Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573
Filter
1.
J Biochem Mol Toxicol ; 38(9): e23766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39215759

ABSTRACT

Circular RNA (circRNA) plays important role in hepatocellular carcinoma (HCC) progression. However, the role and mechanism of circETV6 in HCC progression remain unclear. The levels of circETV6, ETV6, miR-383-5p, and PTPRE were tested by quantitative reverse-transcription polymerase chain reaction. Cell functions were assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry. The protein levels of poptosis-related markers and PTPRE were determined by western blot analysis. RNA interaction was analyzed by dual-luciferase reporter assay and RNA pull-down assay. A xenograft model was established to assess circETV6 roles in vivo. CircETV6 was highly expressed in HCC tissues and cells. CircETV6 knockdown repressed HCC cell proliferation, migration, invasion, and cell cycle, while accelerated apoptosis. CircETV6 targeted miR-383-5p, and miR-383-5p inhibition reversed the regulation of circETV6 knockdown on HCC cell progression. CircETV6 promoted PTPRE level via targeting miR-383-5p. Overexpressed PTPRE abolished the inhibition effect of miR-383-5p on HCC cell progression. In addition, circETV6 knockdown slowed HCC tumor growth in vivo. CircETV6 might facilitate HCC progression via the miR-383-5p/PTPRE axis, providing a novel target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Disease Progression , ETS Translocation Variant 6 Protein , Liver Neoplasms , Proto-Oncogene Proteins c-ets , RNA, Circular , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Mice , Repressor Proteins/genetics , Repressor Proteins/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Mice, Nude , Cell Proliferation , Male , Gene Expression Regulation, Neoplastic
2.
Proc Natl Acad Sci U S A ; 121(31): e2404229121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052836

ABSTRACT

The distinct human leukocyte antigen (HLA) class I expression pattern of human extravillous trophoblasts (EVT) endows them with unique tolerogenic properties that enable successful pregnancy. Nevertheless, how this process is elaborately regulated remains elusive. Previously, E74 like ETS transcription factor 3 (ELF3) was identified to govern high-level HLA-C expression in EVT. In the present study, ELF3 is found to bind to the enhancer region of two adjacent NOD-like receptor (NLR) genes, NLR family pyrin domain-containing 2 and 7 (NLRP2, NLRP7). Notably, our analysis of ELF3-deficient JEG-3 cells, a human choriocarcinoma cell line widely used to study EVT biology, suggests that ELF3 transactivates NLRP7 while suppressing the expression of NLRP2. Moreover, we find that NLRP2 and NLRP7 have opposing effects on HLA-C expression, thus implicating them in immune evasion at the maternal-fetal interface. We confirmed that NLRP2 suppresses HLA-C levels and described a unique role for NLRP7 in promoting HLA-C expression in JEG-3. These results suggest that these two NLR genes, which arose via gene duplication in primates, are fine-tuned by ELF3 yet have acquired divergent functions to enable proper expression levels of HLA-C in EVT, presumably through modulating the degradation kinetics of IkBα. Targeting the ELF3-NLRP2/NLRP7-HLA-C axis may hold therapeutic potential for managing pregnancy-related disorders, such as recurrent hydatidiform moles and fetal growth restriction, and thus improve placental development and pregnancy outcomes.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Extravillous Trophoblasts , HLA-C Antigens , Trophoblasts , Female , Humans , Pregnancy , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Gene Expression Regulation , HLA-C Antigens/metabolism , HLA-C Antigens/genetics , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Trophoblasts/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
3.
Mol Cell Biol ; 44(8): 334-343, 2024.
Article in English | MEDLINE | ID: mdl-38975675

ABSTRACT

Interferon epsilon (IFNε) is a unique type I interferon (IFN) that shows distinct constitutive expression in reproductive tract epithelium. Understanding how IFNε expression is regulated is critical for the mechanism of action in protecting the mucosa from infection. Combined computational and experimental investigation of the promoter of IFNε predicted transcription factor binding sites for the ETS family of transcription factors. We demonstrate here that Ifnε is regulated by Elf3, an epithelial restricted member of the ETS family. It is co-expressed with IFNε at the epithelium of uterus, lung and intestine, and we focused on regulation of IFNε expression in the uterus. Promoter reporter studies demonstrated that Elf3 was a strong driver of Ifnε expression; knockdown of Elf3 reduced expression levels of IFNε; Elf3 regulated Ifnε expression and chromatin immunoprecipitation (ChIP) confirmed the direct binding of Elf3 to the IFNε promoter. These data show that Elf3 is important in regulating protective mucosal immunity by driving constitutive expression of IFNε to protect mucosal tissues from infection in at least three organ systems.


Subject(s)
DNA-Binding Proteins , Promoter Regions, Genetic , Transcription Factors , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Female , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Humans , Gene Expression Regulation , Uterus/metabolism , Uterus/immunology , Mucous Membrane/metabolism , Mucous Membrane/immunology , Binding Sites , Interferon Type I/metabolism , Mice, Inbred C57BL , Epithelium/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Lung/metabolism , Lung/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology
4.
Adv Exp Med Biol ; 1459: 291-320, 2024.
Article in English | MEDLINE | ID: mdl-39017849

ABSTRACT

Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.


Subject(s)
ETS Translocation Variant 6 Protein , Hematologic Neoplasms , Proto-Oncogene Proteins c-ets , Repressor Proteins , Humans , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Animals , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
5.
Nature ; 630(8016): 412-420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839950

ABSTRACT

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells , Nuclear Proteins , Animals , Female , Humans , Male , Mice , Cells, Cultured , Endocytosis , Endosomes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Blood/cytology , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Liver/cytology , Liver/metabolism , Liver/embryology , Mitochondria/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Single-Cell Gene Expression Analysis
6.
J Transl Med ; 22(1): 547, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849954

ABSTRACT

BACKGROUND: Enhancers are important gene regulatory elements that promote the expression of critical genes in development and disease. Aberrant enhancer can modulate cancer risk and activate oncogenes that lead to the occurrence of various cancers. However, the underlying mechanism of most enhancers in cancer remains unclear. Here, we aim to explore the function and mechanism of a crucial enhancer in melanoma. METHODS: Multi-omics data were applied to identify an enhancer (enh17) involved in melanoma progression. To evaluate the function of enh17, CRISPR/Cas9 technology were applied to knockout enh17 in melanoma cell line A375. RNA-seq, ChIP-seq and Hi-C data analysis integrated with luciferase reporter assay were performed to identify the potential target gene of enh17. Functional experiments were conducted to further validate the function of the target gene ETV4. Multi-omics data integrated with CUT&Tag sequencing were performed to validate the binding profile of the inferred transcription factor STAT3. RESULTS: An enhancer, named enh17 here, was found to be aberrantly activated and involved in melanoma progression. CRISPR/Cas9-mediated deletion of enh17 inhibited cell proliferation, migration, and tumor growth of melanoma both in vitro and in vivo. Mechanistically, we identified ETV4 as a target gene regulated by enh17, and functional experiments further support ETV4 as a target gene that is involved in cancer-associated phenotypes. In addition, STAT3 acts as a transcription factor binding with enh17 to regulate the transcription of ETV4. CONCLUSIONS: Our findings revealed that enh17 plays an oncogenic role and promotes tumor progression in melanoma, and its transcriptional regulatory mechanisms were fully elucidated, which may open a promising window for melanoma prevention and treatment.


Subject(s)
Cell Proliferation , Disease Progression , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Animals , Oncogenes/genetics , CRISPR-Cas Systems/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Base Sequence , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics
7.
Cell Mol Biol Lett ; 29(1): 88, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877424

ABSTRACT

Osteoarthritis (OA) is the most common degenerative joint disorder that causes disability in aged individuals, caused by functional and structural alterations of the knee joint. To investigate whether metabolic drivers might be harnessed to promote cartilage repair, a liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics approach was carried out to screen serum biomarkers in osteoarthritic rats. Based on the correlation analyses, α-ketoglutarate (α-KG) has been demonstrated to have antioxidant and anti-inflammatory properties in various diseases. These properties make α-KG a prime candidate for further investigation of OA. Experimental results indicate that α-KG significantly inhibited H2O2-induced cartilage cell matrix degradation and apoptosis, reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), increased superoxide dismutase (SOD) and glutathione (GSH)/glutathione disulfide (GSSG) levels, and upregulated the expression of ETV4, SLC7A11 and GPX4. Further mechanistic studies observed that α-KG, like Ferrostatin-1 (Fer-1), effectively alleviated Erastin-induced apoptosis and ECM degradation. α-KG and Fer-1 upregulated ETV4, SLC7A11, and GPX4 at the mRNA and protein levels, decreased ferrous ion (Fe2+) accumulation, and preserved mitochondrial membrane potential (MMP) in ATDC5 cells. In vivo, α-KG treatment inhibited ferroptosis in OA rats by activating the ETV4/SLC7A11/GPX4 pathway. Thus, these findings indicate that α-KG inhibits ferroptosis via the ETV4/SLC7A11/GPX4 signaling pathway, thereby alleviating OA. These observations suggest that α-KG exhibits potential therapeutic properties for the treatment and prevention of OA, thereby having potential clinical applications in the future.


Subject(s)
Ferroptosis , Ketoglutaric Acids , Osteoarthritis , Phospholipid Hydroperoxide Glutathione Peroxidase , Signal Transduction , Ferroptosis/drug effects , Animals , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/pharmacology , Signal Transduction/drug effects , Rats , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Male , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Rats, Sprague-Dawley , Apoptosis/drug effects , Reactive Oxygen Species/metabolism
8.
Int Arch Allergy Immunol ; 185(9): 910-920, 2024.
Article in English | MEDLINE | ID: mdl-38781935

ABSTRACT

INTRODUCTION: The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS: Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS: Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION: Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.


Subject(s)
Adenocarcinoma of Lung , Aurora Kinase A , B7-H1 Antigen , Lung Neoplasms , Proto-Oncogene Proteins c-ets , Tumor Escape , Humans , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenovirus E1A Proteins/metabolism , Adenovirus E1A Proteins/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/immunology , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/immunology , Tumor Escape/immunology
9.
Nat Cell Biol ; 26(6): 903-916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702503

ABSTRACT

Dynamic changes in mechanical microenvironments, such as cell crowding, regulate lineage fates as well as cell proliferation. Although regulatory mechanisms for contact inhibition of proliferation have been extensively studied, it remains unclear how cell crowding induces lineage specification. Here we found that a well-known oncogene, ETS variant transcription factor 4 (ETV4), serves as a molecular transducer that links mechanical microenvironments and gene expression. In a growing epithelium of human embryonic stem cells, cell crowding dynamics is translated into ETV4 expression, serving as a pre-pattern for future lineage fates. A switch-like ETV4 inactivation by cell crowding derepresses the potential for neuroectoderm differentiation in human embryonic stem cell epithelia. Mechanistically, cell crowding inactivates the integrin-actomyosin pathway and blocks the endocytosis of fibroblast growth factor receptors (FGFRs). The disrupted FGFR endocytosis induces a marked decrease in ETV4 protein stability through ERK inactivation. Mathematical modelling demonstrates that the dynamics of cell density in a growing human embryonic stem cell epithelium precisely determines the spatiotemporal ETV4 expression pattern and, consequently, the timing and geometry of lineage development. Our findings suggest that cell crowding dynamics in a stem cell epithelium drives spatiotemporal lineage specification using ETV4 as a key mechanical transducer.


Subject(s)
Cell Differentiation , Cell Lineage , Human Embryonic Stem Cells , Proto-Oncogene Proteins c-ets , Transcription Factors , Humans , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Endocytosis , Cell Proliferation , Integrins/metabolism , Integrins/genetics , Signal Transduction , Mechanotransduction, Cellular
10.
Mol Ther ; 32(6): 1956-1969, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38627967

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor ß (TGF-ß) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-ß-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-ß-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.


Subject(s)
Activating Transcription Factor 4 , Amino Acids , DNA-Binding Proteins , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Transcription Factors , Transforming Growth Factor beta , Epithelial-Mesenchymal Transition/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Amino Acids/metabolism , Transforming Growth Factor beta/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Signal Transduction , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/genetics , Transcriptome , Animals
11.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677782

ABSTRACT

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Subject(s)
Cell Differentiation , Cell Proliferation , Goblet Cells , Interleukin-13 , Medicine, Kampo , Metaplasia , Mucin 5AC , Mucus , Animals , Goblet Cells/drug effects , Goblet Cells/pathology , Goblet Cells/metabolism , Interleukin-13/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucus/metabolism , Cell Differentiation/drug effects , Guinea Pigs , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Cells, Cultured , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Male , Gene Expression/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mice , Trachea/cytology , Trachea/drug effects , Trachea/pathology , Trachea/metabolism
12.
Life Sci ; 346: 122637, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614305

ABSTRACT

E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.


Subject(s)
DNA-Binding Proteins , Neoplasms , Transcription Factors , Humans , Neoplasms/genetics , Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Animals , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Gene Expression Regulation, Neoplastic , Inflammation/genetics
13.
Cell Death Dis ; 15(4): 274, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632244

ABSTRACT

Accumulating evidence demonstrates that the activity regulation of ELK3, a member of the E26 transformation-specific oncogene family, is critical to regulating cell proliferation, migration, and survival in human cancers. However, the molecular mechanisms of how ELK3 induces chemoresistance in prostate cancer (PCa) have not been elucidated. In this study, we found that SPOP and ELK3 are an interacting partner. The interaction between SPOP and ELK3 resulted in increased ELK3 ubiquitination and destruction, assisted by checkpoint kinase-mediated ELK3 phosphorylation. Notably, the modulation of SPOP-mediated ELK3 protein stability affected the c-Fos-induced cell proliferation and invasion of PCa cells. The clinical involvement of the SPOP-ELK3 axis in PCa development was confirmed by an immunohistochemical assay on 123 PCa tissues, with an inverse correlation between increased ELK3 and decreased SPOP being present in ~80% of the specimens. This observation was supported by immunohistochemistry analysis using a SPOP-mutant PCa specimen. Finally, docetaxel treatment induced cell death by activating checkpoint kinase- and SPOP-mediated ELK3 degradation, while SPOP-depleted or SPOP-mutated PCa cells showed cell death resistance. Notably, this observation was correlated with the protein levels of ELK3. Taken together, our study reveals the precise mechanism of SPOP-mediated degradation of ELK3 and provides evidence that SPOP mutations contribute to docetaxel resistance in PCa.


Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins c-ets , Humans , Male , Docetaxel/pharmacology , Docetaxel/therapeutic use , Mutation , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-fos/metabolism , Repressor Proteins/metabolism , Ubiquitination , Proto-Oncogene Proteins c-ets/metabolism , Drug Resistance, Neoplasm/genetics
14.
Biomol Biomed ; 24(5): 1231-1243, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-38520747

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a notably aggressive malignancy with limited treatment options and an unfavorable prognosis for patients. We aimed to investigate molecular mechanisms by which Sam's pointed domain-containing ETS transcription factor (SPDEF) exerts effects on PAAD progression. We analyzed differentially expressed genes (DEGs) and their integration with ETS family members using the The Cancer Genome Atlas (TCGA) database, hence identifying SPDEF as a core gene in PAAD. Kaplan-Meier survival analysis confirmed SPDEF's prognostic potential. In vitro experiments validated the association with cell proliferation and apoptosis, affecting pancreatic cancer cell dynamics. We detected increased SPDEF expression in PAAD tumor samples. Our in vitro studies revealed that SPDEF regulates mRNA and protein expression levels, and significantly affects cell proliferation. Moreover, SPDEF was associated with reduced apoptosis and enhanced cell migration and invasion. In-depth analysis of SPDEF-targeted genes revealed four crucial genes for advanced prognostic model, among which S100A16 was significantly correlated with SPDEF. Mechanistic analysis showed that SPDEF enhances the transcription of S100A16, which in turn enhances PAAD cell migration, proliferation, and invasion by activating the PI3K/AKT signaling pathway. Our study revealed the critical role of SPDEF in promoting PAAD by upregulating S100A16 transcription and stimulating the PI3K/AKT signaling pathway. This knowledge deepened our understanding of pancreatic cancer's molecular progression and unveiled potential therapeutic strategies targeting SPDEF-driven pathways.


Subject(s)
Adenocarcinoma , Disease Progression , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-ets , Signal Transduction , Up-Regulation , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , Male , Prognosis , Female , S100 Proteins
15.
Haematologica ; 109(8): 2445-2458, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38356460

ABSTRACT

ETV6::ACSL6 represents a rare genetic aberration in hematopoietic neoplasms and is often associated with severe eosinophilia, which confers an unfavorable prognosis requiring additional anti-inflammatory treatment. However, since the translocation is unlikely to produce a fusion protein, the mechanism of ETV6::ACSL6 action remains unclear. Here, we performed multi-omics analyses of primary leukemia cells and patient-derived xenografts from an acute lymphoblastic leukemia (ALL) patient with ETV6::ACSL6 translocation. We identified a super-enhancer located within the ETV6 gene locus, and revealed translocation and activation of the super-enhancer associated with the ETV6::ACSL6 fusion. The translocated super-enhancer exhibited intense interactions with genomic regions adjacent to and distal from the breakpoint at chromosomes 5 and 12, including genes coding inflammatory factors such as IL-3. This led to modulations in DNA methylation, histone modifications, and chromatin structures, triggering transcription of inflammatory factors leading to eosinophilia. Furthermore, the bromodomain and extraterminal domain (BET) inhibitor synergized with standard-of-care drugs for ALL, effectively reducing IL-3 expression and inhibiting ETV6::ACSL6 ALL growth in vitro and in vivo. Overall, our study revealed for the first time a cis-regulatory mechanism of super-enhancer translocation in ETV6::ACSL6ALL, leading to an ALL-accompanying clinical syndrome. These findings may stimulate novel treatment approaches for this challenging ALL subtype.


Subject(s)
ETS Translocation Variant 6 Protein , Enhancer Elements, Genetic , Eosinophilia , Interleukin-3 , Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Proteins c-ets , Repressor Proteins , Translocation, Genetic , Animals , Humans , Mice , Eosinophilia/genetics , Eosinophilia/metabolism , Eosinophilia/pathology , Gene Expression Regulation, Leukemic , Interleukin-3/genetics , Interleukin-3/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
16.
Development ; 151(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345299

ABSTRACT

Drosophila matrix metalloproteinase 2 (MMP2) is specifically expressed in posterior follicle cells of stage-14 egg chambers (mature follicles) and is crucial for the breakdown of the follicular wall during ovulation, a process that is highly conserved from flies to mammals. The factors that regulate spatiotemporal expression of MMP2 in follicle cells remain unknown. Here, we demonstrate crucial roles for the ETS-family transcriptional activator Pointed (Pnt) and its endogenous repressor Yan in the regulation of MMP2 expression. We found that Pnt is expressed in posterior follicle cells and overlaps with MMP2 expression in mature follicles. Genetic analysis demonstrated that pnt is both required and sufficient for MMP2 expression in follicle cells. In addition, Yan was temporally upregulated in stage-13 follicle cells to fine-tune Pnt activity and MMP2 expression. Furthermore, we identified a 1.1 kb core enhancer that is responsible for the spatiotemporal expression of MMP2 and contains multiple pnt/yan binding motifs. Mutation of pnt/yan binding sites significantly impaired the Mmp2 enhancer activity. Our data reveal a mechanism of transcriptional regulation of Mmp2 expression in Drosophila ovulation, which could be conserved in other biological systems.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Female , Drosophila/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Signal Transduction/physiology , Ovulation/genetics , Mammals/metabolism , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics
17.
Int J Med Sci ; 21(2): 319-331, 2024.
Article in English | MEDLINE | ID: mdl-38169645

ABSTRACT

Accumulating studies suggest that Huaier exerts anti-tumor effects through intricate mechanisms. Despite extensive research on its efficacy in lung cancer, further investigation is required to elucidate the molecular mechanism of Huaier. The involvement of long noncoding RNAs (lncRNAs) in the anti-lung cancer effects of Huaier remains unknown. In this study, we found Huaier suppressed cell viability, migration and invasion in non-small cell lung cancer (NSCLC) cells. LncRNA sequencing analysis revealed Deleted in lymphocytic leukemia 2 (DLEU2) to be significantly downregulated in Huaier-treated NSCLC cells. Furthermore, DLEU2 silencing was observed to suppress NSCLC progression, while DLEU2 overexpression attenuated the anti-tumor effects of Huaier in NSCLC, thereby promoting cell viability, migration and invasion of NSCLC. The ceRNA role of DLEU2 had been demonstrated in NSCLC, which directly interacted with miR-212-5p to rescue the repression of E74 Like ETS Transcription Factor 3 (ELF3) by this microRNA. Additionally, Huaier was found to regulate the expression of miR-212-5p and ELF3. Functionally, miR-212-5p inhibitor or ELF3 overexpression reversed the effects of DLEU2 silencing or Huaier treatment, resulting in increased colony formation, migration and invasion in NSCLC. Taken together, these results illuminate the mechanism underlying Huaier's anti-tumor effects via the DLEU2/miR-212-5p/ELF3 signaling pathway, which offers novel insights into the anti-tumor effects of Huaier and constitutes a promising therapeutic target for the treatment in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lung Neoplasms/pathology , Cell Survival/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Proto-Oncogene Proteins c-ets/pharmacology
18.
Nature ; 626(7997): 151-159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38233525

ABSTRACT

Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.


Subject(s)
Enhancer Elements, Genetic , Extremities , Polydactyly , Proto-Oncogene Proteins c-ets , Humans , Enhancer Elements, Genetic/genetics , Extremities/embryology , Extremities/pathology , Gain of Function Mutation , Homeodomain Proteins/metabolism , Interferon Regulatory Factors/metabolism , Organ Specificity/genetics , Penetrance , Phenotype , Polydactyly/embryology , Polydactyly/genetics , Polydactyly/pathology , Polymorphism, Single Nucleotide , Protein Binding , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factor AP-1/metabolism
19.
BMC Genomics ; 24(1): 700, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990147

ABSTRACT

BACKGROUND: ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS: The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION: Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.


Subject(s)
Arcidae , Bivalvia , Humans , Animals , Phylogeny , Arcidae/genetics , Arcidae/metabolism , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Genome , Bivalvia/genetics
20.
J Biol Chem ; 299(12): 105453, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956771

ABSTRACT

The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.


Subject(s)
Poly(A)-Binding Protein I , Prostate , Proto-Oncogene Proteins c-ets , RNA-Binding Protein EWS , Humans , Male , Cell Line, Tumor , Cell Nucleus/metabolism , Genome, Human/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Poly(A)-Binding Protein I/metabolism , Prostate/cytology , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Binding , Proto-Oncogene Proteins c-ets/metabolism , RNA-Binding Protein EWS/metabolism , Transcriptional Activation , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL