ABSTRACT
The reactive dicarbonyl methylglyoxal (MG) behaves as a pro-oxidant agent, causing redox dysfunction and cell death by different mechanisms in mammalian cells. MG is also a mitochondrial toxicant, impairing the oxidative phosphorylation (OXPHOS) system and leading to bioenergetics and redox collapses. MG induces glycation and exerts an important role in neurodegenerative and cardiovascular diseases. Isoorientin (ISO), a C-glucosyl flavone found in Aspalathus linearis, Fagopyrum esculentum, and Passiflora edulis, among others, is an antioxidant and anti-inflammatory molecule. ISO is a potent inducer of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master modulator of the redox environment in mammals. We investigated here whether ISO would prevent the mitochondria-related redox and bioenergetics impairments induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were administrated with ISO at 20 µM for 18 h prior to the exposure to MG at 500 µM for further 24 h. It was observed that ISO efficiently prevented the mitochondrial impairments caused by MG. ISO upregulated the activity of the enzyme γ-glutamate-cysteine ligase (γ-GCL), consequently stimulating the synthesis of glutathione (GSH). The inhibition of γ-GCL, adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt) suppressed the beneficial effects induced by ISO on the MG-challenged cells. Moreover, silencing of Nrf2 blocked the ISO-dependent γ-GCL and GSH upregulation and the effects on the mitochondria of the MG-challenged cells. Then, ISO caused mitochondrial protection by an AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH-dependent manner in MG-administrated SH-SY5Y cells.
Subject(s)
Neuroblastoma , Proto-Oncogene Proteins c-akt , Animals , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/pharmacology , Pyruvaldehyde/toxicity , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Neuroblastoma/metabolism , Glutathione/metabolism , Luteolin/pharmacology , Luteolin/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Mammals/metabolismABSTRACT
Alzheimer's disease (AD) is the leading cause of dementia in humans, with a high social and economic cost. AD is predominantly a sporadic disease, and the intracerebroventricular (ICV) administration of streptozotocin (STZ) has been widely used as an AD-like model of dementia. While the etiology of AD remains unknown, changes such as glucose metabolism and activation of receptors for advanced glycation end products (RAGE) seem to underlie its pathogenesis. We hypothesized that methylglyoxal, an endogenous toxin derived from the glycolytic pathway, could be the precursor of advanced glycated end products that activates RAGE and that, consequently, may activate membrane NADPH oxidase (NOX), contributing to the inflammatory status of the model and the disease. We administered ICV-STZ to Wistar rats and evaluated several neurochemical parameters in the hippocampus, particularly glyoxalase 1 (GLO-1) activity, which serves as an index of high levels of methylglyoxal, and the contents of RAGE and NOX-2, the most abundant brain NOX isoform. At the times evaluated (4 and 24 weeks after STZ), we observed cognitive deficit, increased beta-amyloid content, and increased tau phosphorylation. A persistent increase in GLO-1 activity was found, as well as increases in RAGE and NOX-2 contents, suggesting astroglial and microglial commitment. The increase in NOX-2 may reflect elevated microglial activity (confirmed by IBA-1 marker), which may contribute to the synaptic dysfunction and pruning described in the literature, both in this model and AD patients. Furthermore, reinforcing this possibility, we found a reduction in cholinergic communication in the hippocampus (as shown by decreased choline acetyltransferase), a reduction in BDNF, and an increase in TGF-ß, the combination of which may result in synaptic deterioration.
Subject(s)
Alzheimer Disease , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Humans , Maze Learning , Pyruvaldehyde/metabolism , Pyruvaldehyde/toxicity , Rats , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism , Streptozocin/toxicityABSTRACT
This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.
Subject(s)
Oxidative Stress , Pyruvaldehyde , Animals , Female , Fibrosis , Inflammation/chemically induced , Pyruvaldehyde/toxicity , Rats , Rats, WistarABSTRACT
Methylglyoxal (MG) is a reactive dicarbonyl presenting both endogenous (e.g. glycolysis) and exogenous (e.g. food cooking) sources. MG induces neurotoxicity, at least in part, by affecting mitochondrial function, including a decline in the oxidative phosphorylation (OXPHOS) system activity, bioenergetics failure, and redox disturbances. Sulforaphane (SFN) is an isothiocyanate found mainly in cruciferous vegetables and exerts antioxidant and anti-inflammatory effects in mammalian cells. SFN also decreases mitochondrial vulnerability to several chemical stressors. SFN is a potent activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master regulator of the mammalian redox biology. Here, we have investigated whether and how SFN would be able to prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. The cells were exposed to SFN at 5 µM for 24 h prior to the administration of MG at 500 µM for additional 24 h. We found that SFN prevented the MG-induced OXPHOS dysfunction and mitochondrial redox impairment. SFN stimulated the activity of the enzyme γ-glutamylcysteine ligase (γ-GCL), leading to increased synthesis of glutathione (GSH). Inhibition of γ-GCL with buthionine sulfoximine (BSO) or silencing of Nrf2 using small interfering RNA (siRNA) against this transcription factor reduced the levels of GSH and abolished the mitochondrial protection promoted by SFN in the MG-treated cells. Thus, SFN protected mitochondria of the MG-challenged cells by a mechanism involving the Nrf2/γ-GCL/GSH axis.
Subject(s)
Glutamate-Cysteine Ligase/metabolism , Glutathione/metabolism , Isothiocyanates/pharmacology , Mitochondria/drug effects , NF-E2-Related Factor 2/metabolism , Pyruvaldehyde/toxicity , Sulfoxides/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activators/pharmacology , Humans , Lipid Peroxidation/drug effects , Protein Carbonylation/drug effectsABSTRACT
Methylglyoxal (MG) is a by-product of glycolysis. In pathological conditions, particularly diabetes mellitus, this molecule is unbalanced, causing widespread protein glycation. In addition to protein glycation, other effects resulting from high levels of MG in the central nervous system may involve the direct modulation of GABAergic and glutamatergic neurotransmission, with evidence suggesting that the effects of MG may be related to behavioral changes and glial dysfunction. In order to evaluate the direct influence of MG on behavioral and biochemical parameters, we used a high intracerebroventricular final concentration (3 µM/µL) to assess acute effects on memory and locomotor behavior in rats, as well as the underlying alterations in glutamatergic and astroglial parameters. MG induced, 12 h after injection, a decrease in locomotor activity in the Open field and anxiolytic effects in rats submitted to elevated plus-maze. Subsequently, 36 h after surgery, MG injection also induced cognitive impairment in both short and long-term memory, as evaluated by novel object recognition task, and in short-term spatial memory, as evaluated by the Y-maze test. In addition, hippocampal glutamate uptake decreased and glutamine synthetase activity and glutathione levels diminished during seventy-two hours after infusion of MG. Interestingly, the astrocytic protein, S100B, was increased in the cerebrospinal fluid, accompanied by decreased hippocampal S100B mRNA expression, without any change in protein content. Taken together, these results may improve our understanding of how this product of glucose metabolism can induce the brain dysfunction observed in diabetic patients, as well as in other neurodegenerative conditions, and further defines the role of astrocytes in disease and therapeutics.
Subject(s)
Astrocytes/drug effects , Locomotion/drug effects , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Pyruvaldehyde/toxicity , Animals , Elevated Plus Maze Test , Glutamic Acid/metabolism , Hippocampus/metabolism , Infusions, Intraventricular , Male , Maze Learning/drug effects , Open Field Test/drug effects , Pyruvaldehyde/administration & dosage , Rats, WistarABSTRACT
Methylglyoxal (MG) is a highly reactive aldehyde able to form covalent adducts with proteins and nucleic acids, disrupting cellular functions. In this study, we performed a screening of Saccharomyces cerevisiae (S. cerevisiae) strains to find out which genes of cells are responsive to MG, emphasizing genes against oxidative stress and DNA repair. Yeast strains were grown in the YPD-Galactose medium containing MG (0.5 to 12 mM). The tolerance to MG was evaluated by determining cellular growth and cell viability. The toxicity of MG was more pronounced in the strains with deletion in genes engaged with DNA repair checkpoint proteins, namely Rad23 and Rad50. MG also impaired the growth and viability of S. cerevisiae mutant strains Glo1 and Gsh1, both components of the glyoxalase I system. Differently, the strains with deletion in genes encoding for antioxidant enzymes were apparently resistant to MG. In summary, our data indicate that DNA repair and MG detoxification pathways are keys in the control of MG toxicity in S. cerevisiae.
Subject(s)
Lactoylglutathione Lyase , Saccharomyces cerevisiae Proteins , DNA Repair , DNA-Binding Proteins , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Oxidative Stress , Pyruvaldehyde/toxicity , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
Perinatal early nutritional disorders are critical for the developmental origins of health and disease. Glycotoxins, or advanced glycation end-products, and their precursors such as the methylglyoxal, which are formed endogenously and commonly found in processed foods and infant formulas, may be associated with acute and long-term metabolic disorders. Besides general aspects of glycotoxins, such as their endogenous production, exogenous sources, and their role in the development of metabolic syndrome, we discuss in this review the sources of perinatal exposure to glycotoxins and their involvement in metabolic programming mechanisms. The role of perinatal glycotoxin exposure in the onset of insulin resistance, central nervous system development, cardiovascular diseases, and early aging also are discussed, as are possible interventions that may prevent or reduce such effects.
Subject(s)
Aging , Glycation End Products, Advanced/toxicity , Metabolic Syndrome/etiology , Animals , Female , Fetus , Glycation End Products, Advanced/metabolism , Humans , Infant , Infant, Newborn , Insulin Resistance , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Oxidative Stress , Pregnancy , Prenatal Exposure Delayed Effects , Pyruvaldehyde/toxicityABSTRACT
Mitochondrial dysfunction is part of the mechanism of several human diseases. This negative circumstance may be induced by certain toxicants, as methylglyoxal (MG). MG is a reactive dicarbonyl presenting both endogenous and exogenous sources and is also able to induce protein cross-linking and glycation. Emodin (EM; 1,3,8-trihydroxy-6-methylanthracene-9,10-dione; C15H10O5) is a cytoprotective agent. Nonetheless, it was not previously demonstrated whether EM would be able to promote mitochondrial protection in cells challenged with MG. Therefore, we investigated here whether and how EM would prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. We found that a pretreatment (for 4 h) with EM at 40 µM prevented the MG-induced mitochondrial dysfunction (i.e., decreased activity of the complexes I and V, reduced adenosine triphosphate levels, and loss of mitochondrial membrane potential) in the SH-SY5Y cells. EM also prevented the redox impairment induced by MG in mitochondrial membranes. Inhibiting the adenosine monophosphate-activated protein kinase (AMPK) or silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2), transcription factor abolished the EM-induced protection. Inhibition of heme oxygenase-1 (HO-1) also blocked the EM-induced mitochondrial protection. Therefore, EM protected the mitochondria by a mechanism dependent on the AMPK/Nrf2/HO-1 signaling pathway in MG-challenged SH-SY5Y cells.
Subject(s)
Emodin/administration & dosage , Mitochondria/drug effects , Mitochondria/metabolism , Pyruvaldehyde/toxicity , Signal Transduction/drug effects , Adenylate Kinase/metabolism , Cell Line, Tumor , Heme Oxygenase-1/metabolism , Humans , NF-E2-Related Factor 2/metabolismABSTRACT
Methylglyoxal (MGO) is a highly reactive dicarbonyl molecule that promotes the formation of advanced glycation end products (AGEs), which are believed to play a key role in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, Swiss mice were treated with MGO by intraperitoneal injection to investigate its effects on motor activity, mood, and cognition. Acute MGO treatment heavily decreased locomotor activity in the open field test at higher doses (80-200 mg/kg), an effect not observed at lower doses (10-50 mg/kg). Several alterations were observed 4 h after a single MGO injection (10-50 mg/kg): (a) plasma MGO levels were increased, (b) memory was impaired (object location task), (c) anxiolytic behavior was observed in the open field and marble burying test, and (d) depressive-like behavior was evidenced as evaluated by the tail suspension test. Biochemical alterations in the glutathione and glyoxalase systems were not observed 4 h after MGO treatment. Mice were also treated daily with MGO at 0, 10, 25 and 50 mg/kg for 11 days. From the 5th to the 11th day, several behavioral end points were evaluated, resulting in: (a) absence of motor impairment as evaluated in the open field, horizontal bars and pole test, (b) depressive-like behavior observed in the tail suspension test, and (c) cognitive impairments detected on working, short- and long-term memory when mice were tested in the Y-maze spontaneous alternation, object location and recognition tests, and step-down inhibitory avoidance task. An interesting finding was a marked decrease in dopamine levels in the prefrontal cortex of mice treated with 50 mg/kg MGO for 11 days, along with a ~ 25% decrease in the Glo1 content. The MGO-induced dopamine depletion in the prefrontal cortex may be related to the observed memory deficits and depressive-like behavior, an interesting topic to be further studied as a potentially novel route for MGO toxicity.
Subject(s)
Anti-Anxiety Agents/toxicity , Depression/chemically induced , Dopamine/metabolism , Memory Disorders/chemically induced , Prefrontal Cortex/drug effects , Pyruvaldehyde/toxicity , Animals , Depression/metabolism , Female , Lactoylglutathione Lyase/metabolism , Locomotion/drug effects , Memory/drug effects , Memory Disorders/metabolism , Mice , Prefrontal Cortex/metabolismABSTRACT
Methylglyoxal (MG) is a α-dycarbonyl compound derived mainly from glycolysis, whose accumulation is harmful for cells and tissues. Here, we evaluated the cytotoxic effects induced by MG in leukocytes after an acute exposure, measuring as endpoints of toxicity some markers of oxidative stress and programmed cell death. Human leukocytes were isolated and incubated with MG at concentrations ranging from 0.1 to 10â¯mM for 2.5â¯h, and subsequently prepared for assays based in flow cytometry, gene expression and immunoreactivity profile. The cells exposed to higher concentrations of MG had significant loss of viability, increased reactive species (RS) production and apoptosis/necrosis rate. These phenomena were accompanied by morphological changes (increased size and granularity) and disruption in mRNA expression of antioxidant, apoptotic and glycation-responsive genes, particularly: Nrf2 (Nuclear factor (erythroid-derived 2)-like 2), SOD1 (CuZn-superoxide dismutase), SOD2 (Mn-superoxide dismutase), GSR (glutathione-S-reductase), BAX (BAX-associated X protein), BCL-2 (BCL-2-associated X protein), AIF (apoptosis inducing factor), GLO-1 (glyoxalase-1) and RAGE (receptor for advanced glycation end products). The mRNA expression of CASP 9 and CASP 3 (caspase-9 and 3) as well as the immunoreactivity of proteins were not changed by MG. Collectively, our data provide evidence that MG activates programmed cell death pathways in leukocytes and that this effect seems to be associated with disturbances in cell redox signaling.
Subject(s)
Leukocytes/drug effects , Pyruvaldehyde/toxicity , Adult , Apoptosis/physiology , Cell Death/drug effects , Cell Death/physiology , Female , Gene Expression Regulation/drug effects , Humans , Leukocytes/metabolism , Male , Young AdultABSTRACT
PURPOSE: Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. METHODS: Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. RESULTS: MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in ß-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in ß-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. CONCLUSIONS: Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.
Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Dyslipidemias/chemically induced , Environmental Pollutants/toxicity , Lactation/drug effects , Maternal Exposure/adverse effects , Obesity/chemically induced , Pyruvaldehyde/toxicity , Adiposity/drug effects , Administration, Oral , Animals , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Dyslipidemias/blood , Dyslipidemias/metabolism , Dyslipidemias/pathology , Environmental Pollutants/administration & dosage , Environmental Pollutants/analysis , Female , Insulin/analysis , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Lactation/metabolism , Male , Milk/chemistry , Obesity/blood , Obesity/metabolism , Obesity/pathology , Pregnancy , Pyruvaldehyde/administration & dosage , Pyruvaldehyde/analysis , Random Allocation , Rats, Sprague-Dawley , Toxicokinetics , Weight Gain/drug effectsABSTRACT
Thioredoxin (Trx) and glyoxalase (Glo) systems have been suggested to be molecular targets of methylglyoxal (MGO). This highly reactive endogenous compound has been associated with the development of neurodegenerative pathologies and cell death. In the present study, the glutathione (GSH), Trx, and Glo systems were investigated to understand early events (0.5-3 h) that may determine cell fate. It is shown for the first time that MGO treatment induces an increase in glutathione reductase (GR) protein in hippocampal slices (1 h) and HT22 nerve cells (0.5 and 2.5 h). Thioredoxin interacting protein (Txnip), thioredoxin reductase (TrxR), Glo1, and Glo2 were markedly increased (2- to 4-fold) in hippocampal slices and 1.2- to 1.3-fold in HT22 cells. This increase in protein levels in hippocampal slices was followed by a corresponding increase in GR, TrxR, and Glo1 activities, but not in HT22 cells. In these cells, GR and TrxR activities were decreased by MGO. This result is in agreement with the idea that MGO can affect the Trx/TrxR reducing system, and now we show that GR and Txnip can also be affected by MGO. Impairment in the GR or TrxR reducing capacity can impair peroxide removal by glutathione peroxidase and peroxiredoxin, as both peroxidases depend on reduced GSH and Trx, respectively. In this regard, inhibition of GR and TrxR by 2-AAPA or auranofin, respectively, potentiated MGO toxicity in differentiated SH-SY5Y cells. Overall, MGO not only triggers a clear defense response in hippocampal slices and HT22 cells but also impairs the Trx/TrxR and GSH/GR reducing couples in HT22 cells. The increased MGO toxicity caused by inhibition of GR and TrxR with specific inhibitors, or their inhibition by MGO treatment, supports the notion that both reducing systems are relevant molecular targets of MGO.
Subject(s)
Cell Survival/physiology , Glutathione Reductase/metabolism , Pyruvaldehyde/toxicity , Thioredoxins/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Female , Glutathione/metabolism , Hippocampus/enzymology , Humans , Mice , Neurons/enzymology , Neuroprotection/physiology , Pyruvaldehyde/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Tissue Culture TechniquesABSTRACT
Methylglyoxal (MG) is a reactive dicarbonyl metabolite originated mainly from glucose degradation pathway that plays an important role in the pathogenesis of diabetes mellitus (DM). Reactions of MG with biological macromolecules (proteins, DNA and lipids) can induce cytotoxicity and apoptosis. Here, human erythrocytes, leukocytes and platelets were acutely exposed to MG at concentration ranging from 0.025 to 10 mM. Afterwards, hemolysis and osmotic fragility in erythrocytes, DNA damage and cell viability in leukocytes, and the activity of purinergic ecto-nucleotidases in platelets were evaluated. The levels of glycated products from leukocytes and free amino groups from erythrocytes and platelets were also measured. MG caused fragility of membrane, hemolysis and depletion of amino groups in erythrocytes. DNA damage, loss of cell viability and increased levels of glycated products were observed in leukocytes. In platelets, MG inhibited the activity of enzymes NTPDase, 5'-nucleotidase and adenosine deaminase (ADA) without affecting the levels of free amino groups. Our findings provide insights for understanding the mechanisms involved in MG acute toxicity towards distinct blood cells.
Subject(s)
Blood Platelets/drug effects , DNA Damage , Erythrocytes/drug effects , Leukocytes/drug effects , Pyruvaldehyde/toxicity , 5'-Nucleotidase/metabolism , Adenosine Deaminase/metabolism , Adult , Blood Platelets/enzymology , Blood Platelets/pathology , Cell Survival/drug effects , Comet Assay , Dose-Response Relationship, Drug , Erythrocytes/enzymology , Erythrocytes/pathology , Female , Hemolysis/drug effects , Humans , Leukocytes/enzymology , Leukocytes/pathology , Male , Osmotic Fragility/drug effectsABSTRACT
Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.
Subject(s)
Flavanones/pharmacology , MAP Kinase Signaling System/physiology , Mitochondria/metabolism , NF-E2-Related Factor 2/physiology , Neuroblastoma/metabolism , Pyruvaldehyde/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Humans , MAP Kinase Signaling System/drug effects , Mitochondria/drug effectsABSTRACT
Carbonyl compounds such as methylglyoxal (MGO) seem to play an important role in complications resulting from diabetes mellitus, in aging and neurodegenerative disorders. In this study, we are showing, that MGO is able to suppress cell viability and induce apoptosis in the cerebral cortex and hippocampus of neonatal rats ex-vivo. These effects are partially related with ROS production, evaluated by DCFH-DA assay. Coincubation of MGO and reduced glutathione (GSH) or Trolox (vitamin E) totally prevented ROS production but only partially prevented the MGO-induced decreased cell viability in the two brain structures, as evaluated by the MTT assay. Otherwise, L-NAME, a nitric oxide (NO) inhibitor, partially prevented ROS production in the two structures but partially prevented cytotoxicity in the hippocampus. Pharmacological inhibition of Erk, has totally attenuated MGO-induced ROS production and cytotoxicity, suggesting that MEK/Erk pathway could be upstream of ROS generation and cell survival. Otherwise, p38MAPK and JNK failed to prevent ROS generation but induced decreased cell survival consistent with ROS-independent mechanisms. We can propose that Erk, p38MAPK and JNK are involved in the cytotoxicity induced by MGO through different signaling pathways. While Erk could be an upstream effector of ROS generation, p38MAPK and JNK seem to be associated with ROS-independent cytotoxicity in neonatal rat brain. The cytotoxic damage progressed to apoptotic cell death at MGO concentration higher than those described for adult brain, suggesting that the neonatal brain is resistant to MGO-induced cell death. The consequences of MGO-induced brain damage early in life, remains to be clarified. However, it is feasible that high MGO levels during cortical and hippocampal development could be, at least in part, responsible for the impairment of cognitive functions in adulthood.
Subject(s)
Brain/pathology , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Pyruvaldehyde/toxicity , Animals , Animals, Newborn , Annexin A5/metabolism , Antioxidants/pharmacology , Blotting, Western , Brain/drug effects , Brain/enzymology , Cell Survival/drug effects , Coloring Agents , Fluorescent Dyes , In Vitro Techniques , L-Lactate Dehydrogenase/metabolism , MAP Kinase Kinase 4/metabolism , Nerve Tissue Proteins/metabolism , Pyruvaldehyde/antagonists & inhibitors , Pyruvaldehyde/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Tetrazolium Salts , Thiazoles , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
We previously showed the important role of glutathione (GSH) in the protection mechanism against different stresses, such as acid pH, saline, and oxidative stress, using a GSH-deficient mutant of Bradyrhizobium sp. (peanut microsymbiont). In this work, we studied the role of GSH in the protection mechanism against methylglyoxal (MG) toxicity. MG is a naturally occurring toxic electrophilic compound, and it has been shown that GSH is involved in the detoxification of MG in Escherichia coli. One recognized component of this detoxification process is the formation of a GSH adduct, which in turn transports potassium (K(+)) out of bacterial cells. Our results showed that growth of wild-type strain Bradyrhizobium sp. SEMIA 6144 was not affected at a MG concentration of 0.5 mM in the yeast extract-mannitol culture medium. However, a reduction of growth, at concentrations of 1.5 and 2.5 mM MG and reaching complete growth inhibition at 3.0 mM MG, was observed. In wild-type strain, intracellular GSH content decreased, and intracellular K(+ )content was unchanged, whereas GSH-deficient mutant SEMIA 6144-S7Z was unable to grow at 1.5 mM MG. The addition of external GSH to the incubation medium did not restore the growth rate either in wild-type or mutant strains. Our findings showed that GSH has not proven to be protective against the cell-growth inhibiting activity of MG. Therefore, the response of Bradyrhizobium sp. growth to MG is different from that reported in E. coli and other Gram-negative bacteria.
Subject(s)
Bradyrhizobium/drug effects , Bradyrhizobium/growth & development , Glutathione/metabolism , Pyruvaldehyde/metabolism , Pyruvaldehyde/toxicity , Culture Media/chemistry , Gene Deletion , Glutathione/genetics , Inactivation, Metabolic , Potassium/metabolismABSTRACT
Aminoacetone (AA), a putative endogenous source of cytotoxic methylglyoxal, and ceruloplasmin (CP), the antioxidant plasma copper transporter, are known to increase in diabetes. AA was recently shown in vitro to act as a pro-oxidant toward ferritin and isolated mitochondria. We now report AA oxidative effects on CP mediated by AA-generated reactive oxygen species (ROS). Incubation of 1.5 microM human CP with 0.05-1 mM AA resulted in extensive protein aggregation. That ROS-driven thiol cross-linking underlies the CP aggregation was evidenced by the inhibitory effects of added superoxide dismutase, catalase, mannitol, and dithiothreitol. The addition of CP to AA (mM) solutions accelerated oxygen consumption by AA and caused CP copper ion release and loss of ferroxidase and aminoxidase activities. If operative in vivo, this reaction would impair the antioxidant role of CP and iron uptake by ferritin and hence contribute to intracellular iron-induced oxidative stress during AA accumulation in diabetes mellitus.
Subject(s)
Acetone/analogs & derivatives , Acetone/toxicity , Ceruloplasmin/metabolism , Oxidative Stress , Acetone/metabolism , Humans , Iron/metabolism , Pyruvaldehyde/toxicity , Reactive Oxygen Species/metabolismABSTRACT
The isolation of rhizobial strains which exhibit an intrinsic tolerance to acidic conditions has been reported and has facilitated studies on the basic mechanisms underlying acid tolerance. Rhizobium tropici strain CIAT899 displays a high intrinsic tolerance to acidity and therefore was used in this work to study the molecular basis of bacterial responses to acid conditions and other environmental stresses. We generated a collection of R. tropici CIAT899 mutants affected in acid tolerance using Tn5-luxAB mutagenesis, and one mutant strain (CIAT899-13T2), which fails to grow under acid conditions, was characterized in detail. Strain CIAT899-13T2 was found to contain a single Tn5-luxAB insertion in a gene showing a high degree of similarity with the Escherichia coli gshB gene, encoding the enzyme glutathione synthetase. Intracellular potassium pools and intracellular pH levels were found to be lower in the mutant than in the parent. The glutathione-deficient mutant was shown to be sensitive to weak organic acids, osmotic and oxidative stresses, and the presence of methylglyoxal. Glutathione restores responses to these stresses almost to wild-type levels. Our data show that in R. tropici the production of glutathione is essential for growth in extreme environmental conditions. The mutant strain CIAT899-13T2 induced effective nodules; however, it was found to be outcompeted by the wild-type strain in coinoculation experiments.
Subject(s)
Glutathione/metabolism , Rhizobium/physiology , DNA Transposable Elements , Fabaceae/microbiology , Hydrogen-Ion Concentration , Mutagenesis, Insertional , Osmotic Pressure , Plants, Medicinal , Plasmids/genetics , Potassium/metabolism , Pyruvaldehyde/toxicity , Rhizobium/geneticsABSTRACT
The effect of methylglyoxal (MG) and MG administered prior to X-irradiation was investigated in Drosophila melanogaster germinal cells using the sex-linked recessive lethal (s.l.r.l.), II-III autosomal translocation (AT) and X-chromosome nondisjunction (ND) tests. For the s.l.r.l. test the males were either injected with MG (0.5 M, 0.75 M or 1.7 M) or fed for 24 h (1 M) and two 24 h broods (A and B) were obtained. For the AT test the males were injected with MG 1.7 M and the same brooding scheme was followed. ND was tested in females fed on MG 1 M. The only effect observed after MG treatment was a significant increase on the yield of s.l.r.l. with MG 1.7 M. In the combined treatments MG was administered prior to irradiation with 20 Gy of X-rays and the induction of s.l.r.l. and AT was assessed. Pre-treatment with MG 0.75 M and 1.7 M enhanced the frequency of s.l.r.l. in cells sampled in brood B, consisting mainly of the rather hypoxic late spermatids. It is suggested that this radiosensitizing effect could be ascribed to a decrease in the level of glutathione due to the metabolization of MG.