Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338709

ABSTRACT

Oncogenic Ras proteins are known to present multiple conformational states, as reported by the great variety of crystallographic structures. The GTP-bound states are grouped into two main states: the "inactive" state 1 and the "active" state 2. Recent reports on H-Ras have shown that state 2 exhibits two substates, directly related to the orientation of Tyr32: toward the GTP-bound pocket and outwards. In this paper, we show that N-Ras exhibits another substate of state 2, related to a third orientation of Tyr32, toward Ala18 and parallel to the GTP-bound pocket. We also show that this substate is highly sampled in the G12V mutation of N-Ras and barely present in its wild-type form, and that the G12V mutation prohibits the sampling of the GTPase-activating protein (GAP) binding substate, rendering this mutation oncogenic. Furthermore, using molecular dynamics simulations, we explore the importance of the membrane on N-Ras' conformational state dynamics and its strong influence on Ras protein stability. Moreover, the membrane has a significant influence on the conformational (sub)states sampling of Ras. This, in turn, is of crucial importance in the activation/deactivation cycle of Ras, due to the binding of guanine nucleotide exchange factor proteins (GEFs)/GTPase-activating proteins (GAPs).


Subject(s)
Guanine Nucleotide Exchange Factors , Point Mutation , Proto-Oncogene Proteins p21(ras) , Guanine Nucleotide Exchange Factors/genetics , Guanosine Triphosphate/metabolism , Mutation , ras Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Molecular Dynamics Simulation
2.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948427

ABSTRACT

Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-ß), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.


Subject(s)
Adipogenesis , Autophagy , Cell Proliferation , Fibroblasts/metabolism , Myoblasts/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction , 3T3 Cells , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , Cells, Cultured , Diacylglycerol O-Acyltransferase/genetics , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/physiology , Gene Expression Regulation , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Lipid Metabolism , Mice , Myoblasts/physiology , PPAR gamma/genetics , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Stearoyl-CoA Desaturase/genetics , TOR Serine-Threonine Kinases/genetics
3.
Sci Rep ; 11(1): 17792, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493785

ABSTRACT

Ameloblastomas are odontogenic tumors that are rare in people but have a relatively high prevalence in dogs. Because canine acanthomatous ameloblastomas (CAA) have clinicopathologic and molecular features in common with human ameloblastomas (AM), spontaneous CAA can serve as a useful translational model of disease. However, the molecular basis of CAA and how it compares to AM are incompletely understood. In this study, we compared the global genomic expression profile of CAA with AM and evaluated its dental origin by using a bulk RNA-seq approach. For these studies, healthy gingiva and canine oral squamous cell carcinoma served as controls. We found that aberrant RAS signaling, and activation of the epithelial-to-mesenchymal transition cellular program are involved in the pathogenesis of CAA, and that CAA is enriched with genes known to be upregulated in AM including those expressed during the early stages of tooth development, suggesting a high level of molecular homology. These results support the model that domestic dogs with spontaneous CAA have potential for pre-clinical assessment of targeted therapeutic modalities against AM.


Subject(s)
Ameloblastoma/veterinary , Dog Diseases/genetics , Gene Expression Profiling , Jaw Neoplasms/veterinary , Ameloblastoma/genetics , Ameloblastoma/metabolism , Animals , Carcinoma, Squamous Cell/metabolism , Dog Diseases/metabolism , Dogs , Epithelial-Mesenchymal Transition/genetics , Genes, ras , Gingiva/metabolism , Humans , Jaw Neoplasms/genetics , Jaw Neoplasms/metabolism , MAP Kinase Signaling System , Multigene Family , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/physiology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/physiology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA-Seq , Signal Transduction/genetics , Species Specificity , Transcriptome
4.
Cancer Res ; 81(21): 5413-5424, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34475109

ABSTRACT

Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.


Subject(s)
Biomarkers, Tumor/genetics , DNA Transposable Elements , Leiomyosarcoma/pathology , Lung Neoplasms/secondary , Mutagenesis, Insertional , Mutation , Uterine Neoplasms/pathology , Animals , Female , Humans , Leiomyosarcoma/etiology , Leiomyosarcoma/metabolism , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , PTEN Phosphohydrolase/physiology , Proto-Oncogene Proteins p21(ras)/physiology , Transposases/genetics , Transposases/metabolism , Uterine Neoplasms/etiology , Uterine Neoplasms/metabolism
5.
Clin Cancer Res ; 27(20): 5697-5707, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34365406

ABSTRACT

PURPOSE: Treatment with KRAS G12C inhibitors such as sotorasib can produce substantial regression of tumors in some patients with non-small cell lung cancer (NSCLC). These patients require alternative treatment after acquiring resistance to the inhibitor. The mechanisms underlying this acquired resistance are unclear. The purpose of this study was to identify the mechanisms underlying acquired sotorasib resistance, and to explore potential treatments for rescuing patients with sotorasib-resistant KRAS G12C NSCLC cells. EXPERIMENTAL DESIGN: Clones of sotorasib-sensitive KRAS G12C NSCLC H23 cells exposed to different concentrations of sotorasib were examined using whole-genomic transcriptome analysis, multiple receptor kinase phosphorylation analysis, and gene copy-number evaluation. The underlying mechanisms of resistance were investigated using immunologic examination, and a treatment aimed at overcoming resistance was tested in vitro and in vivo. RESULTS: Unbiased screening detected subclonal evolution of MET amplification in KRAS G12C NSCLC cells that had developed resistance to sotorasib in vitro. MET knockdown using small interfering RNA (siRNA) restored susceptibility to sotorasib in these resistant cells. MET activation by its amplification reinforced RAS cycling from its inactive form to its active form. In addition to RAS-mediated MEK-ERK induction, MET induced AKT activation independently of RAS. Crizotinib, a MET inhibitor, restored sensitivity to sotorasib by eliminating RAS-MEK-ERK as well as AKT signaling. MET/KRAS G12C dual inhibition led to tumor shrinkage in sotorasib-resistant xenograft mice. CONCLUSIONS: MET amplification leads to the development of resistance to KRAS G12C inhibitors in NSCLC. Dual blockade of MET and KRAS G12C could be a treatment option for MET-amplified, KRAS G12C-mutated NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Gene Amplification , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Piperazines/therapeutic use , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Signal Transduction/genetics , Animals , Humans , Mice , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Cells, Cultured
6.
Dev Cell ; 56(15): 2223-2236.e5, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34324859

ABSTRACT

Cancer tissue often comprises multiple tumor clones with distinct oncogenic alterations such as Ras or Src activation, yet the mechanism by which tumor heterogeneity drives cancer progression remains elusive. Here, we show in Drosophila imaginal epithelium that clones of Ras- or Src-activated benign tumors interact with each other to mutually promote tumor malignancy. Mechanistically, Ras-activated cells upregulate the cell-surface ligand Delta while Src-activated cells upregulate its receptor Notch, leading to Notch activation in Src cells. Elevated Notch signaling induces the transcriptional repressor Zfh1/ZEB1, which downregulates E-cadherin and cell death gene hid, leading to Src-activated invasive tumors. Simultaneously, Notch activation in Src cells upregulates the cytokine Unpaired/IL-6, which activates JAK-STAT signaling in neighboring Ras cells. Elevated JAK-STAT signaling upregulates the BTB-zinc-finger protein Chinmo, which downregulates E-cadherin and thus generates Ras-activated invasive tumors. Our findings provide a mechanistic explanation for how tumor heterogeneity triggers tumor progression via cell-cell interactions.


Subject(s)
Neoplasms/metabolism , Oncogene Protein pp60(v-src)/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cadherins/metabolism , Carcinogenesis/metabolism , Cell Transformation, Neoplastic/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epithelium/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, ras/genetics , Genes, ras/physiology , Imaginal Discs/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Protein pp60(v-src)/physiology , Proto-Oncogene Proteins p21(ras)/physiology , Receptors, Notch/genetics , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Zinc Fingers
7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34301865

ABSTRACT

In mammals, the KRAS locus encodes two protein isoforms, KRAS4A and KRAS4B, which differ only in their C terminus via alternative splicing of distinct fourth exons. Previous studies have shown that whereas KRAS expression is essential for mouse development, the KRAS4A isoform is expendable. Here, we have generated a mouse strain that carries a terminator codon in exon 4B that leads to the expression of an unstable KRAS4B154 truncated polypeptide, hence resulting in a bona fide Kras4B-null allele. In contrast, this terminator codon leaves expression of the KRAS4A isoform unaffected. Mice selectively lacking KRAS4B expression developed to term but died perinatally because of hypertrabeculation of the ventricular wall, a defect reminiscent of that observed in embryos lacking the Kras locus. Mouse embryonic fibroblasts (MEFs) obtained from Kras4B-/- embryos proliferated less than did wild-type MEFs, because of limited expression of KRAS4A, a defect that can be compensated for by ectopic expression of this isoform. Introduction of the same terminator codon into a KrasFSFG12V allele allowed expression of an endogenous KRAS4AG12V oncogenic isoform in the absence of KRAS4B. Exposure of Kras+/FSF4AG12V4B- mice to Adeno-FLPo particles induced lung tumors with complete penetrance, albeit with increased latencies as compared with control Kras+/FSFG12V animals. Moreover, a significant percentage of these mice developed proximal metastasis, a feature seldom observed in mice expressing both mutant isoforms. These results illustrate that expression of the KRAS4AG12V mutant isoform is sufficient to induce lung tumors, thus suggesting that selective targeting of the KRAS4BG12V oncoprotein may not have significant therapeutic consequences.


Subject(s)
Adenocarcinoma of Lung/secondary , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/physiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Apoptosis , Cell Proliferation , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Protein Isoforms , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Methods Mol Biol ; 2262: 397-409, 2021.
Article in English | MEDLINE | ID: mdl-33977491

ABSTRACT

Costello syndrome (CS), characterized by a developmental delay and a failure to thrive, is also associated with an impaired lipid and energy metabolism. White adipose tissue is a central sensor of whole-body energy homeostasis, and HRAS hyperactivation may affect adipocyte differentiation and mature adipocyte homeostasis. An extremely useful tool for delineating in vitro intrinsic cellular signaling leading to metabolic alterations during adipogenesis is mouse embryonic fibroblasts, known to differentiate into adipocytes in response to adipogenesis-stimulating factors. Here, we describe in detail the isolation and maintenance of CS HRAS G12V mouse embryonic fibroblasts, their differentiation into adipocytes, and an assessment of adipocyte differentiation.


Subject(s)
Adipocytes/pathology , Cell Differentiation , Costello Syndrome/pathology , Disease Models, Animal , Fibroblasts/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/physiology , Adipocytes/metabolism , Adipogenesis , Animals , Costello Syndrome/genetics , Costello Syndrome/metabolism , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Female , Fibroblasts/metabolism , Homeostasis , In Vitro Techniques , Male , Mice , Mice, Knockout
9.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972443

ABSTRACT

Lung cancer is the deadliest malignancy in the United States. Non-small cell lung cancer (NSCLC) accounts for 85% of cases and is frequently driven by activating mutations in the gene encoding the KRAS GTPase (e.g., KRASG12D). Our previous work demonstrated that Argonaute 2 (AGO2)-a component of the RNA-induced silencing complex (RISC)-physically interacts with RAS and promotes its downstream signaling. We therefore hypothesized that AGO2 could promote KRASG12D-dependent NSCLC in vivo. To test the hypothesis, we evaluated the impact of Ago2 knockout in the KPC (LSL-KrasG12D/+;p53f/f;Cre) mouse model of NSCLC. In KPC mice, intratracheal delivery of adenoviral Cre drives lung-specific expression of a stop-floxed KRASG12D allele and biallelic ablation of p53 Simultaneous biallelic ablation of floxed Ago2 inhibited KPC lung nodule growth while reducing proliferative index and improving pathological grade. We next applied the KPHetC model, in which the Clara cell-specific CCSP-driven Cre activates KRASG12D and ablates a single p53 allele. In these mice, Ago2 ablation also reduced tumor size and grade. In both models, Ago2 knockout inhibited ERK phosphorylation (pERK) in tumor cells, indicating impaired KRAS signaling. RNA sequencing (RNA-seq) of KPC nodules and nodule-derived organoids demonstrated impaired canonical KRAS signaling with Ago2 ablation. Strikingly, accumulation of pERK in KPC organoids depended on physical interaction of AGO2 and KRAS. Taken together, our data demonstrate a pathogenic role for AGO2 in KRAS-dependent NSCLC. Given the prevalence of this malignancy and current difficulties in therapeutically targeting KRAS signaling, our work may have future translational relevance.


Subject(s)
Argonaute Proteins/physiology , Carcinoma, Non-Small-Cell Lung/etiology , Lung Neoplasms/etiology , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Disease Models, Animal , Disease Progression , Lung Neoplasms/genetics , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
10.
Cancer Res ; 81(13): 3717-3726, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34006524

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common cancer worldwide. With overall 5-year survival estimated at <17%, it is critical to identify factors that regulate NSCLC disease prognosis. NSCLC is commonly driven by mutations in KRAS and TP53, with activation of additional kinases such as SRC promoting tumor invasion. In this study, we investigated the role of NEDD9, a SRC activator and scaffolding protein, in NSCLC tumorigenesis. In an inducible model of NSCLC dependent on Kras mutation and Trp53 loss (KP mice), deletion of Nedd9 (KPN mice) led to the emergence of larger tumors characterized by accelerated rates of tumor growth and elevated proliferation. Orthotopic injection of KP and KPN tumors into the lungs of Nedd9-wild-type and -null mice indicated the effect of Nedd9 loss was cell-autonomous. Tumors in KPN mice displayed reduced activation of SRC and AKT, indicating that activation of these pathways did not mediate enhanced growth of KPN tumors. NSCLC tumor growth has been shown to require active autophagy, a process dependent on activation of the kinases LKB1 and AMPK. KPN tumors contained high levels of active LKB1 and AMPK and increased autophagy compared with KP tumors. Treatment with the autophagy inhibitor chloroquine completely eliminated the growth advantage of KPN tumors. These data for the first time identify NEDD9 as a negative regulator of LKB1/AMPK-dependent autophagy during early NSCLC tumor growth. SIGNIFICANCE: This study demonstrates a novel role for the scaffolding protein NEDD9 in regulating LKB1-AMPK signaling in early stage non-small cell lung cancer, suppressing autophagy and tumor growth.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Autophagy , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/physiology , Tumor Suppressor Protein p53/physiology , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Disease Models, Animal , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Prognosis , Survival Rate , Tumor Cells, Cultured
11.
Clin Cancer Res ; 27(14): 4012-4024, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33879459

ABSTRACT

PURPOSE: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN: Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.


Subject(s)
Cyclin-Dependent Kinases/physiology , Pancreatic Neoplasms/etiology , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Cyclin-Dependent Kinases/metabolism , Humans , Mice , Phosphorylation , Proteome
12.
Biochem Soc Trans ; 49(1): 467-476, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33544116

ABSTRACT

Cancer stem cells (CSC) may be the most relevant and elusive cancer cell population, as they have the exquisite ability to seed new tumors. It is plausible, that highly mutated cancer genes, such as KRAS, are functionally associated with processes contributing to the emergence of stemness traits. In this review, we will summarize the evidence for a stemness driving activity of oncogenic Ras. This activity appears to differ by Ras isoform, with the highly mutated KRAS having a particularly profound impact. Next to established stemness pathways such as Wnt and Hedgehog (Hh), the precise, cell cycle dependent orchestration of the MAPK-pathway appears to relay Ras activation in this context. We will examine how non-canonical activities of K-Ras4B (hereafter K-Ras) could be enabled by its trafficking chaperones calmodulin and PDE6D/PDEδ. Both dynamically localize to the cellular machinery that is intimately linked to cell fate decisions, such as the primary cilium and the centrosome. Thus, it can be speculated that oncogenic K-Ras disrupts fundamental polarized signaling and asymmetric apportioning processes that are necessary during cell differentiation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Cell Differentiation/genetics , Cell Transformation, Neoplastic/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/physiology
13.
BMC Med Genomics ; 13(1): 188, 2020 12 12.
Article in English | MEDLINE | ID: mdl-33308209

ABSTRACT

BACKGROUND: Linear nevus sebaceous syndrome (LNSS) is a rare genetic disease characterized by large linear sebaceous nevus typically on the face, scalp, or neck. LNSS could be accompanied by multisystem disorders including the central nervous system. Herein, we report gene mutational profile via whole exome sequencing of both lesional and non-lesional skin samples in a LNSS patient. CASE PRESENTATION: A 17-year-old girl presented with multisystem abnormalities, including large skin lesions, ocular disorders, abnormal bone development and neurological symptoms. A diagnosis of LNSS was established based on clinical manifestations, histopathological and imaging findings. The skin lesions were resected and no recurrence was noted at the time of drafting this report. Whole exome sequencing of genomic DNA revealed the following 3 mutations in the lesions of the index patient: KRAS (c.35G > A, p.G12D), PRKRIR (c.A1674T, p.R558S), and RRP7A (c. C670T, p.R224W), but no mutation was found in the healthy skin and peripheral blood sample of the index patient, or in the blood samples of her parents and sibling. PCR-mediated Sanger sequencing of DNA derived from lesional skin sample of the index patient verified KRAS mutation, but not PRKRIR (c.A1674T, p.R558S) and RRP7A (c. C670T, p.R224W). None of the 3 mutations was found in Sanger sequencing in skin lesions of 60 other cases of nevus sebaceous patients. CONCLUSIONS: Our findings show the relevance of KRAS mutation to LNSS, providing new clues in understanding related genetic heterogeneity which could aid genetic counselling for LNSS patients.


Subject(s)
Abnormalities, Multiple/genetics , Genes, ras/genetics , Nevus, Sebaceous of Jadassohn/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Skin Neoplasms/genetics , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Exotropia/etiology , Female , Genetic Heterogeneity , Head and Neck Neoplasms/congenital , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Humans , Jaw Abnormalities/genetics , Lacrimal Apparatus/abnormalities , Nevus, Sebaceous of Jadassohn/congenital , Nevus, Sebaceous of Jadassohn/pathology , Proto-Oncogene Proteins p21(ras)/physiology , RNA-Binding Proteins/genetics , Skin Neoplasms/congenital , Skin Neoplasms/pathology , Thoracic Neoplasms/congenital , Thoracic Neoplasms/genetics , Thoracic Neoplasms/pathology , Exome Sequencing
14.
Biochem Biophys Res Commun ; 533(3): 424-428, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32972751

ABSTRACT

Nutrient stress driven by glutamine deficiency activates EGFR signaling in a subset of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cells. EGFR signaling in the context of glutamine starvation is thought to be instigated by the transcriptional upregulation of EGFR ligands and functions as an adaptation mechanism to allow PDAC cells to maintain metabolic fitness. Having a clear view of the intricate signaling cascades potentiated by the metabolic induction of EGFR is important in understanding how these effector pathways influence cancer progression. In this study, we examined the complex signaling that occurs in PDAC cells when EGFR is activated by glutamine deprivation. We elucidate that the metabolic activation of EGFR is principally mediated by HB-EGF, and that other members of the ErbB receptor tyrosine kinase family are not activated by glutamine starvation. Additionally, we determine that glutamine depletion-driven EGFR signaling is associated with a specific receptor phosphorylation known to participate in a feedback loop, a process that is dependent on Erk. Lastly, we determine that K-Ras is required for glutamine depletion-induced Erk activation, as well as EGFR feedback phosphorylation, but is dispensable for Akt activation. These data provide important insights into the regulation of EGFR signaling in the context of metabolic stresses.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Carcinoma, Pancreatic Ductal/enzymology , Cell Line, Tumor , ErbB Receptors/metabolism , Feedback, Physiological , Glutamine/physiology , Heparin-binding EGF-like Growth Factor/physiology , Humans , MAP Kinase Signaling System , Pancreatic Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/metabolism
15.
J Hematol Oncol ; 13(1): 113, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807225

ABSTRACT

Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.


Subject(s)
Adenylate Kinase/physiology , MAP Kinase Signaling System/physiology , Molecular Targeted Therapy , Neoplasm Proteins/physiology , Neoplasms/enzymology , Amino Acids/metabolism , Antineoplastic Agents/therapeutic use , Autophagy , Cell Differentiation/physiology , Cell Division/physiology , Clinical Trials as Topic , Drug Synergism , Energy Metabolism , Enzyme Activation , Homeostasis , Humans , MAP Kinase Signaling System/drug effects , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Protein Processing, Post-Translational , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Tumor Suppressor Proteins/physiology , raf Kinases/antagonists & inhibitors , raf Kinases/genetics , raf Kinases/physiology
16.
Cell Commun Signal ; 18(1): 52, 2020 03 30.
Article in English | MEDLINE | ID: mdl-32228650

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death. The current study aimed to elucidate the mechanism by which exosomes carrying KRAS mutant contribute to neutrophil recruitment as well as the formation of the neutrophil extracellular trap (NET) in CRC. METHODS: APC-WT and APC-KRASG12D mouse models were initially developed. Peripheral blood, spleen, bone marrow (BM) and mesenteric lymph nodes (mLN) were isolated to detect neutrophil content. Then, APC-WT and APC-KRASG12D mice were injected with exosomes isolated from APC-WT and APC-KRASG12D mice. The ratio of neutrophils, NETs formation and IL-8 protein content were subsequently quantified in colon tissues. DKs-8 (wild type) and DKO-1 (KRAS mutant) cells were employed for in vitro experimentation. Then, DKs-8 cells were cultured with exosome-treated PMA stimulated neutrophil-forming NETs culture medium, with cell viability, invasion, migration, and adhesion evaluated. RESULTS: Compared with APC-WT mice, the numbers of polyps and neutrophils in the peripheral blood, spleen and mLNs were increased in APC-KRASG12D mice, accompanied with increased NET formation, IL-8 expression and exosomes. Meanwhile, IL-8 upregulation, neutrophil recruitment and NET formation were observed in the mice injected with exosomes derived from APC-KRASG12D. The in vitro investigation results revealed that more NETs were formed in the presence of DKO-1-Exos, which were inhibited by DNAse. In addition, DKs-8- and DKO-1 cells-derived exosomes could adhere to NETs under static conditions in vitro. Exosomal KRAS mutants were noted to exert stimulatory effects on the IL-8 production and NET formation to promote the growth of CRC cells. CONCLUSION: The results provide evidence suggesting that exosomes may transfer mutant KRAS to recipient cells and trigger increases in IL-8 production, neutrophil recruitment and formation of NETs, eventually leading to the deterioration of CRC.


Subject(s)
Colorectal Neoplasms/metabolism , Exosomes/metabolism , Interleukin-8/metabolism , Neutrophils , Proto-Oncogene Proteins p21(ras)/physiology , Animals , Cells, Cultured , Extracellular Traps , Humans , Mice , Neutrophils/cytology , Neutrophils/immunology , Proto-Oncogene Proteins p21(ras)/genetics
17.
Nat Rev Gastroenterol Hepatol ; 17(3): 153-168, 2020 03.
Article in English | MEDLINE | ID: mdl-32005945

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is predicted to be the second most common cause of death within the next 10 years. The prognosis for this disease is poor despite diagnostic progress and new chemotherapeutic regimens. The oncogenic KRAS mutation is the major event in pancreatic cancer; it confers permanent activation of the KRAS protein, which acts as a molecular switch to activate various intracellular signalling pathways and transcription factors inducing cell proliferation, migration, transformation and survival. Several laboratory methods have been developed to detect KRAS mutations in biological samples, including digital droplet PCR (which displays high sensitivity). Clinical studies have revealed that a KRAS mutation assay in fine-needle aspiration material combined with cytopathology increases the sensitivity, accuracy and negative predictive value of cytopathology for a positive diagnosis of pancreatic cancer. In addition, the presence of KRAS mutations in serum and plasma (liquid biopsies) correlates with a worse prognosis. The presence of mutated KRAS can also have therapeutic implications, whether at the gene level per se, during its post-translational maturation, interaction with nucleotides and after activation of the various oncogenic signals. Further pharmacokinetic and toxicological studies on new molecules are required, especially small synthetic molecules, before they can be used in the therapeutic arsenal for pancreatic ductal adenocarcinoma.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/therapy , Disease Models, Animal , Humans , Mice, Transgenic , Mutation , Pancreatic Neoplasms/therapy , Prognosis , Proto-Oncogene Proteins p21(ras)/physiology , Signal Transduction/genetics
18.
Gut ; 69(4): 715-726, 2020 04.
Article in English | MEDLINE | ID: mdl-31300513

ABSTRACT

OBJECTIVE: SETD2, the sole histone H3K36 trimethyltransferase, is frequently mutated or deleted in human cancer, including pancreatic ductal adenocarcinoma (PDAC). However, whether SETD2/H3K36me3 alteration results in PDAC remains largely unknown. DESIGN: TCGA(PAAD) public database and PDAC tissue array with SETD2/H3K36me3 staining were used to investigate the clinical relevance of SETD2 in PDAC. Furthermore, to define the role of SETD2 in the carcinogenesis of PDAC, we crossed conditional Setd2 knockout mice (PdxcreSetd2flox/flox) together with KrasG12D mice. Moreover, to examine the role of SETD2 after ductal metaplasia, Crisp/cas9 was used to deplete Setd2 in PDAC cells. RNA-seq and H3K36me3 ChIP-seq were performed to uncover the mechanism. RESULTS: SETD2 mutant/low expression was correlated with poor prognosis in patients with PDAC. Next, we found that Setd2 acted as a putative tumour suppressor in Kras-driven pancreatic carcinogenesis. Mechanistically, Setd2 loss in acinar cells facilitated Kras-induced acinar-to-ductal reprogramming, mainly through epigenetic dysregulation of Fbxw7. Moreover, Setd2 ablation in pancreatic cancer cells enhanced epithelia-mesenchymal transition (EMT) through impaired epigenetic regulation of Ctnna1. In addition, Setd2 deficiency led to sustained Akt activation via inherent extracellular matrix (ECM) production, which would favour their metastasis. CONCLUSION: Together, our findings highlight the function of SETD2 during pancreatic carcinogenesis, which would advance our understanding of epigenetic dysregulation in PDAC. Moreover, it may also pave the way for development of targeted, patients-tailored therapies for PDAC patients with SETD2 deficiency.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Histone-Lysine N-Methyltransferase/genetics , Mutation/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Acinar Cells/pathology , Animals , Disease Models, Animal , Epithelial-Mesenchymal Transition/genetics , Metaplasia/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins p21(ras)/physiology
19.
Respir Res ; 20(1): 181, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31399087

ABSTRACT

BACKGROUND: KRAS is a GTPase that activates pathways involved in cell growth, differentiation and survival. In normal cells, KRAS-activity is tightly controlled, but with specific mutations, the KRAS protein is persistently activated, giving cells a growth advantage resulting in cancer. While a great deal of attention has been focused on the role of mutated KRAS as a common driver mutation for lung adenocarcinoma, little is known about the role of KRAS in regulating normal human airway differentiation. METHODS: To assess the role of KRAS signaling in regulating differentiation of the human airway epithelium, primary human airway basal stem/progenitor cells (BC) from nonsmokers were cultured on air-liquid interface (ALI) cultures to mimic the airway epithelium in vitro. Modulation of KRAS signaling was achieved using siRNA-mediated knockdown of KRAS or lentivirus-mediated over-expression of wild-type KRAS or the constitutively active G12 V mutant. The impact on differentiation was quantified using TaqMan quantitative PCR, immunofluorescent and immunohistochemical staining analysis for cell type specific markers. Finally, the impact of cigarette smoke exposure on KRAS and RAS protein family activity in the airway epithelium was assessed in vitro and in vivo. RESULTS: siRNA-mediated knockdown of KRAS decreased differentiation of BC into secretory and ciliated cells with a corresponding shift toward squamous cell differentiation. Conversely, activation of KRAS signaling via lentivirus mediated over-expression of the constitutively active G12 V KRAS mutant had the opposite effect, resulting in increased secretory and ciliated cell differentiation and decreased squamous cell differentiation. Exposure of BC to cigarette smoke extract increased KRAS and RAS protein family activation in vitro. Consistent with these observations, airway epithelium brushed from healthy smokers had elevated RAS activation compared to nonsmokers. CONCLUSIONS: Together, these data suggest that KRAS-dependent signaling plays an important role in regulating the balance of secretory, ciliated and squamous cell differentiation of the human airway epithelium and that cigarette smoking-induced airway epithelial remodeling is mediated in part by abnormal activation of KRAS-dependent signaling mechanisms.


Subject(s)
Cell Differentiation/physiology , Cigarette Smoking/adverse effects , Cigarette Smoking/metabolism , Proto-Oncogene Proteins p21(ras)/physiology , Respiratory Mucosa/metabolism , Tobacco Smoke Pollution/adverse effects , Adult , Airway Remodeling/drug effects , Airway Remodeling/physiology , Cell Differentiation/drug effects , Cells, Cultured , Cigarette Smoking/pathology , Female , Humans , Male , Middle Aged , Respiratory Mucosa/drug effects , Respiratory Mucosa/pathology , Young Adult
20.
J Cancer Res Clin Oncol ; 145(9): 2273-2283, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31428934

ABSTRACT

OBJECTIVES: Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation plus TTF-1 low expression (KC subgroup). The aim of this study was to identify valuable biomarkers by searching the candidate molecules that contribute to lung adenocarcinoma pathogenesis, especially KC subtype. MATERIALS AND METHODS: We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after silencing the REG4 expression. RESULTS: REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutant lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduces cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce cell cycle arrest by regulating G2/M checkpoint and E2F targets. CONCLUSION: Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanisms of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.


Subject(s)
Adenocarcinoma of Lung/diagnosis , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/genetics , Lung Neoplasms/diagnosis , Pancreatitis-Associated Proteins/genetics , Proto-Oncogene Proteins p21(ras)/physiology , Transcription Factors/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/pathology , Cohort Studies , DNA-Binding Proteins/metabolism , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mutant Proteins/genetics , Mutant Proteins/physiology , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...