Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 573
Filter
1.
Nat Commun ; 15(1): 6551, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095371

ABSTRACT

Jumbo phages are a group of tailed bacteriophages with large genomes and capsids. As a prototype of jumbo phage, ΦKZ infects Pseudomonas aeruginosa, a multi-drug-resistant (MDR) opportunistic pathogen leading to acute or chronic infection in immunocompromised individuals. It holds potential to be used as an antimicrobial agent and as a model for uncovering basic phage biology. Although previous low-resolution structural studies have indicated that jumbo phages may have more complicated capsid structures than smaller phages such as HK97, the detailed structures and the assembly mechanism of their capsids remain largely unknown. Here, we report a 3.5-Å-resolution cryo-EM structure of the ΦKZ capsid. The structure unveiled ten minor capsid proteins, with some decorating the outer surface of the capsid and the others forming a complex network attached to the capsid's inner surface. This network seems to play roles in driving capsid assembly and capsid stabilization. Similar mechanisms of capsid assembly and stabilization are probably employed by many other jumbo viruses.


Subject(s)
Capsid Proteins , Capsid , Cryoelectron Microscopy , Pseudomonas aeruginosa , Capsid/ultrastructure , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Pseudomonas aeruginosa/virology , Virus Assembly , Pseudomonas Phages/ultrastructure , Pseudomonas Phages/chemistry , Bacteriophages/physiology , Bacteriophages/chemistry , Bacteriophages/ultrastructure , Models, Molecular , Genome, Viral
2.
Science ; 385(6704): 105-112, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963841

ABSTRACT

Introns containing homing endonucleases are widespread in nature and have long been assumed to be selfish elements that provide no benefit to the host organism. These genetic elements are common in viruses, but whether they confer a selective advantage is unclear. In this work, we studied intron-encoded homing endonuclease gp210 in bacteriophage ΦPA3 and found that it contributes to viral competition by interfering with the replication of a coinfecting phage, ΦKZ. We show that gp210 targets a specific sequence in ΦKZ, which prevents the assembly of progeny viruses. This work demonstrates how a homing endonuclease can be deployed in interference competition among viruses and provide a relative fitness advantage. Given the ubiquity of homing endonucleases, this selective advantage likely has widespread evolutionary implications in diverse plasmid and viral competition as well as virus-host interactions.


Subject(s)
Endonucleases , Introns , Pseudomonas Phages , Pseudomonas aeruginosa , Viral Interference , Viral Proteins , Endonucleases/metabolism , Endonucleases/genetics , Viral Interference/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly , Virus Replication , Pseudomonas Phages/enzymology , Pseudomonas Phages/genetics , Pseudomonas aeruginosa/virology
3.
Microbiol Spectr ; 12(8): e0387523, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38949386

ABSTRACT

Bacteriophages (hereafter "phages") are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of antiphage defense systems allowing them to resist phage lysis to a greater or lesser extent. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation, particularly in a clinical isolate of P. aeruginosa in which it also altered tobramycin resistance. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress. Our results suggest that this operon may be a cryptic but important locus for P. aeruginosa stress tolerance. IMPORTANCE: An important category of bacterial stress response systems is bacteriophage defense, where systems are triggered by bacteriophage infection and activate a response which may either destroy the phage genome or destroy the infected cell so that the rest of the population survives. In some bacteria, the cell envelope stress response is activated by bacteriophage infection, but it is unknown whether this contributes to the survival of the infection. We have found that a conserved uncharacterized operon (PA3040-PA3042) of the cell envelope stress regulon in Pseudomonas aeruginosa, which has very few dedicated phage defense systems, responds to phage infection and stationary phase as well as envelope stress and is important for growth and biofilm formation in a clinical isolate of P. aeruginosa, even in the absence of phages. As homologs of these genes are found in other bacteria, they may be a novel component of the general stress response.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Resistance, Bacterial , Operon , Pseudomonas aeruginosa , Tobramycin , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/virology , Biofilms/drug effects , Biofilms/growth & development , Anti-Bacterial Agents/pharmacology , Tobramycin/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Pseudomonas Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Gene Expression Regulation, Bacterial , Stress, Physiological , Cell Wall/metabolism , Cell Wall/drug effects , Cell Wall/genetics , Pseudomonas Phages/genetics , Cell Membrane/metabolism , Cell Membrane/drug effects
4.
Viruses ; 16(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39066163

ABSTRACT

The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Drug Resistance, Multiple, Bacterial , Phage Therapy , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/drug effects , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Bacteriophages/physiology , Microbial Sensitivity Tests , Humans , Pseudomonas Phages/physiology , Imipenem/pharmacology
5.
Viruses ; 16(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39066214

ABSTRACT

Antimicrobial resistance poses a serious risk to contemporary healthcare since it reduces the number of bacterial illnesses that may be treated with antibiotics, particularly for patients with long-term conditions like cystic fibrosis (CF). People with a genetic predisposition to CF often have recurrent bacterial infections in their lungs due to a buildup of sticky mucus, necessitating long-term antibiotic treatment. Pseudomonas aeruginosa infections are a major cause of CF lung illness, and P. aeruginosa airway isolates are frequently resistant to many antibiotics. Bacteriophages (also known as phages), viruses that infect bacteria, are a viable substitute for antimicrobials to treat P. aeruginosa infections in individuals with CF. Here, we reviewed the utilization of P. aeruginosa bacteriophages both in vivo and in vitro, as well as in the treatment of illnesses and diseases, and the outcomes of the latter.


Subject(s)
Cystic Fibrosis , Phage Therapy , Pseudomonas Infections , Pseudomonas Phages , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Humans , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Cystic Fibrosis/microbiology , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Animals , Bacteriophages/physiology , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
BMC Microbiol ; 24(1): 207, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858621

ABSTRACT

BACKGROUND: Quorum sensing (QS) is a cell density-based intercellular communication system that controls virulence gene expression and biofilm formation. In Pseudomonas aeruginosa (P. aeruginosa), the LasR system sits at the top of the QS hierarchy and coordinates the expression of a series of important traits. However, the role of lasR in phage infection remains unclear. This study aims to investigate the role of lasR QS in phage infection. METHODS: The P. aeruginosa phage was isolated from sewage, and its biological characteristics and whole genome were analyzed. The adsorption receptor was identified via a phage adsorption assay. Following lasR gene knockout, the adsorption rate and bactericidal activity of phage were analyzed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to explore how lasR promoting phage infection. RESULTS: The lytic phage vB_Pae_PLY was isolated and lipopolysaccharide (LPS) was identified as its adsorption receptor. The adsorption rate and bactericidal activity of vB_Pae_PLY were reduced after lasR knockout. RT-qPCR results showed that the expression of galU, a key gene involved in LPS synthesis, was down-regulated, and several genes related to type IV pili (T4P) were also down-regulated in the lasR mutant PaΔlasR. CONCLUSIONS: The study showed that QS lasR may promote phage vB_Pae_PLY infection by involving in the synthesis of LPS and T4P. This study provides an example of QS in promoting phage infection and deepens the understanding of phage-bacteria interactions.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Quorum Sensing , Trans-Activators , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Sewage/virology , Sewage/microbiology , Gene Expression Regulation, Bacterial , Lipopolysaccharides/metabolism , Gene Knockout Techniques
7.
Microb Biotechnol ; 17(6): e14489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864499

ABSTRACT

Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.


Subject(s)
Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/virology , Pseudomonas syringae/genetics , Plant Diseases/microbiology , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Bacteriophages/genetics , Bacteriophages/physiology
8.
Nat Microbiol ; 9(7): 1828-1841, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38886583

ABSTRACT

Bacteriophages have evolved diverse strategies to overcome host defence mechanisms and to redirect host metabolism to ensure successful propagation. Here we identify a phage protein named Dap1 from Pseudomonas aeruginosa phage PaoP5 that both modulates bacterial host behaviour and contributes to phage fitness. We show that expression of Dap1 in P. aeruginosa reduces bacterial motility and promotes biofilm formation through interference with DipA, a c-di-GMP phosphodiesterase, which causes an increase in c-di-GMP levels that trigger phenotypic changes. Results also show that deletion of dap1 in PaoP5 significantly reduces genome packaging. In this case, Dap1 directly binds to phage HNH endonuclease, prohibiting host Lon-mediated HNH degradation and promoting phage genome packaging. Moreover, PaoP5Δdap1 fails to rescue P. aeruginosa-infected mice, implying the significance of dap1 in phage therapy. Overall, these results highlight remarkable dual functionality in a phage protein, enabling the modulation of host behaviours and ensuring phage fitness.


Subject(s)
Phage Therapy , Pseudomonas Infections , Pseudomonas Phages , Pseudomonas aeruginosa , Viral Proteins , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/genetics , Animals , Mice , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Pseudomonas Infections/immunology , Virulence , Viral Proteins/genetics , Viral Proteins/metabolism , Biofilms/growth & development , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Female , Bacteriophages/physiology , Bacteriophages/genetics
9.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38833289

ABSTRACT

Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.


Subject(s)
Genome, Viral , Plant Diseases , Pseudomonas Phages , Pseudomonas syringae , Pseudomonas syringae/virology , Pseudomonas syringae/genetics , Plant Diseases/microbiology , Plant Diseases/virology , Pseudomonas Phages/genetics , Phylogeny , Genetic Variation
10.
Environ Microbiol ; 26(6): e16671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863081

ABSTRACT

The environmental bacterium, Pseudomonas putida, possesses a broad spectrum of metabolic pathways. This makes it highly promising for use in biotechnological production as a cell factory, as well as in bioremediation strategies to degrade various aromatic pollutants. For P. putida to flourish in its environment, it must withstand the continuous threats posed by bacteriophages. Interestingly, until now, only a handful of phages have been isolated for the commonly used laboratory strain, P. putida KT2440, and no phage defence mechanisms have been characterized. In this study, we present a new Collection of Environmental P. putida Phages from Estonia, or CEPEST. This collection comprises 67 double-stranded DNA phages, which belong to 22 phage species and 9 phage genera. Our findings reveal that most phages in the CEPEST collection are more infectious at lower temperatures, have a narrow host range, and require an intact lipopolysaccharide for P. putida infection. Furthermore, we show that cryptic prophages present in the P. putida chromosome provide strong protection against the infection of many phages. However, the chromosomal toxin-antitoxin systems do not play a role in the phage defence of P. putida. This research provides valuable insights into the interactions between P. putida and bacteriophages, which could have significant implications for biotechnological and environmental applications.


Subject(s)
Host Specificity , Pseudomonas putida , Pseudomonas putida/virology , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Prophages/genetics , Pseudomonas Phages/genetics , Pseudomonas Phages/isolation & purification , Estonia , Bacteriophages/genetics , Bacteriophages/isolation & purification
11.
Microbiol Spectr ; 12(8): e0352023, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38912817

ABSTRACT

Pseudomonas aeruginosa infections are getting increasingly serious as antimicrobial resistance spreads. Phage therapy may be a solution to the problem, especially if improved by current advances on phage-host studies. As a mucosal pathogen, we hypothesize that P. aeruginosa and its phages are linked to the bacteriophage adherence to mucus (BAM) model. This means that phage-host interactions could be influenced by mucin presence, impacting the success of phage infections on the P. aeruginosa host and consequently leading to the protection of the metazoan host. By using a group of four different phages, we tested three important phenotypes associated with the BAM model: phage binding to mucin, phage growth in mucin-exposed hosts, and the influence of mucin on CRISPR immunity of the bacterium. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. Improved phage growth was likely the result of phage exploitation of mucin-induced physiological changes in the host. We could not detect CRISPR activity in our system but identified two putative anti-CRISPR proteins coded by the phage. Overall, the differential responses seen for the phages tested show that the same bacterial species can be targeted by mucosal-associated phages or by phages not affected by mucus presence. In conclusion, the BAM model is relevant for phage-bacterium interactions in P. aeruginosa, opening new possibilities to improve phage therapy against this important pathogen by considering mucosal interaction dynamics.IMPORTANCESome bacteriophages are involved in a symbiotic relationship with animals, in which phages held in mucosal surfaces protect them from invading bacteria. Pseudomonas aeruginosa is one of the many bacterial pathogens threatening humankind during the current antimicrobial resistance crisis. Here, we have tested whether P. aeruginosa and its phages are affected by mucosal conditions. We discovered by using a collection of four phages that, indeed, mucosal interaction dynamics can be seen in this model. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. These results link P. aeruginosa and its phages to the bacteriophage adherence to the mucus model and open opportunities to explore this to improve phage therapy, be it by exploiting the phenotypes detected or by actively selecting mucosal-adapted phages for treatment.


Subject(s)
Mucins , Mucus , Pseudomonas Infections , Pseudomonas Phages , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/physiology , Mucus/microbiology , Mucus/virology , Pseudomonas Phages/physiology , Pseudomonas Phages/genetics , Mucins/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Humans , Phage Therapy , Animals , Virus Attachment , Clustered Regularly Interspaced Short Palindromic Repeats
12.
Cell Host Microbe ; 32(7): 1050-1058.e7, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38870941

ABSTRACT

Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.


Subject(s)
DNA, Viral , Genome, Viral , Pseudomonas Phages , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , DNA, Viral/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Virion/metabolism , Virus Replication , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Lipids , DNA Replication
13.
Science ; 384(6701): eado0713, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870284

ABSTRACT

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Subject(s)
Bacteriocins , Pseudomonas Phages , Pseudomonas , Viral Tail Proteins , Antibiosis , Bacterial Outer Membrane/metabolism , Bacteriocins/genetics , Bacteriocins/metabolism , Genetic Variation , Genome, Bacterial , Polysaccharides, Bacterial/metabolism , Pseudomonas/metabolism , Pseudomonas/virology , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , Viral Tail Proteins/metabolism , Viral Tail Proteins/genetics , Phage Therapy/methods
14.
mSphere ; 9(7): e0070723, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38934592

ABSTRACT

Phage therapy is increasing in relevance as an alternative treatment to combat antibiotic resistant bacteria. Phage cocktails are the state-of-the-art method of administering phages in clinical settings, preferred over monophage treatment because of their ability to eliminate multiple bacterial strains and reduce resistance formation. In our study, we compare monophage applications and phage cocktails to our chosen method of phage sequential treatments. To do so, we isolated four novel bacteriophages capable of infecting Pseudomonas alcaligenes T3, a close relative of P. aeruginosa, and characterized them using sequencing and transmission electron microscopy. While investigating monophage treatments, we observed that different phage concentrations had a strong impact on the timing and amount of resistance formation. When using phage cocktails, we observed that P. alcaligenes were capable of forming resistance in the same timespan it took them to become resistant to single phages. We isolated mutants resistant to each single phage as well as mutants exposed to phage cocktails, resulting in bacteria resistant to all four phages at once. Sequencing these mutants showed that different treatments yielded unique single nucleotide polymorphism mutation patterns. In order to combat resistance formation, we added phages one by one in intervals of 24 h, thus managing to delay resistance development and keeping bacterial growth significantly lower compared to phage cocktails.IMPORTANCEWHO declared antimicrobial resistance a top threat to global health; while antibiotics have stood at the forefront in the fight against bacterial infection, the increasing number of multidrug-resistant bacteria highlights a need to branch out in order to address the threat of antimicrobial resistance. Bacteriophages, viruses solely infecting bacteria, could present a solution due to their abundance, versatility, and adaptability. For this study, we isolated new phages infecting a fast-mutating Pseudomonas alcaligenes strain capable of forming resistance within 30 h. By using a sequential treatment approach of adding one phage after another, we were able to curb bacterial growth significantly more compared to state-of-the-art phage cocktails.


Subject(s)
Phage Therapy , Pseudomonas Phages , Pseudomonas , Phage Therapy/methods , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Pseudomonas/virology , Pseudomonas Infections/therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/virology , Mutation , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial
15.
Arch Microbiol ; 206(6): 283, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806864

ABSTRACT

The objective of this study was to investigate the effectiveness of a phage cocktail against Pseudomonas fluorescens group and its effect on the microbial, physical and chemical properties of raw milk during different storage conditions. A phage cocktail consisting of Pseudomonas fluorescens, Pseudomonas tolaasii, and Pseudomonas libanensis phages was prepared. As a result, reductions in fluorescent Pseudomonas counts of up to 3.44 log units for the storage at 4 °C and 2.38 log units for the storage at 25 °C were achieved. Following the phage application, it is found that there was no significant difference in the total mesophilic aerobic bacteria and Enterobacteriaceae counts. However, it was observed that the number of lactic acid bacteria was higher in phage-treated groups. The results also showed that pH values in the phage added groups were lower than the others and the highest titratable acidity was obtained only in the bacteria-inoculated group. As a future perspective, this study suggests that, while keeping the number of target microorganisms under control in the milk with the use of phages during storage, the microbiota and accordingly the quality parameters of the milk can be affected. This work contributes to the development of effective strategies for maintaining the quality and extending the shelf life of milk and dairy products.


Subject(s)
Milk , Pseudomonas Phages , Pseudomonas fluorescens , Milk/microbiology , Pseudomonas fluorescens/virology , Animals , Pseudomonas Phages/physiology , Pseudomonas Phages/isolation & purification , Food Microbiology , Hydrogen-Ion Concentration , Bacteriophages/physiology , Bacteriophages/isolation & purification
16.
Viruses ; 16(4)2024 04 21.
Article in English | MEDLINE | ID: mdl-38675985

ABSTRACT

The phage PRR1 belongs to the Leviviridae family, a group of ssRNA bacteriophages that infect Gram-negative bacteria. The variety of host cells is determined by the specificity of PRR1 to a pilus encoded by a broad host range of IncP-type plasmids that confer multiple types of antibiotic resistance to the host. Using P. aeruginosa strain PAO1 as a host, we analyzed the PRR1 infection cycle, focusing on cell lysis. PRR1 infection renders P. aeruginosa cells sensitive to lysozyme approximately 20 min before the start of a drop in suspension turbidity. At the same time, infected cells start to accumulate lipophilic anions. The on-line monitoring of the entire infection cycle showed that single-gene-mediated lysis strongly depends on the host cells' physiological state. The blockage of respiration or a reduction in the intracellular ATP concentration during the infection resulted in the inhibition of lysis. The same effect was observed when the synthesis of PRR1 lysis protein was induced in an E. coli expression system. In addition, lysis was strongly dependent on the level of aeration. Dissolved oxygen concentrations sufficient to support cell growth did not ensure efficient lysis, and a coupling between cell lysis initiation and aeration level was observed. However, the duration of the drop in suspension turbidity did not depend on the level of aeration.


Subject(s)
Bacteriolysis , Pseudomonas Phages , Pseudomonas aeruginosa , Escherichia coli/genetics , Host Specificity , Muramidase/metabolism , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/genetics , Pseudomonas Phages/physiology , Pseudomonas Phages/genetics
17.
Sci Rep ; 14(1): 9354, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653744

ABSTRACT

Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.


Subject(s)
Anti-Bacterial Agents , Antifungal Agents , Biofilms , Candida albicans , Ciprofloxacin , Pseudomonas Phages , Pseudomonas aeruginosa , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/virology , Antifungal Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Pseudomonas Phages/physiology , Candida albicans/drug effects , Candida albicans/physiology , Ciprofloxacin/pharmacology , Fluconazole/pharmacology , Microbial Sensitivity Tests
18.
PLoS Biol ; 22(4): e3002566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652717

ABSTRACT

Phage therapy is a therapeutic approach to treat multidrug-resistant (MDR) infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells (AECs) derived from a person with cystic fibrosis (CF), we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.


Subject(s)
Cystic Fibrosis , Cytokines , Epithelial Cells , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/virology , Epithelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/immunology , Cytokines/metabolism , Cystic Fibrosis/therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/metabolism , Phage Therapy , Bacteriophages/physiology , Bacteriophages/genetics , Respiratory Mucosa/virology , Respiratory Mucosa/metabolism , Respiratory Mucosa/immunology , Pseudomonas Infections/therapy , Pseudomonas Infections/immunology , Pseudomonas Phages/metabolism , Biofilms
19.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38574145

ABSTRACT

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Subject(s)
Fimbriae, Bacterial , Pseudomonas Phages , Pseudomonas aeruginosa , RNA Viruses , Virus Internalization , Humans , Cryoelectron Microscopy , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/virology , Pseudomonas aeruginosa/pathogenicity , Pseudomonas aeruginosa/virology , RNA Viruses/chemistry , RNA Viruses/physiology , Pseudomonas Phages/chemistry , Pseudomonas Phages/physiology , Viral Proteins/metabolism
20.
Enzyme Microb Technol ; 177: 110442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593554

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium associated with life-threatening healthcare-associated infections (HAIs), including burn wound infections, pneumonia and sepsis. Moreover, P. aeruginosa has been considered a pathogen of global concern due to its rising antibiotic resistance. Efficient identification of P. aeruginosa would significantly benefit the containment of bacterial infections, prevent pathogen transmission, and provide orientated treatment options. The accuracy and specificity of bacterial detection are primarily dictated by the biorecognition molecules employed. Lytic bacteriophages (or phages) could specifically attach to and lyse host bacterial cells. Phages' host specificity is typically determined by their receptor-binding proteins (RBPs), which recognize and adsorb phages to particular bacterial host receptors. This makes RBPs promising biorecognition molecules in bacterial detection. This study identified a novel RBP (Gp130) from the P. aeruginosa phage Henu5. A modified enzyme-linked phage receptor-binding protein assay (ELPRA) was developed for P. aeruginosa detection employing Gp130 as biorecognition molecules. Optimized conditions provided a calibration curve for P. aeruginosa with a range from 1.0 × 103 to 1.0 × 107 CFU/mL, with a limit of detection as low as 10 CFU/mL in phosphate-buffered saline (PBS). With VITEKⓇ 2 Compact system identification (40 positives and 21 negatives) as the gold standard, the sensitivity of ELPRA was 0.950 (0.818-0.991), and the specificity was 0.905 (0.682-0.983) within a 95 %confidence interval. Moreover, the recovery test in spiked mouse serum showed recovery rates ranging from 82.79 %to 98.17%, demonstrating the prospect of the proposed ELPRA for detecting P. aeruginosa in biological samples.


Subject(s)
Pseudomonas Phages , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , Pseudomonas Infections/diagnosis , Pseudomonas Infections/microbiology , Animals , Mice , Bacteriophage Receptors/metabolism , Bacteriophage Receptors/genetics , Viral Proteins/metabolism , Viral Proteins/genetics , Humans , Host Specificity , Bacteriophages/genetics
SELECTION OF CITATIONS
SEARCH DETAIL