Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Eur Respir Rev ; 33(173)2024 Jul.
Article in English | MEDLINE | ID: mdl-39142709

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.


Subject(s)
Autoantibodies , Granulocyte-Macrophage Colony-Stimulating Factor , Pulmonary Alveolar Proteinosis , Pulmonary Alveolar Proteinosis/therapy , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/immunology , Humans , Autoantibodies/blood , Treatment Outcome , Biomarkers/blood , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Genetic Predisposition to Disease , Animals , Signal Transduction , Lung/immunology
2.
J Clin Immunol ; 44(8): 176, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133333

ABSTRACT

PURPOSE: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS: In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS: Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION: The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.


Subject(s)
Autoantibodies , Granulocyte-Macrophage Colony-Stimulating Factor , Nocardia Infections , Humans , Autoantibodies/immunology , Autoantibodies/blood , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Nocardia Infections/immunology , Nocardia Infections/diagnosis , Female , Male , Middle Aged , Aged , Adult , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/diagnosis , Cryptococcus gattii/immunology
3.
Respir Investig ; 62(4): 610-616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705133

ABSTRACT

BACKGROUND: Pulmonary alveolar proteinosis (PAP) is characterized by an abnormal accumulation of surfactants in the alveoli. Most cases are classified as autoimmune PAP (APAP) because they are associated with autoantibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF). However, GM-CSF autoantibody levels are unlikely to correlate with the disease severity or prognosis of APAP. METHODS: We collected clinical records and measured 38 serum cytokine concentrations for consecutive patients with APAP. After exclusion of 21 cytokines because of undetectable levels, 17 cytokine levels were compared between low and high disease severity scores (DSSs). We also compared whole lung lavage (WLL)-free survival with cut-off values defined by receiver operating characteristic (ROC) curves of cytokine levels and WLL administration at 11 months. RESULTS: Nineteen patients with APAP were enrolled in the study. Five were classified as DSS 1 or 2, while the others were classified as DSS 4 or 5. Comparison between DSS 1-2 and 4-5 revealed that the concentrations of IP-10 and GRO increased in the latter groups (p < 0.05). Fifteen patients underwent WLL. Comparison between those who underwent WLL within 11 months and the others showed that IP-10 and TNF-α were tended to be elevated in the former group (p = 0.082 and 0.057, respectively). The cut-off values of IP-10, 308.8 pg/mL and TNF-α, 19.1 pg/mL, defined by the ROC curves, significantly separated WLL-free survivals with log-rank analyses (p = 0.005). CONCLUSIONS: The concentrations of IP-10 and GRO may reflect the DSSs of APAP. A combination of IP-10 and TNF-α levels could be a biomarker to predict WLL-free survival.


Subject(s)
Autoimmune Diseases , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Pulmonary Alveolar Proteinosis , Severity of Illness Index , Humans , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/blood , Pulmonary Alveolar Proteinosis/therapy , Prognosis , Cytokines/blood , Male , Female , Autoimmune Diseases/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/diagnosis , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Middle Aged , Adult , Autoantibodies/blood , Chemokine CXCL10/blood , Aged , Tumor Necrosis Factor-alpha/blood , Biomarkers/blood , Bronchoalveolar Lavage , Young Adult
4.
Respir Res ; 23(1): 60, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35300687

ABSTRACT

BACKGROUND: PAP is an ultra-rare respiratory syndrome characterized by the accumulation of surfactant within the alveoli. Whole lung lavage (WLL) is the current standard of care of PAP, however it is not a standardized procedure and the total amount of fluid used to wash each lung is still debated. Considering ICU hospitalization associated risks, a "mini-WLL" with anticipated manual clapping and reduced total infusion volume and has been proposed in our center. The aim of the study is to retrospectively analyze the efficacy of mini-WLL compared to standard WLL at the Pavia center. METHODS: 13 autoimmune PAP patients eligible for WLL were included: 7 patients were admitted to mini-WLL (9 L total infusion volume for each lung) and 6 patients underwent standard WLL (14 L of infusion volume). Functional data (VC%, FVC%, TLC%, DLCO%) and alveolar-arterial gradient values (A-aO2) were collected at the baseline and 1, 3, 6, 12, 18 months after the procedure. RESULTS: A statistically significant improvement of VC% (p = 0.013, 95%CI 3.49-30.19), FVC% (p = 0.016, 95%CI 3.37-32.09), TLC% (p = 0.001, 95%CI 7.38-30.34) was observed in the mini-WLL group in comparison with the standard WLL group, while no significant difference in DLCO% and A-aO2 mean values were reported. CONCLUSION: Mini-WLL has demonstrated higher efficacy in ameliorating lung volumes, suggesting that a lower infusion volume is sufficient to remove the surfactant accumulation and possibly allows a reduced mechanical insult of the bronchi walls and the alveoli. However, no statistically significant differences were found in terms of DLCO% and Aa-O2.


Subject(s)
Autoimmune Diseases/therapy , Autoimmunity , Bronchoalveolar Lavage/methods , Pulmonary Alveolar Proteinosis/therapy , Pulmonary Alveoli/physiopathology , Pulmonary Surfactants/metabolism , Adult , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Female , Follow-Up Studies , Humans , Lung Volume Measurements/methods , Male , Middle Aged , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/metabolism , Retrospective Studies
5.
Front Immunol ; 12: 752856, 2021.
Article in English | MEDLINE | ID: mdl-34880857

ABSTRACT

Autoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections. In this article, we review the role of GM-CSF in aPAP pathogenesis and pulmonary homeostasis along with the increased incidence of infections (particularly opportunistic infections). Therefore, recombinant human GM-CSF products may have potential for treatment of aPAP and possibly other infectious and pulmonary diseases due to its pleotropic immunomodulatory actions.


Subject(s)
Autoantibodies/immunology , Autoimmune Diseases/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Infections/immunology , Pulmonary Alveolar Proteinosis/immunology , Animals , Autoimmune Diseases/complications , Humans , Pulmonary Alveolar Proteinosis/complications
6.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34778899

ABSTRACT

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Subject(s)
Arthritis, Rheumatoid/metabolism , COVID-19/therapy , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Arthritis, Rheumatoid/therapy , Autoantibodies/chemistry , Bronchoalveolar Lavage Fluid , COVID-19/immunology , Choline/analogs & derivatives , Female , Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Inflammation , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pulmonary Alveolar Proteinosis/genetics , SARS-CoV-2/immunology , Surface-Active Agents
8.
Nat Commun ; 12(1): 1032, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33589587

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a devastating lung disease caused by abnormal surfactant homeostasis, with a prevalence of 6-7 cases per million population worldwide. While mutations causing hereditary PAP have been reported, the genetic basis contributing to autoimmune PAP (aPAP) has not been thoroughly investigated. Here, we conducted a genome-wide association study of aPAP in 198 patients and 395 control participants of Japanese ancestry. The common genetic variant, rs138024423 at 6p21, in the major-histocompatibility-complex (MHC) region was significantly associated with disease risk (Odds ratio [OR] = 5.2; P = 2.4 × 10-12). HLA fine-mapping revealed that the common HLA class II allele, HLA-DRB1*08:03, strongly drove this signal (OR = 4.8; P = 4.8 × 10-12), followed by an additional independent risk allele at HLA-DPß1 amino acid position 8 (OR = 0.28; P = 3.4 × 10-7). HLA-DRB1*08:03 was also associated with an increased level of anti-GM-CSF antibody, a key driver of the disease (ß = 0.32; P = 0.035). Our study demonstrated a heritable component of aPAP, suggesting an underlying genetic predisposition toward an abnormal antibody production.


Subject(s)
Autoantibodies/genetics , Autoimmune Diseases/genetics , Genetic Predisposition to Disease , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , HLA-DRB1 Chains/genetics , Pulmonary Alveolar Proteinosis/genetics , Adult , Aged , Alleles , Asian People , Autoantibodies/biosynthesis , Autoimmune Diseases/ethnology , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Case-Control Studies , Chromosomes, Human, Pair 6 , Female , Gene Expression , Gene Frequency , Genome-Wide Association Study , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , HLA-DRB1 Chains/immunology , Humans , Japan , Male , Middle Aged , Odds Ratio , Protein Isoforms/genetics , Pulmonary Alveolar Proteinosis/ethnology , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Surfactants/immunology , Pulmonary Surfactants/metabolism , Risk
9.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33600594

ABSTRACT

Hematopoietic protein-1 (Hem-1) is a hematopoietic cell-specific actin-regulatory protein. Loss-of-function (LOF) variants in the NCKAP1L gene encoding Hem-1 have recently been found to result in primary immunodeficiency disease (PID) in humans, characterized by recurring respiratory infections, asthma, and high mortality. However, the mechanisms of how Hem-1 variants result in PID are not known. In this study, we generated constitutive and myeloid cell-specific Nckap1l-KO mice to dissect the importance of Hem-1 in lung immunity. We found that Hem-1-deficient mice accumulated excessive surfactant and cell debris in airways (pulmonary alveolar proteinosis) due to impaired development of alveolar macrophages (AMs) and reduced expression of the AM differentiation factor Pparg. Residual Hem-1-deficient AMs shifted to a proinflammatory phenotype, and Hem-1-deficient neutrophils and monocytes failed to migrate normally. Myeloid cell-specific Hem-1-deficient mice exhibited increased morbidity following influenza A virus or Streptococcus pneumoniae challenge. These results provide potential mechanisms for how LOF variants in Hem-1 result in recurring respiratory diseases.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/physiology , Cell Differentiation/genetics , Macrophages, Alveolar/immunology , Pulmonary Alveolar Proteinosis/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Differentiation/immunology , Cell Movement/genetics , Cell Movement/immunology , Cells, Cultured , Disease Models, Animal , Female , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Neutrophils/immunology , PPAR gamma/metabolism , Phagocytosis/genetics , Phagocytosis/immunology , Pulmonary Alveolar Proteinosis/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
10.
Intern Med ; 59(20): 2539-2546, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32611952

ABSTRACT

Autoimmune pulmonary alveolar proteinosis (APAP) is caused by macrophage dysfunction due to anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibody. We experienced 2 cases of APAP complicated with sarcoidosis in a 42-year-old woman and a 51-year-old man (age at the sarcoidosis diagnosis). APAP preceded sarcoidosis in the woman, and both diseases were diagnosed simultaneously in the man. Sarcoidosis lesions were observed in the lung, skin, and eyes, and the pathological findings of APAP were not marked at the diagnosis of sarcoidosis in either case. Low-grade positive serum anti-GM-CSF autoantibody was suspected to be correlated with the occurrence of sarcoidosis and resolution of APAP.


Subject(s)
Autoantibodies/blood , Autoimmune Diseases/complications , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Pulmonary Alveolar Proteinosis/complications , Pulmonary Alveolar Proteinosis/immunology , Sarcoidosis/etiology , Adult , Autoimmune Diseases/blood , Autoimmune Diseases/physiopathology , Female , Humans , Male , Middle Aged , Pulmonary Alveolar Proteinosis/blood , Pulmonary Alveolar Proteinosis/diagnosis , Sarcoidosis/physiopathology
12.
Expert Opin Pharmacother ; 21(11): 1359-1366, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32511020

ABSTRACT

INTRODUCTION: Pulmonary alveolar proteinosis (PAP) is a heterogeneous group of rare diseases characterized by the abnormal production and impaired degradation of pulmonary surfactant as a result of malfunctioning of alveolar macrophages. This is due to the downstream dysregulation of the GM-CSF pathway, which can be caused by specific autoantibodies (autoimmune, aPAP formerly known as idiopathic iPAP), direct injury to alveolar macrophages (e.g. by toxic inhaled agents.), or by genetic defects (hereditary or congenital PAP). Few pharmacotherapy options are currently available to treat this disease. AREA COVERED: The authors discuss the exogenous administration of GM-CSF, rituximab, and the potential role of cholesterol lowering medications in this review. The authors, furthermore, provide their opinion on the available pharmacotherapeutic options and give their future perspectives. EXPERT OPINION: Inhaled GM-CSF remains the most commonly used therapy in patients with iPAP but other inhaled therapies such as PPARγ activators should be considered, especially in patients who are partially responsive or unresponsive to traditional treatments.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Pulmonary Alveolar Proteinosis/drug therapy , Rituximab/therapeutic use , Administration, Inhalation , Animals , Autoantibodies/immunology , Clinical Trials as Topic , Genetic Therapy , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Humans , Injections, Subcutaneous , Lipid Metabolism/drug effects , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Rituximab/administration & dosage , Rituximab/adverse effects
13.
Respirology ; 25(8): 816-826, 2020 08.
Article in English | MEDLINE | ID: mdl-32363736

ABSTRACT

PAP is an ultra-rare disease in which surfactant components, that impair gas exchange, accumulate in the alveolae. There are three types of PAP. The most frequent form, primary PAP, includes autoimmune PAP which accounts for over 90% of all PAP, defined by the presence of circulating anti-GM-CSF antibodies. Secondary PAP is mainly due to haematological disease, infections or inhaling toxic substances, while genetic PAP affects almost exclusively children. PAP is suspected if investigation for ILD reveals a crazy-paving pattern on chest CT scan, and is confirmed by a milky looking BAL that gives a positive PAS reaction indicating extracellular proteinaceous material. PAP is now rarely confirmed by surgical lung biopsy. WLL is still the first-line treatment, with an inhaled GM-CSF as second-line treatment. Inhalation has been found to be better than subcutaneous injections. Other treatments, such as rituximab or plasmapheresis, seem to be less efficient or ineffective. The main complications of PAP are due to infections by standard pathogens (Streptococcus, Haemophilus and Enterobacteria) or opportunistic pathogens such as mycobacteria, Nocardia, Actinomyces, Aspergillus or Cryptococcus. The clinical course of PAP is unpredictable and spontaneous improvement can occur. The 5-year actuarial survival rate is 95%.


Subject(s)
Pulmonary Alveolar Proteinosis/pathology , Autoimmune Diseases/complications , Humans , Lung/pathology , Pulmonary Alveolar Proteinosis/classification , Pulmonary Alveolar Proteinosis/epidemiology , Pulmonary Alveolar Proteinosis/immunology , Tomography, X-Ray Computed
14.
BMC Pulm Med ; 20(1): 84, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32252718

ABSTRACT

BACKGROUND: Pulmonary alveolar proteinosis (PAP) is characterized by the accumulation of surfactant proteins within the alveolar spaces. Autoimmune PAP (APAP) caused by elevated levels of GM-CSF autoantibodies (GM-Ab) is very rarely associated with systemic autoimmune disease. Here we report a case of APAP manifested during immunosuppressive treatment for polymyositis with interstitial lung disease. CASE PRESENTATION: A 52-year-old woman treated at our hospital because of polymyositis with interstitial pneumonia had maintained remission by immunosuppressive treatment for 15 years. She had progressive dyspnea subsequently over several months with her chest CT showing ground-glass opacities (GGO) in bilateral geographic distribution. Her bronchoalveolar lavage fluid with cloudy appearance revealed medium-sized foamy macrophages and PAS-positive amorphous eosinophilic materials by cytological examination. We diagnosed her as APAP due to an increased serum GM-CSF autoantibody level. Attenuating immunosuppression failed to lead GGO improvement, but whole lung lavage (WLL) was effective in her condition. CONCLUSIONS: PAP should be considered as one of the differential diseases when the newly interstitial shadow was observed during immunosuppressive treatment. WLL should be regarded as the treatment option for APAP concurred in connective tissue disease (CTD).


Subject(s)
Autoantibodies/blood , Autoimmune Diseases/diagnosis , Lung Diseases, Interstitial/complications , Polymyositis/complications , Pulmonary Alveolar Proteinosis/diagnosis , Autoimmune Diseases/immunology , Autoimmune Diseases/physiopathology , Bronchoalveolar Lavage Fluid/cytology , Dyspnea/etiology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Immunosuppressive Agents/adverse effects , Lung/physiopathology , Lung Diseases, Interstitial/drug therapy , Middle Aged , Polymyositis/drug therapy , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/physiopathology , Pulmonary Alveolar Proteinosis/therapy , Tomography, X-Ray Computed
15.
Semin Respir Crit Care Med ; 41(2): 288-298, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32279299

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by progressive accumulation of pulmonary surfactant. This results in dyspnea, secondary pulmonary and systemic infection, and in some cases respiratory failure. PAP syndrome occurs in distinct diseases, classified according to pathogenetic mechanism; these include primary PAP (due to disruption of granulocyte-macrophage colony-stimulating factor [GM-CSF] signaling), secondary PAP (due to reduction in alveolar macrophage numbers/functions), and congenital PAP (due to disruption of surfactant production). In primary PAP, the most common cause is autoimmune PAP, which accounts for over 90% of all PAP syndrome. The pathogenesis is driven by reduced GM-CSF-signaling causing abnormal alveolar macrophage function which subsequently results in impaired alveolar surfactant clearance. Autoimmune PAP can be accurately diagnosed by serum GM-CSF autoantibody levels and there now exist other diagnostic tests for rare causes of PAP syndrome. The current standard treatment is whole lung lavage; however, there is emerging evidence to support the use of novel therapeutic approaches, including inhaled GM-CSF, immune modulation, gene and cell therapy, and targeting macrophage cholesterol homeostasis. Furthermore, several innovative approaches to monitor disease severity and response to therapy have recently been developed.


Subject(s)
Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/therapy , Bronchoalveolar Lavage/methods , Bronchoscopy , Clinical Trials as Topic , Dyspnea/etiology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Macrophages, Alveolar/immunology , Pulmonary Alveolar Proteinosis/epidemiology , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Surfactants/metabolism , Syndrome
16.
Int J Mol Sci ; 21(3)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046322

ABSTRACT

In autoantibody-mediated autoimmune diseases, pathogenic autoantibodies generated by a failure of central or peripheral tolerance, have different effects mediated by a variety of mechanisms. Interestingly, even non-autoimmune chronic diseases have a set of disease-specific natural autoantibodies that are maintained for a long time. Because most of these natural autoantibodies target intracellular proteins or long non-coding RNAs, they are speculated to be non-pathological and have some important as yet unrecognized physiological functions such as debris clearance. Recently, we revealed a set of disease-specific natural autoantibodies of chronic pulmonary diseases with unknown etiology by protein arrays that enable detection of specific autoantibodies against >8000 targets. Surprisingly, some of the targeted antigens of disease-specific autoantibodies were subsequently reported by other laboratories as strongly associated with the disease, suggesting that these antigens reflect the pathology of each disease. Furthermore, some of these autoantibodies that target extracellular antigens might modify the original course of each disease. Here, we review the disease-specific natural autoantibodies of chronic pulmonary diseases, including chronic fibrosing idiopathic interstitial pneumonias, sarcoidosis, and autoimmune pulmonary alveolar proteinosis, and discuss their utility and effects.


Subject(s)
Autoantibodies , Lung Diseases/immunology , Autoimmune Diseases/immunology , Chronic Disease , Humans , Idiopathic Pulmonary Fibrosis/immunology , Pulmonary Alveolar Proteinosis/immunology , Sarcoidosis/immunology
17.
J Clin Invest ; 130(4): 1669-1682, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31874111

ABSTRACT

BACKGROUNDUndifferentiated systemic autoinflammatory diseases (USAIDs) present diagnostic and therapeutic challenges. Chronic interferon (IFN) signaling and cytokine dysregulation may identify diseases with available targeted treatments.METHODSSixty-six consecutively referred USAID patients underwent underwent screening for the presence of an interferon signature using a standardized type-I IFN-response-gene score (IRG-S), cytokine profiling, and genetic evaluation by next-generation sequencing.RESULTSThirty-six USAID patients (55%) had elevated IRG-S. Neutrophilic panniculitis (40% vs. 0%), basal ganglia calcifications (46% vs. 0%), interstitial lung disease (47% vs. 5%), and myositis (60% vs. 10%) were more prevalent in patients with elevated IRG-S. Moderate IRG-S elevation and highly elevated serum IL-18 distinguished 8 patients with pulmonary alveolar proteinosis (PAP) and recurrent macrophage activation syndrome (MAS). Among patients with panniculitis and progressive cytopenias, 2 patients were compound heterozygous for potentially novel LRBA mutations, 4 patients harbored potentially novel splice variants in IKBKG (which encodes NF-κB essential modulator [NEMO]), and 6 patients had de novo frameshift mutations in SAMD9L. Of additional 12 patients with elevated IRG-S and CANDLE-, SAVI- or Aicardi-Goutières syndrome-like (AGS-like) phenotypes, 5 patients carried mutations in either SAMHD1, TREX1, PSMB8, or PSMG2. Two patients had anti-MDA5 autoantibody-positive juvenile dermatomyositis, and 7 could not be classified. Patients with LRBA, IKBKG, and SAMD9L mutations showed a pattern of IRG elevation that suggests prominent NF-κB activation different from the canonical interferonopathies CANDLE, SAVI, and AGS.CONCLUSIONSIn patients with elevated IRG-S, we identified characteristic clinical features and 3 additional autoinflammatory diseases: IL-18-mediated PAP and recurrent MAS (IL-18PAP-MAS), NEMO deleted exon 5-autoinflammatory syndrome (NEMO-NDAS), and SAMD9L-associated autoinflammatory disease (SAMD9L-SAAD). The IRG-S expands the diagnostic armamentarium in evaluating USAIDs and points to different pathways regulating IRG expression.TRIAL REGISTRATIONClinicalTrials.gov NCT02974595.FUNDINGThe Intramural Research Program of the NIH, NIAID, NIAMS, and the Clinical Center.


Subject(s)
Autoimmune Diseases , Interferon Type I , Interleukin-18 , Macrophage Activation Syndrome , Mutation , Panniculitis , Pulmonary Alveolar Proteinosis , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Female , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/immunology , Male , Panniculitis/genetics , Panniculitis/immunology , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/immunology
18.
Pediatr Emerg Care ; 36(8): e470-e472, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30113436

ABSTRACT

Pulmonary alveolar proteinosis (PAP) is a respiratory pathology characterized by the accumulation and increase of surfactant-derived material in the lungs. In clinical practice, PAP may present as the primary form, which includes autoimmune and hereditary PAP, or as the secondary form. Diffuse alveolar radiopacities on chest x-ray and the crazy-paving pattern on high-resolution computed tomography are important, although not specific findings for PAP. Bronchoalveolar lavage biopsy is a diagnostic method, and whole-lung lavage remains the criterion standard for the treatment of PAP. Evidence is required regarding treatment with exogenous anti-granulocyte/macrophage colony-stimulating factor.Here, we present a 13-year-old male patient with hereditary PAP and a 15-year-old female patient with autoimmune PAP who presented with complaints of easy fatigability and weakness to emphasize the importance of keeping in mind PAP as a differential diagnosis in patients with respiratory failure findings.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Pulmonary Alveolar Proteinosis/diagnosis , Pulmonary Alveolar Proteinosis/drug therapy , Adolescent , Biopsy , Bronchoalveolar Lavage , Diagnosis, Differential , Diagnostic Imaging , Female , Humans , Male , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/immunology , Respiration, Artificial
19.
N Engl J Med ; 381(10): 923-932, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31483963

ABSTRACT

BACKGROUND: Pulmonary alveolar proteinosis is a disease characterized by abnormal accumulation of surfactant in the alveoli. Most cases are autoimmune and are associated with an autoantibody against granulocyte-macrophage colony-stimulating factor (GM-CSF) that prevents clearing of pulmonary surfactant by alveolar macrophages. An open-label, phase 2 study showed some therapeutic efficacy of inhaled recombinant human GM-CSF in patients with severe pulmonary alveolar proteinosis; however, the efficacy in patients with mild-to-moderate disease remains unclear. METHODS: We conducted a double-blind, placebo-controlled trial of daily inhaled recombinant human GM-CSF (sargramostim), at a dose of 125 µg twice daily for 7 days, every other week for 24 weeks, or placebo in 64 patients with autoimmune pulmonary alveolar proteinosis who had a partial pressure of arterial oxygen (Pao2) while breathing ambient air of less than 70 mm Hg (or <75 mm Hg in symptomatic patients). Patients with severe pulmonary alveolar proteinosis (Pao2 <50 mm Hg) were excluded to avoid possible exacerbation of the disease in patients who were assigned to receive placebo. The primary end point was the change in the alveolar-arterial oxygen gradient between baseline and week 25. RESULTS: The change in the mean (±SD) alveolar-arterial oxygen gradient was significantly better in the GM-CSF group (33 patients) than in the placebo group (30 patients) (mean change from baseline, -4.50±9.03 mm Hg vs. 0.17±10.50 mm Hg; P = 0.02). The change between baseline and week 25 in the density of the lung field on computed tomography was also better in the GM-CSF group (between-group difference, -36.08 Hounsfield units; 95% confidence interval, -61.58 to -6.99, calculated with the use of the Mann-Whitney U test and the Hodges-Lehmann estimate of confidence intervals for pseudo-medians). Serious adverse events developed in 6 patients in the GM-CSF group and in 3 patients in the placebo group. CONCLUSIONS: In this randomized, controlled trial, inhaled recombinant human GM-CSF was associated with a modest salutary effect on the laboratory outcome of arterial oxygen tension, and no clinical benefits were noted. (Funded by the Japan Agency for Medical Research and Development and the Ministry of Health, Labor, and Welfare of Japan; PAGE ClinicalTrials.gov number, NCT02835742; Japan Medical Association Center for Clinical Trials number, JMA-IIA00205.).


Subject(s)
Autoimmune Diseases/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunologic Factors/therapeutic use , Pulmonary Alveolar Proteinosis/drug therapy , Administration, Inhalation , Adult , Aged , Autoantibodies/blood , Autoimmune Diseases/diagnostic imaging , Double-Blind Method , Drug Administration Schedule , Female , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Oxygen/blood , Pulmonary Alveolar Proteinosis/diagnostic imaging , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Diffusing Capacity , Recombinant Proteins/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Smoking/adverse effects , Tomography, X-Ray Computed , Walk Test
20.
Arthritis Rheumatol ; 71(11): 1943-1954, 2019 11.
Article in English | MEDLINE | ID: mdl-31379071

ABSTRACT

OBJECTIVE: Systemic juvenile idiopathic arthritis (JIA) is associated with a recently recognized, albeit poorly defined and characterized, lung disease (LD). The objective of this study was to describe the clinical characteristics, risk factors, and histopathologic and immunologic features of this novel inflammatory LD associated with systemic JIA (designated SJIA-LD). METHODS: Clinical data collected since 2010 were abstracted from the medical records of patients with systemic JIA from the Cincinnati Children's Hospital Medical Center. Epidemiologic, cellular, biochemical, genomic, and transcriptional profiling analyses were performed. RESULTS: Eighteen patients with SJIA-LD were identified. Radiographic findings included diffuse ground-glass opacities, subpleural reticulation, interlobular septal thickening, and lymphadenopathy. Pathologic findings included patchy, but extensive, lymphoplasmacytic infiltrates and mixed features of pulmonary alveolar proteinosis (PAP) and endogenous lipoid pneumonia. Compared to systemic JIA patients without LD, those with SJIA-LD were younger at the diagnosis of systemic JIA (odds ratio [OR] 6.5, P = 0.007), more often had prior episodes of macrophage activation syndrome (MAS) (OR 14.5, P < 0.001), had a greater frequency of adverse reactions to biologic therapy (OR 13.6, P < 0.001), and had higher serum levels of interleukin-18 (IL-18) (median 27,612 pg/ml versus 5,413 pg/ml; P = 0.047). Patients with SJIA-LD lacked genetic, serologic, or functional evidence of granulocyte-macrophage colony-stimulating factor pathway dysfunction, a feature that is typical of familial or autoimmune PAP. Moreover, bronchoalveolar lavage (BAL) fluid from patients with SJIA-LD rarely demonstrated proteinaceous material and had less lipid-laden macrophages than that seen in patients with primary PAP (mean 10.5% in patients with SJIA-LD versus 66.1% in patients with primary PAP; P < 0.001). BAL fluid from patients with SJIA-LD contained elevated levels of IL-18 and the interferon-γ-induced chemokines CXCL9 and CXCL10. Transcriptional profiling of the lung tissue from patients with SJIA-LD identified up-regulated type II interferon and T cell activation networks. This signature was also present in SJIA-LD human lung tissue sections that lacked substantial histopathologic findings, suggesting that this activation signature may precede and drive the lung pathology in SJIA-LD. CONCLUSION: Pulmonary disease is increasingly detected in children with systemic JIA, particularly in association with MAS. This entity has distinct clinical and immunologic features and represents an uncharacterized inflammatory LD.


Subject(s)
Arthritis, Juvenile/epidemiology , Pulmonary Alveolar Proteinosis/epidemiology , Age Distribution , Arthritis, Juvenile/diagnostic imaging , Arthritis, Juvenile/immunology , Arthritis, Juvenile/pathology , Bronchoalveolar Lavage Fluid , Chemokine CXCL10/metabolism , Chemokine CXCL9/metabolism , Child , Child, Preschool , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Infant , Interferon-gamma/metabolism , Interleukin-18/immunology , Lung/diagnostic imaging , Lung/pathology , Lung Diseases/diagnostic imaging , Lung Diseases/epidemiology , Lung Diseases/immunology , Lung Diseases/pathology , Macrophage Activation Syndrome/epidemiology , Macrophage Activation Syndrome/immunology , Male , Pulmonary Alveolar Proteinosis/diagnostic imaging , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Alveolar Proteinosis/pathology , T-Lymphocytes/metabolism , Tomography, X-Ray Computed , Transcriptome , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL