ; 42(7): 662-674, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38655781

ABSTRACT

Cortactin (CTTN), a cytoskeletal protein and substrate of Src kinase, is implicated in tumor aggressiveness. However, its role in bone cell differentiation remains unknown. The current study revealed that CTTN was upregulated during osteoblast and adipocyte differentiation. Functional experiments demonstrated that CTTN promoted the in vitro differentiation of mesenchymal stem/progenitor cells into osteogenic and adipogenic lineages. Mechanistically, CTTN was able to stabilize the protein level of mechanistic target of rapamycin kinase (mTOR), leading to the activation of mTOR signaling. In-depth investigation revealed that CTTN could bind with casitas B lineage lymphoma-c (c-CBL) and counteract the function of c-CBL, a known E3 ubiquitin ligase responsible for the proteasomal degradation of mTOR. Silencing c-Cbl alleviated the impaired differentiation of osteoblasts and adipocytes caused by CTTN siRNA, while silencing mTOR mitigated the stimulation of osteoblast and adipocyte differentiation induced by CTTN overexpression. Notably, transplantation of CTTN-silenced bone marrow stromal cells (BMSCs) into the marrow of mice led to a reduction in trabecular bone mass, accompanied by a decrease in osteoblasts and an increase in osteoclasts. Furthermore, CTTN-silenced BMSCs expressed higher levels of receptor activator of nuclear factor κB ligand (RANKL) than control BMSCs did and promoted osteoclast differentiation when cocultured with bone marrow-derived osteoclast precursor cells. This study provides evidence that CTTN favors osteoblast differentiation by counteracting the c-CBL-induced degradation of mTOR and inhibits osteoclast differentiation by downregulating the expression of RANKL. It also suggests that maintaining an appropriate level of CTTN expression may be advantageous for maintaining bone homeostasis.


Subject(s)
Cell Differentiation , Cortactin , Homeostasis , Osteoblasts , Osteoclasts , Proto-Oncogene Proteins c-cbl , Osteoblasts/metabolism , Osteoblasts/cytology , Animals , Osteoclasts/metabolism , Mice , Cortactin/metabolism , Cortactin/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , TOR Serine-Threonine Kinases/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis , Bone and Bones/metabolism , Adipocytes/metabolism , Adipocytes/cytology , RANK Ligand/metabolism , Signal Transduction
10.
Front Immunol ; 15: 1297893, 2024.
Article in English | MEDLINE | ID: mdl-38504977

ABSTRACT

Introduction: Atherosclerosis is a lipid-driven inflammatory disease of the arterial wall, and the underlying cause of the majority of cardiovascular diseases. Recent advances in high-parametric immunophenotyping of immune cells indicate that T cells constitute the major leukocyte population in the atherosclerotic plaque. The E3 ubiquitin ligase Casitas B-lymphoma proto-oncogene-B (CBL-B) is a critical intracellular regulator that sets the threshold for T cell activation, making CBL-B a potential therapeutic target to modulate inflammation in atherosclerosis. We previously demonstrated that complete knock-out of CBL-B aggravated atherosclerosis in Apoe-/- mice, which was attributed to increased macrophage recruitment and increased CD8+ T cell activation in the plaque. Methods: To further study the T cell specific role of CBL-B in atherosclerosis, Apoe-/- CD4cre Cblb fl/fl (Cbl-bcKO) mice and Apoe-/-CD4WTCblbfl/fl littermates (Cbl-bfl/fl) were fed a high cholesterol diet for ten weeks. Results: Cbl-bcKO mice had smaller atherosclerotic lesions in the aortic arch and root compared to Cbl-bfl/fl, and a substantial increase in CD3+ T cells in the plaque. Collagen content in the plaque was decreased, while other plaque characteristics including plaque necrotic core, macrophage content, and smooth muscle cell content, remained unchanged. Mice lacking T cell CBL-B had a 1.4-fold increase in CD8+ T cells and a 1.8-fold increase in regulatory T cells in the spleen. Splenic CD4+ and CD8+ T cells had increased expression of C-X-C Motif Chemokine Receptor 3 (CXCR3) and interferon-γ (IFN-γ), indicating a T helper 1 (Th1)-like/effector CD8+ T cell-like phenotype. Conclusion: In conclusion, Cbl-bcKO mice have reduced atherosclerosis but show increased T cell accumulation in the plaque accompanied by systemic T cell activation.


Subject(s)
Atherosclerosis , Lymphoma , Plaque, Atherosclerotic , Animals , Mice , Apolipoproteins E/genetics , Atherosclerosis/metabolism , CD8-Positive T-Lymphocytes , Mice, Knockout , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
11.
Bioorg Med Chem ; 102: 117677, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38457911

ABSTRACT

Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma­b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.


Subject(s)
Lymphoma, B-Cell , Proto-Oncogene Proteins c-cbl , Humans , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Ubiquitin-Protein Ligases/metabolism , Immunotherapy
12.
Cancer Commun (Lond) ; 44(3): 384-407, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407942

ABSTRACT

BACKGROUND: Liver cancer is a malignancy with high morbidity and mortality rates. Serpin family E member 2 (SERPINE2) has been reported to play a key role in the metastasis of many tumors. In this study, we aimed to investigate the potential mechanism of SERPINE2 in liver cancer metastasis. METHODS: The Cancer Genome Atlas database (TCGA), including DNA methylation and transcriptome sequencing data, was utilized to identify the crucial oncogene associated with DNA methylation and cancer progression in liver cancer. Data from the TCGA and RNA sequencing for 94 pairs of liver cancer tissues were used to explore the correlation between SERPINE2 expression and clinical parameters of patients. DNA methylation sequencing was used to detect the DNA methylation levels in liver cancer tissues and cells. RNA sequencing, cytokine assays, immunoprecipitation (IP) and mass spectrometry (MS) assays, protein stability assays, and ubiquitination assays were performed to explore the regulatory mechanism of SERPINE2 in liver cancer metastasis. Patient-derived xenografts and tumor organoid models were established to determine the role of SERPINE2 in the treatment of liver cancer using sorafenib. RESULTS: Based on the public database screening, SERPINE2 was identified as a tumor promoter regulated by DNA methylation. SERPINE2 expression was significantly higher in liver cancer tissues and was associated with the dismal prognosis in patients with liver cancer. SERPINE2 promoted liver cancer metastasis by enhancing cell pseudopodia formation, cell adhesion, cancer-associated fibroblast activation, extracellular matrix remodeling, and angiogenesis. IP/MS assays confirmed that SERPINE2 activated epidermal growth factor receptor (EGFR) and its downstream signaling pathways by interacting with EGFR. Mechanistically, SERPINE2 inhibited EGFR ubiquitination and maintained its protein stability by competing with the E3 ubiquitin ligase, c-Cbl. Additionally, EGFR was activated in liver cancer cells after sorafenib treatment, and SERPINE2 knockdown-induced EGFR downregulation significantly enhanced the therapeutic efficacy of sorafenib against liver cancer. Furthermore, we found that SERPINE2 knockdown also had a sensitizing effect on lenvatinib treatment. CONCLUSIONS: SERPINE2 promoted liver cancer metastasis by preventing EGFR degradation via c-Cbl-mediated ubiquitination, suggesting that inhibition of the SERPINE2-EGFR axis may be a potential target for liver cancer treatment.


Subject(s)
Liver Neoplasms , Serpin E2 , Humans , ErbB Receptors/genetics , ErbB Receptors/metabolism , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Serpin E2/genetics , Serpin E2/metabolism , Sorafenib , Ubiquitination
13.
J Med Chem ; 67(2): 1500-1512, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38227216

ABSTRACT

Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.


Subject(s)
Proto-Oncogene Proteins c-cbl , Ubiquitin-Protein Ligases , Proto-Oncogene Proteins c-cbl/metabolism , Ubiquitin-Protein Ligases/metabolism , T-Lymphocytes/metabolism , Phosphorylation , Ubiquitin/metabolism
14.
J Thromb Haemost ; 22(4): 1202-1214, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38184203

ABSTRACT

BACKGROUND: The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES: We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS: CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS: CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION: These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.


Subject(s)
Lymphoma , Purpura, Thrombocytopenic, Idiopathic , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/genetics , 5' Untranslated Regions , Decitabine , Adaptor Proteins, Signal Transducing/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Lymphoma/genetics
15.
Mol Biol Cell ; 35(3): ar38, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38170572

ABSTRACT

The ubiquitination of transmembrane receptors regulates endocytosis, intracellular traffic, and signal transduction. Bone marrow-derived macrophages from myeloid Cbl-/- and Cbl-b-/- double knockout (DKO) mice display sustained proliferation mirroring the myeloproliferative disease that these mice succumb to. Here, we found that the ubiquitin ligases Cbl and Cbl-b have overlapping functions for controlling the endocytosis and intracellular traffic of the CSF-1R. DKO macrophages displayed complete loss of ubiquitination of the CSF-1R whereas partial ubiquitination was observed for either single Cbl-/- or Cbl-b-/- macrophages. Unlike wild type, DKO macrophages were immortal and displayed slower CSF-1R internalization, elevated AKT signaling, and a failure to transport the CSF-1R into the lumen of nascent macropinosomes, leaving its cytoplasmic region available for signaling. CSF-1R degradation depended upon lysosomal vATPase activity in both WT and DKO macrophages, with this degradation confined to macropinosomes in WT but occurring in distributed/tubular lysosomes in DKO cells. RNA-sequencing comparison of Cbl-/-, Cbl-b-/- and DKO macrophages indicated that while the overall macrophage transcriptional program remained intact, DKO macrophages had alterations in gene expression associated with growth factor signaling, cell cycle, inflammation and senescence. Cbl-b-/- had minimal effect on the transcriptional program whereas Cbl-/- led to more alternations but only DKO macrophages demonstrated substantial changes in the transcriptome, suggesting overlapping but unique functions for the two Cbl-family members. Thus, Cbl/Cbl-b-mediated ubiquitination of CSF-1R regulates its endocytic fate, constrains inflammatory gene expression, and regulates signaling for macrophage proliferation.


Subject(s)
Receptor, Macrophage Colony-Stimulating Factor , Ubiquitin , Mice , Animals , Ubiquitin/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Proto-Oncogene Proteins c-cbl/metabolism , Ubiquitin-Protein Ligases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Macrophages/metabolism
16.
J Leukoc Biol ; 115(6): 1118-1130, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38271280

ABSTRACT

Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.


Subject(s)
Immunity, Innate , Mycobacterium Infections, Nontuberculous , Proto-Oncogene Proteins c-cbl , Animals , Proto-Oncogene Proteins c-cbl/deficiency , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Mice , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Killer Cells, Natural/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Nontuberculous Mycobacteria/immunology , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Granuloma/immunology , Granuloma/microbiology , Granuloma/pathology
17.
J Med Chem ; 67(2): 816-837, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38181380

ABSTRACT

Casitas B cell lymphoma-b (Cbl-b) is a vital negative regulator of TCR and BCR signaling pathways, playing a significant role in setting an appropriate threshold for the activation of T cells and controlling the tolerance of peripheral T cells via a variety of mechanisms. Overexpression of Cbl-b leads to immune hyporesponsiveness of T cells. Conversely, the deficiency of Cbl-b in T cells results in markedly increased production of IL-2, even in the lack of CD28 costimulation in vitro. And Cbl-b-/- mice spontaneously reject multifarious cancers. Therefore, Cbl-b may be associated with immune-mediated diseases, and blocking Cbl-b could be considered as a new antitumor immunotherapy strategy. In this review, the possible regulatory mechanisms and biological potential of Cbl-b for antitumor immunotherapy are summarized. Besides, the potential roles of Cbl-b in immune-mediated diseases are comprehensively discussed, with emphasis on Cbl-b immune-oncology agents in the preclinical stage and clinical trials.


Subject(s)
Lymphoma, B-Cell , Proto-Oncogene Proteins c-cbl , Animals , Mice , Proto-Oncogene Proteins c-cbl/metabolism , Adaptor Proteins, Signal Transducing/metabolism , T-Lymphocytes/metabolism , Lymphoma, B-Cell/drug therapy , Immunotherapy
18.
Mol Biol Cell ; 34(13): ar134, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37903221

ABSTRACT

Highly homologous E3 ubiquitin ligases, Cbl and Cbl-b, mediate ubiquitination of EGF receptor (EGFR), leading to its endocytosis and lysosomal degradation. Cbl and Cbl-b, are thought to function in a redundant manner by binding directly to phosphorylated Y1045 (pY1045) of EGFR and indirectly via the Grb2 adaptor. Unexpectedly, we found that inducible expression of Cbl or Cbl-b mutants lacking the E3 ligase activity but fully capable of EGFR binding does not significantly affect EGFR ubiquitination and endocytosis in human oral squamous cell carcinoma (HSC3) cells which endogenously express Cbl-b at a relatively high level. Each endogenous Cbl species remained associated with ligand-activated EGFR in the presence of an overexpressed counterpart species or its mutant, although Cbl-b overexpression partially decreased Cbl association with EGFR. Binding to pY1045 was the preferential mode for Cbl-b:EGFR interaction, whereas Cbl relied mainly on the Grb2-dependent mechanism. Overexpression of the E3-dead mutant of Cbl-b slowed down EGF-induced degradation of active EGFR, while this mutant and a similar mutant of Cbl did not significantly affect MAPK/ERK1/2 activity. EGF-guided chemotaxis migration of HSC3 cells was diminished by overexpression of the E3-dead Cbl-b mutant but was not significantly affected by the E3-dead Cbl mutant. By contrast, the inhibitory effect of the same Cbl mutant on the migration of OSC-19 cells expressing low Cbl-b levels was substantially stronger than that of the Cbl-b mutant. Altogether, our data demonstrate that Cbl and Cbl-b may operate independently through different modes of EGFR binding to jointly control receptor ubiquitination, endocytic trafficking, and signaling.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Endocytosis/physiology , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Ubiquitin-Protein Ligases/metabolism
19.
Cells ; 12(19)2023 10 03.
Article in English | MEDLINE | ID: mdl-37830613

ABSTRACT

The localization, expression, and physiological role of regulatory proteins in the neurogenic niches of the brain is fundamental to our understanding of adult neurogenesis. This study explores the expression and role of the E3-ubiquitin ligase, c-Cbl, in neurogenesis within the subventricular zone (SVZ) of mice. In vitro neurosphere assays and in vivo analyses were performed in specific c-Cbl knock-out lines to unravel c-Cbl's role in receptor tyrosine kinase signaling, including the epidermal growth factor receptor (EGFR) pathway. Our findings suggest that c-Cbl is significantly expressed within EGFR-expressing cells, playing a pivotal role in neural stem cell proliferation and differentiation. However, c-Cbl's function extends beyond EGFR signaling, as its loss upon knock-out stimulated progenitor cell proliferation in neurosphere cultures. Yet, this effect was not detected in hippocampal progenitor cells, reflecting the lack of the EGFR in the hippocampus. In vivo, c-Cbl exerted only a minor proneurogenic influence with no measurable impact on the formation of adult-born neurons. In conclusion, c-Cbl regulates neural stem cells in the subventricular zone via the EGFR pathway but, likely, its loss is compensated by other signaling modules in vivo.


Subject(s)
Lateral Ventricles , Neural Stem Cells , Proto-Oncogene Proteins c-cbl , Animals , Mice , Cell Differentiation , ErbB Receptors/metabolism , Lateral Ventricles/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism
20.
J Biol Chem ; 299(10): 105233, 2023 10.
Article in English | MEDLINE | ID: mdl-37690689

ABSTRACT

In many cell types, the E3 ubiquitin ligases c-Cbl and Cbl-b induce ligand-dependent ubiquitylation of the hepatocyte growth factor (HGF)-stimulated c-Met receptor and target it for lysosomal degradation. This study determines whether c-Cbl/Cbl-b are negative regulators of c-Met in the corneal epithelium (CE) and if their inhibition can augment c-Met-mediated CE homeostasis. Immortalized human corneal epithelial cells were transfected with Cas9 only (Cas9, control cells) or with Cas9 and c-Cbl/Cbl-b guide RNAs to knockout each gene singularly (-c-Cbl or -Cbl-b cells) or both genes (double KO [DKO] cells) and monitored for their responses to HGF. Cells were assessed for ligand-dependent c-Met ubiquitylation via immunoprecipitation, magnitude, and duration of c-Met receptor signaling via immunoblot and receptor trafficking by immunofluorescence. Single KO cells displayed a decrease in receptor ubiquitylation and an increase in phosphorylation compared to control. DKO cells had no detectable ubiquitylation, had delayed receptor trafficking, and a 2.3-fold increase in c-Met phosphorylation. Based on the observed changes in receptor trafficking and signaling, we examined HGF-dependent in vitro wound healing via live-cell time-lapse microscopy in control and DKO cells. HGF-treated DKO cells healed at approximately twice the rate of untreated cells. From these data, we have generated a model in which c-Cbl/Cbl-b mediate the ubiquitylation of c-Met, which targets the receptor through the endocytic pathway toward lysosomal degradation. In the absence of ubiquitylation, the stimulated receptor stays phosphorylated longer and enhances in vitro wound healing. We propose that c-Cbl and Cbl-b are promising pharmacologic targets for enhancing c-Met-mediated CE re-epithelialization.


Subject(s)
Proto-Oncogene Proteins c-cbl , Signal Transduction , Humans , Ligands , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Phosphorylation , Ubiquitination , Immunoblotting
SELECTION OF CITATIONS
SEARCH DETAIL