Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.910
1.
Clin Transl Med ; 14(5): e1690, 2024 May.
Article En | MEDLINE | ID: mdl-38760896

INTRODUCTION: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.


DNA-Activated Protein Kinase , Epithelial-Mesenchymal Transition , Nuclear Proteins , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Twist-Related Protein 1 , Epithelial-Mesenchymal Transition/drug effects , Animals , DNA-Activated Protein Kinase/metabolism , DNA-Activated Protein Kinase/genetics , Mice , Proto-Oncogene Proteins c-akt/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Ubiquitination , Humans , Mice, Knockout , DNA-Binding Proteins
2.
Respir Med ; 227: 107659, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729528

Pulmonary Fibrosis (PF) describes a group of lung diseases characterised by progressive scarring (fibrosis). Symptoms worsen over time and include breathlessness, tiredness, and cough, giving rise to psychological distress. Significant morbidity accompanies PF, so ensuring patients' care needs are well defined and provided for, represents an important treatment strategy. The purpose of this systematic review was to synthesise what is currently known about the psychosocial morbidity, illness experience and needs of people with pulmonary fibrosis and their informal caregivers. Eight databases (MEDLINE, EMBASE, PUBMED, Cochrane database of Systematic reviews (CDSR), Web of Science Social Sciences Citation Index, PsycINFO, PsycARTICLES and CINAHL) were used to identify studies exploring the supportive needs of adults with PF and/or their caregivers. Methodological quality was assessed using the Mixed Methods Appraisal Tool. 53 studies were included, the majority using qualitative methodology (79 %, 42/53), 6 as part of mixed methodological studies. Supportive care needs were mapped to eight domains using an a priori framework analysis. Findings highlight a lack of psychological support throughout the course of the illness, misconceptions about and barriers to, the provision of palliative care despite its potential positive impacts. Patients and caregivers express a desire for greater disease specific education and information provision throughout the illness. Trials of complex interventions are needed to address the unique set of challenges for patients and carers living with PF.


Caregivers , Pulmonary Fibrosis , Humans , Caregivers/psychology , Pulmonary Fibrosis/psychology , Pulmonary Fibrosis/therapy , Palliative Care/psychology , Social Support , Adult , Male , Female , Quality of Life
3.
Front Immunol ; 15: 1404828, 2024.
Article En | MEDLINE | ID: mdl-38745647

Objectives: Interstitial lung disease (ILD) is one of the common extramuscular involvement in idiopathic inflammatory myopathies (IIMs) (1). Several patients develop a progressive fibrosing ILD (PF-ILD) despite conventional treatment, resulting in a progressive deterioration in their quality of life (2). Here, we investigated the clinical and immune characteristics of IIM-ILD and risk factors for PF-ILD in IIM, mainly in anti-melanoma differentiation-associated protein 5 (anti-MDA5+) dermatomyositis (DM) and anti-synthetase syndrome (ASS). Methods: Here, a prospective cohort of 156 patients with IIM-ILD were included in the longitudinal analysis and divided into the PF-ILD (n=65) and non-PF-ILD (n=91) groups, and their baseline clinical characteristics were compared. Univariate and multivariate Cox analyses were performed to identify the variables significantly associated with pulmonary fibrosis progression in the total cohort, then anti-MDA5+ DM and ASS groups separately. Results: Peripheral blood lymphocyte counts, including T, B, and NK cell counts, were significantly lower in the PF-ILD group than in the non-PF-ILD group. This characteristic is also present in the comparison between patients with anti-MDA5+ DM and ASS. The multivariate Cox regression analysis revealed that age > 43.5 years [HR: 7.653 (95% CI: 2.005-29.204), p = 0.003], absolute NK cell count < 148 cells/µL [HR: 6.277 (95% CI: 1.572-25.067), p = 0.009] and absolute Th cell count < 533.2 cells/µL [HR: 4.703 (95% CI: 1.014-21.821), p = 0.048] were independent predictors of progressive fibrosing during 1-year follow-up for patients with anti-MDA5+ DM, while absolute count of NK cells < 303.3 cells/µL [HR: 19.962 (95% CI: 3.108-128.223), p = 0.002], absolute count of lymphocytes < 1.545×109/L [HR: 9.684 (95% CI: 1.063-88.186), p = 0.044], and ferritin > 259.45 ng/mL [HR: 6 (95% CI: 1.116-32.256), p = 0.037] were independent predictors of PF-ILD for patients with ASS. Conclusions: Patients with anti-MDA5+ DM and ASS have independent risk factors for PF-ILD. Lymphocyte depletion (particularly NK cells) was significantly associated with PF-ILD within 1-year of follow-up for IIM-ILD.


Disease Progression , Killer Cells, Natural , Lung Diseases, Interstitial , Myositis , Humans , Female , Male , Middle Aged , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/etiology , Killer Cells, Natural/immunology , Myositis/immunology , Myositis/blood , Myositis/diagnosis , Prognosis , Aged , Prospective Studies , Adult , Lymphocyte Depletion , Interferon-Induced Helicase, IFIH1/immunology , Risk Factors , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/immunology , Lymphocyte Count , Longitudinal Studies
4.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720270

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


AMP-Activated Protein Kinases , Pulmonary Fibrosis , Silicon Dioxide , Simvastatin , Animals , Male , Rats , Acetophenones/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lung/pathology , Lung/drug effects , Lung/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Pneumonia/chemically induced , Pneumonia/prevention & control , Pneumonia/drug therapy , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Silicosis/drug therapy , Silicosis/pathology , Silicosis/metabolism , Simvastatin/pharmacology , Transforming Growth Factor beta1/metabolism
5.
Mol Med ; 30(1): 70, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789926

BACKGROUND: The development of pulmonary fibrosis involves a cascade of events, in which inflammation mediated by immune cells plays a pivotal role. Chemotherapeutic drugs have been shown to have dual effects on fibrosis, with bleomycin exacerbating pulmonary fibrosis and bortezomib alleviating tissue fibrotic processes. Understanding the intricate interplay between chemotherapeutic drugs, immune responses, and pulmonary fibrosis is likely to serve as the foundation for crafting tailored therapeutic strategies. METHODS: A model of bleomycin-induced pulmonary fibrosis was established, followed by treatment with bortezomib. Tissue samples were collected for analysis of immune cell subsets and functional assessment by flow cytometry and in vitro cell experiments. Additionally, multi-omics analysis was conducted to further elucidate the expression of chemokines and chemokine receptors, as well as the characteristics of cell populations. RESULTS: Here, we observed that the expression of CXCL16 and CXCR6 was elevated in the lung tissue of a pulmonary fibrosis model. In the context of pulmonary fibrosis or TGF-ß1 stimulation in vitro, macrophages exhibited an M2-polarized phenotype and secreted more CXCL16 than those of the control group. Moreover, flow cytometry revealed increased expression levels of CD69 and CXCR6 in pulmonary CD4 T cells during fibrosis progression. The administration of bortezomib alleviated bleomycin-induced pulmonary fibrosis, accompanied by reduced ratio of M2-polarized macrophages and decreased accumulation of CD4 T cells expressing CXCR6. CONCLUSIONS: Our findings provide insights into the key immune players involved in bleomycin-induced pulmonary fibrosis and offer preclinical evidence supporting the repurposing strategy and combination approaches to reduce lung fibrosis.


Bleomycin , Bortezomib , CD4-Positive T-Lymphocytes , Chemokine CXCL16 , Disease Models, Animal , Pulmonary Fibrosis , Receptors, CXCR6 , Bleomycin/adverse effects , Bortezomib/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Animals , Mice , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Macrophages/metabolism , Macrophages/immunology , Macrophages/drug effects , Male , Mice, Inbred C57BL , Chemotaxis/drug effects , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, CD , Lectins, C-Type
6.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38792932

Background and Objectives: The influence of montelukast (MK), an antagonist of cysLT1 leukotriene receptors, on lung lesions caused by experimental diabetes was studied. Materials and Methods: The study was conducted on four groups of six adult male Wistar rats. Diabetes was produced by administration of streptozotocin 65 mg/kg ip. in a single dose. Before the administration of streptozotocin, after 72 h, and after 8 weeks, the serum values of glucose, SOD, MDA, and total antioxidant capacity (TAS) were determined. After 8 weeks, the animals were anesthetized and sacrificed, and the lungs were harvested and examined by optical microscopy. Pulmonary fibrosis, the extent of lung lesions, and the lung wet-weight/dry-weight ratio were evaluated. Results: The obtained results showed that MK significantly reduced pulmonary fibrosis (3.34 ± 0.41 in the STZ group vs. 1.73 ± 0.24 in the STZ+MK group p < 0.01) and lung lesion scores and also decreased the lung wet-weight/dry-weight (W/D) ratio. SOD and TAS values increased significantly when MK was administered to animals with diabetes (77.2 ± 11 U/mL in the STZ group vs. 95.7 ± 13.3 U/mL in the STZ+MK group, p < 0.05, and 25.52 ± 2.09 Trolox units in the STZ group vs. 33.29 ± 1.64 Trolox units in the STZ+MK group, respectively, p < 0.01), and MDA values decreased. MK administered alone did not significantly alter any of these parameters in normal animals. Conclusions: The obtained data showed that by blocking the action of peptide leukotrienes on cysLT1 receptors, montelukast significantly reduced the lung lesions caused by diabetes. The involvement of these leukotrienes in the pathogenesis of fibrosis and other lung diabetic lesions was also demonstrated.


Acetates , Cyclopropanes , Diabetes Mellitus, Experimental , Lung , Quinolines , Rats, Wistar , Sulfides , Cyclopropanes/therapeutic use , Animals , Quinolines/therapeutic use , Quinolines/pharmacology , Acetates/therapeutic use , Acetates/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Male , Rats , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Leukotriene Antagonists/therapeutic use , Leukotriene Antagonists/pharmacology , Streptozocin , Blood Glucose/analysis , Blood Glucose/drug effects
7.
Respir Res ; 25(1): 212, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762455

Paraquat (PQ) is a widely used herbicide and a common cause of poisoning that leads to pulmonary fibrosis with a high mortality rate. However, the underlying mechanisms of PQ-induced pulmonary fibrosis and whether pulmonary epithelial cell senescence is involved in the process remain elusive. In this study, PQ-induced pulmonary epithelial cell senescence and Hippo-YAP/TAZ activation were observed in both C57BL/6 mice and human epithelial cells. PQ-induced senescent pulmonary epithelial cells promoted lung fibroblast transformation through secreting senescence-associated secretory phenotype (SASP) factors. Yap/Taz knockdown in mice lungs significantly decreased the expression of downstream profibrotic protein Ctgf and senescent markers p16 and p21, and alleviated PQ-induced pulmonary fibrosis. Interfering YAP/TAZ in senescent human pulmonary epithelial cells resulted in decreased expression of the anti-apoptosis protein survivin and elevated level of apoptosis. In conclusion, our findings reveal a novel mechanism by which the involvement of Hippo-YAP/TAZ activation in pulmonary epithelial cell senescence mediates the pathogenesis of PQ-induced pulmonary fibrosis, thereby offering novel insights and potential targets for the clinical management of PQ poisoning as well as providing the mechanistic insight of the involvement of Yap/Taz activation in cell senescence in pulmonary fibrosis and its related pulmonary disorders. The YIN YANG balance between cell senescence and apoptosis is important to maintain the homeostasis of the lung, the disruption of which will lead to disease.


Adaptor Proteins, Signal Transducing , Cellular Senescence , Mice, Inbred C57BL , Paraquat , Pulmonary Fibrosis , Transcription Factors , YAP-Signaling Proteins , Animals , Cellular Senescence/drug effects , Cellular Senescence/physiology , YAP-Signaling Proteins/metabolism , Humans , Mice , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Paraquat/toxicity , Male , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Trans-Activators/metabolism , Trans-Activators/genetics
8.
Respir Res ; 25(1): 213, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762465

BACKGROUND: Obesity is associated with airway hyperresponsiveness and lung fibrosis, which may reduce the effectiveness of standard asthma treatment in individuals suffering from both conditions. Statins and proprotein convertase subtilisin/kexin-9 inhibitors not only reduce serum cholesterol, free fatty acids but also diminish renin-angiotensin system activity and exhibit anti-inflammatory effects. These mechanisms may play a role in mitigating lung pathologies associated with obesity. METHODS: Male C57BL/6 mice were induced to develop obesity through high-fat diet for 16 weeks. Conditional TGF-ß1 transgenic mice were fed a normal diet. These mice were given either atorvastatin or proprotein convertase subtilisin/kexin-9 inhibitor (alirocumab), and the impact on airway hyperresponsiveness and lung pathologies was assessed. RESULTS: High-fat diet-induced obesity enhanced airway hyperresponsiveness, lung fibrosis, macrophages in bronchoalveolar lavage fluid, and pro-inflammatory mediators in the lung. These lipid-lowering agents attenuated airway hyperresponsiveness, macrophages in BALF, lung fibrosis, serum leptin, free fatty acids, TGF-ß1, IL-1ß, IL-6, and IL-17a in the lung. Furthermore, the increased RAS, NLRP3 inflammasome, and cholecystokinin in lung tissue of obese mice were reduced with statin or alirocumab. These agents also suppressed the pro-inflammatory immune responses and lung fibrosis in TGF-ß1 over-expressed transgenic mice with normal diet. CONCLUSIONS: Lipid-lowering treatment has the potential to alleviate obesity-induced airway hyperresponsiveness and lung fibrosis by inhibiting the NLRP3 inflammasome, RAS and cholecystokinin activity.


Diet, High-Fat , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Mice, Inbred C57BL , Mice, Transgenic , Obesity , Pulmonary Fibrosis , Animals , Male , Diet, High-Fat/adverse effects , Obesity/drug therapy , Obesity/metabolism , Mice , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Pulmonary Fibrosis/prevention & control , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , PCSK9 Inhibitors , Atorvastatin/pharmacology , Atorvastatin/therapeutic use , Mice, Obese , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bronchial Hyperreactivity/prevention & control , Bronchial Hyperreactivity/drug therapy , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Antibodies, Monoclonal, Humanized
9.
J Transl Med ; 22(1): 479, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773615

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung diseases, which mainly existed in middle-aged and elderly people. The accumulation of reactive oxygen species (ROS) is a common characteristic of IPF. Previous research also shown that lactate levels can be abnormally elevated in IPF patients. Emerging evidence suggested a relationship between lactate and ROS in IPF which needs further elucidation. In this article, we utilized a mouse model of BLM-induced pulmonary fibrosis to detect alterations in ROS levels and other indicators associated with fibrosis. Lactate could induce mitochondrial fragmentation by modulating expression and activity of DRP1 and ERK. Moreover, Increased ROS promoted P65 translocation into nucleus, leading to expression of lung fibrotic markers. Finally, Ulixertinib, Mdivi-1 and Mito-TEMPO, which were inhibitor activity of ERK, DRP1 and mtROS, respectively, could effectively prevented mitochondrial damage and production of ROS and eventually alleviate pulmonary fibrosis. Taken together, these findings suggested that lactate could promote lung fibrosis by increasing mitochondrial fission-derived ROS via ERK/DRP1 signaling, which may provide novel therapeutic solutions for IPF.


Dynamins , Mice, Inbred C57BL , Mitochondrial Dynamics , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Mitochondrial Dynamics/drug effects , Dynamins/metabolism , Bleomycin , Signal Transduction , Lactic Acid/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitochondria/metabolism , Male , MAP Kinase Signaling System/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Mice , Humans
10.
J Cell Mol Med ; 28(10): e18448, 2024 May.
Article En | MEDLINE | ID: mdl-38774993

Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.


Connective Tissue Growth Factor , Pulmonary Fibrosis , Connective Tissue Growth Factor/metabolism , Humans , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Animals , Molecular Targeted Therapy , Extracellular Matrix/metabolism
11.
Ter Arkh ; 96(3): 298-302, 2024 Apr 16.
Article Ru | MEDLINE | ID: mdl-38713047

Fibrosis is a dynamic process characterized by a typical cascade of events as a result of overexpressed repair of connective tissue in response to injury, and manifested by excessive accumulation of extracellular matrix. The development of fibrosis is a determining factor in the pathogenesis, clinical course and prognosis of many diseases, among which interstitial lung diseases occupy a special place. According to a large Russian registry (ClinicalTrials.gov: NCT04492384), in a third of patients with COVID-19, the volume of lung parenchyma involvement exceeds 50% (CT 3-4). The rapid growth in the number of patients who have had a coronavirus infection with lung damage has raised the issues of its long-term consequences to the number of the most relevant in internal medicine of the current time. Often, in the outcome of a coronavirus infection, patients retain clinical and functional changes that are similar to interstitial lung diseases of a different origin, the prognosis of which is determined by the development of interstitial fibrosis and the rate of its progression. This article is an attempt to consider topical issues of fibrogenesis in patients who have undergone a new coronavirus infection through the prism of polar data on immunobiology, clinical course and prognosis.


COVID-19 , Pulmonary Fibrosis , Humans , COVID-19/complications , Pulmonary Fibrosis/etiology , SARS-CoV-2 , Prognosis , Disease Progression
12.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38691879

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Alveolar Epithelial Cells , Autophagy , Benzhydryl Compounds , Ferroptosis , Phenols , Pulmonary Fibrosis , Animals , Ferroptosis/drug effects , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Autophagy/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Male , Disease Models, Animal , Signal Transduction/drug effects
13.
Medicine (Baltimore) ; 103(20): e38226, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758869

Interstitial lung disease (ILD) encompasses a heterogeneous group of more than 200 diffuse parenchymal lung diseases with various clinical courses. Disease progression is one of the most important prognostic factors, and, the definition of progressive pulmonary fibrosis (PPF) has recently been established. This study aimed to estimate the prevalence, risk factors, and prognosis of PPF among patients with non-idiopathic pulmonary fibrosis (IPF) in real-world practice. A total of 215 patients were retrospectively analyzed between January 2010 and June 2023 at the Haeundae Paik Hospital in the Republic of Korea. According to the criteria proposed in 2022 by Raghu et al, PPF defined as a condition that satisfies 2 or more of the following in the past year: worsening of respiratory symptoms, physiological evidence of disease progression, and radiological evidence of disease progression. The median age of the subjects was 67 years and 63.7% were female. A total of 40% was diagnosed with PPF and connective tissue disease-associated ILD (52.3%) was the most common type, followed by nonspecific interstitial pneumonitis (NSIP) (25.6%) and cryptogenic organizing pneumonitis (16.3%). In multivariate logistic regression for predicting PPF, both the use of steroids and immunosuppressants (OR: 2.57, 95% CI: 1.41-4.67, P = .002) and home oxygen use (OR: 25.17, 95% CI: 3.21-197.24, P = .002) were independent risk factors. During the follow-up period, the mortality rate was significantly higher in the PPF group than in the non-PPF group (24.4% vs 2.3%, P < .001). In the survival analysis using the Cox proportional hazard regression model, disease progression, older age and lower forced vital capacity (FVC) were independent risk factors for mortality. Our study demonstrated that the prevalence of PPF was 40%. Concomitant therapy of steroids with an immunosuppressants and home oxygen use are risk factors for PPF. PPF itself was significantly associated with high mortality rates. Risk factors for mortality were disease progression, older age, and lower FVC.


Disease Progression , Humans , Female , Male , Retrospective Studies , Aged , Prevalence , Republic of Korea/epidemiology , Prognosis , Middle Aged , Risk Factors , Pulmonary Fibrosis/epidemiology , Pulmonary Fibrosis/mortality , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/mortality , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/physiopathology , Immunosuppressive Agents/therapeutic use
14.
Arthritis Res Ther ; 26(1): 94, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702742

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterized by vascular injury and inflammation, followed by excessive fibrosis of the skin and other internal organs, including the lungs. CX3CL1 (fractalkine), a chemokine expressed on endothelial cells, supports the migration of macrophages and T cells that express its specific receptor CX3CR1 into targeted tissues. We previously reported that anti-CX3CL1 monoclonal antibody (mAb) treatment significantly inhibited transforming growth factor (TGF)-ß1-induced expression of type I collagen and fibronectin 1 in human dermal fibroblasts. Additionally, anti-mouse CX3CL1 mAb efficiently suppressed skin inflammation and fibrosis in bleomycin- and growth factor-induced SSc mouse models. However, further studies using different mouse models of the complex immunopathology of SSc are required before the initiation of a clinical trial of CX3CL1 inhibitors for human SSc. METHODS: To assess the preclinical utility and functional mechanism of anti-CX3CL1 mAb therapy in skin and lung fibrosis, a sclerodermatous chronic graft-versus-host disease (Scl-cGVHD) mouse model was analyzed with immunohistochemical staining for characteristic infiltrating cells and RNA sequencing assays. RESULTS: On day 42 after bone marrow transplantation, Scl-cGVHD mice showed increased serum CX3CL1 level. Intraperitoneal administration of anti-CX3CL1 mAb inhibited the development of fibrosis in the skin and lungs of Scl-cGVHD model, and did not result in any apparent adverse events. The therapeutic effects were correlated with the number of tissue-infiltrating inflammatory cells and α-smooth muscle actin (α-SMA)-positive myofibroblasts. RNA sequencing analysis of the fibrotic skin demonstrated that cGVHD-dependent induction of gene sets associated with macrophage-related inflammation and fibrosis was significantly downregulated by mAb treatment. In the process of fibrosis, mAb treatment reduced cGVHD-induced infiltration of macrophages and T cells in the skin and lungs, especially those expressing CX3CR1. CONCLUSIONS: Together with our previous findings in other SSc mouse models, the current results indicated that anti-CX3CL1 mAb therapy could be a rational therapeutic approach for fibrotic disorders, such as human SSc and Scl-cGVHD.


Antibodies, Monoclonal , Chemokine CX3CL1 , Disease Models, Animal , Graft vs Host Disease , Pulmonary Fibrosis , Scleroderma, Systemic , Skin , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/prevention & control , Skin/pathology , Skin/drug effects , Skin/metabolism , Skin/immunology , Fibrosis , Female , Mice, Inbred C57BL , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Lung/immunology
15.
Radiographics ; 44(6): e230165, 2024 Jun.
Article En | MEDLINE | ID: mdl-38752767

With the approval of antifibrotic medications to treat patients with idiopathic pulmonary fibrosis and progressive pulmonary fibrosis, radiologists have an integral role in diagnosing these entities and guiding treatment decisions. CT features of early pulmonary fibrosis include irregular thickening of interlobular septa, pleura, and intralobular linear structures, with subsequent progression to reticular abnormality, traction bronchiectasis or bronchiolectasis, and honeycombing. CT patterns of fibrotic lung disease can often be reliably classified on the basis of the CT features and distribution of the condition. Accurate identification of usual interstitial pneumonia (UIP) or probable UIP patterns by radiologists can obviate the need for a tissue sample-based diagnosis. Other entities that can appear as a UIP pattern must be excluded in multidisciplinary discussion before a diagnosis of idiopathic pulmonary fibrosis is made. Although the imaging findings of nonspecific interstitial pneumonia and fibrotic hypersensitivity pneumonitis can overlap with those of a radiologic UIP pattern, these entities can often be distinguished by paying careful attention to the radiologic signs. Diagnostic challenges may include misdiagnosis of fibrotic lung disease due to pitfalls such as airspace enlargement with fibrosis, paraseptal emphysema, recurrent aspiration, and postinfectious fibrosis. The radiologist also plays an important role in identifying complications of pulmonary fibrosis-pulmonary hypertension, acute exacerbation, infection, and lung cancer in particular. In cases in which there is uncertainty regarding the clinical and radiologic diagnoses, surgical biopsy is recommended, and a multidisciplinary discussion among clinicians, radiologists, and pathologists can be used to address diagnosis and management strategies. This review is intended to help radiologists diagnose and manage pulmonary fibrosis more accurately, ultimately aiding in the clinical management of affected patients. ©RSNA, 2024 Supplemental material is available for this article.


Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Pulmonary Fibrosis/diagnostic imaging , Diagnosis, Differential , Idiopathic Pulmonary Fibrosis/diagnostic imaging
16.
Sci Rep ; 14(1): 11131, 2024 05 15.
Article En | MEDLINE | ID: mdl-38750140

This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-ß1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.


Mice, Inbred BALB C , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Pulmonary Fibrosis , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta1 , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , PPAR gamma/metabolism , Mice , NF-kappa B/metabolism , Smad3 Protein/metabolism , Smad2 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Humans , Bleomycin/adverse effects , Disease Models, Animal , Male , Cell Line , Oxidative Stress/drug effects
17.
Mol Med ; 30(1): 72, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822247

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Bleomycin , DNA Glycosylases , Disease Models, Animal , Macrophages , Mitophagy , Protein Kinases , Pulmonary Fibrosis , Animals , Mitophagy/drug effects , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Mice , Macrophages/metabolism , Protein Kinases/metabolism , Bleomycin/adverse effects , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Macrophage Activation , Humans , Quinazolinones
18.
Lung ; 202(3): 257-267, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713420

PURPOSE: World Trade Center (WTC) exposure is associated with obstructive airway diseases and sarcoidosis. There is limited research regarding the incidence and progression of non-sarcoidosis interstitial lung diseases (ILD) after WTC-exposure. ILD encompasses parenchymal diseases which may lead to progressive pulmonary fibrosis (PPF). We used the Fire Department of the City of New York's (FDNY's) WTC Health Program cohort to estimate ILD incidence and progression. METHODS: This longitudinal study included 14,525 responders without ILD prior to 9/11/2001. ILD incidence and prevalence were estimated and standardized to the US 2014 population. Poisson regression modeled risk factors, including WTC-exposure and forced vital capacity (FVC), associated with ILD. Follow-up time ended at the earliest of incident diagnosis, end of study period/case ascertainment, transplant or death. RESULTS: ILD developed in 80/14,525 FDNY WTC responders. Age, smoking, and gastroesophageal reflux disease (GERD) prior to diagnosis were associated with incident ILD, though FVC was not. PPF developed in 40/80 ILD cases. Among the 80 cases, the average follow-up time after ILD diagnosis was 8.5 years with the majority of deaths occurring among those with PPF (PPF: n = 13; ILD without PPF: n = 6). CONCLUSIONS: The prevalence of post-9/11 ILD was more than two-fold greater than the general population. An exposure-response gradient could not be demonstrated. Half the ILD cases developed PPF, higher than previously reported. Age, smoking, and GERD were risk factors for ILD and PPF, while lung function was not. This may indicate that lung function measured after respirable exposures would not identify those at risk for ILD or PPF.


Disease Progression , Lung Diseases, Interstitial , Pulmonary Fibrosis , September 11 Terrorist Attacks , Humans , Longitudinal Studies , Male , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/physiopathology , Middle Aged , Female , Incidence , Vital Capacity , Adult , Prevalence , Risk Factors , Pulmonary Fibrosis/epidemiology , Pulmonary Fibrosis/physiopathology , New York City/epidemiology , Gastroesophageal Reflux/epidemiology , Occupational Exposure/adverse effects , Smoking/adverse effects , Smoking/epidemiology , Aged , Time Factors , Emergency Responders/statistics & numerical data
19.
Lung ; 202(3): 269-273, 2024 Jun.
Article En | MEDLINE | ID: mdl-38753183

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Biomarkers , Disease Progression , Lung Diseases, Interstitial , Registries , Humans , Male , Female , Middle Aged , Vital Capacity , Aged , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/diagnosis , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/diagnosis , Pulmonary Surfactant-Associated Protein D/blood , Lung/physiopathology , Predictive Value of Tests , Chitinase-3-Like Protein 1/blood , Chemokines, CC , Osteopontin , Receptor for Advanced Glycation End Products/blood , Idiopathic Pulmonary Fibrosis/physiopathology , Idiopathic Pulmonary Fibrosis/diagnosis
20.
Chem Biol Interact ; 396: 111029, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38703806

Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.


Ammonia , Arsenites , Carbamoyl-Phosphate Synthase (Ammonia) , Collagen , Mice, Inbred C57BL , Pulmonary Fibrosis , Urea , Animals , Arsenites/toxicity , Ammonia/metabolism , Collagen/metabolism , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Urea/metabolism , Up-Regulation/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Male , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Sodium Compounds
...