Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38861404

ABSTRACT

Thiamine (vitamin B1) is essential for glucose catabolism. In the yeast species, Nakaseomyces glabratus (formerly Candida glabrata) and Saccharomyces cerevisiae, the transcription factor Pdc2 (with Thi3 and Thi2) upregulates pyruvate decarboxylase (PDC) genes and thiamine biosynthetic and acquisition (THI) genes during starvation. There have not been genome-wide analyses of Pdc2 binding. Previously, we identified small regions of Pdc2-regulated genes sufficient to confer thiamine regulation. Here, we performed deletion analyses on these regions. We observed that when the S. cerevisiae PDC5 promoter is introduced into N. glabratus, it is thiamine starvation inducible but does not require the Thi3 coregulator. The ScPDC5 promoter contains a 22-bp duplication with an AT-rich spacer between the 2 repeats, which are important for regulation. Loss of the first 22-bp element does not eliminate regulation, but the promoter becomes Thi3 dependent, suggesting cis architecture can generate a Thi3-independent, thiamine starvation inducible response. Whereas many THI promoters only have 1 copy of this element, addition of the first 22-bp element to a Thi3-dependent promoter confers Thi3 independence. Finally, we performed fluorescence anisotropy and chromatin immunoprecipitation sequencing. Pdc2 and Thi3 bind to regions that share similarity to the 22-bp element in the ScPDC5 promoter and previously identified cis elements in N. glabratus promoters. Also, while Pdc2 binds to THI and PDC promoters, neither Pdc2 nor Thi3 appears to bind the evolutionarily new NgPMU3 promoter that is regulated by Pdc2. Further study is warranted because PMU3 is required for cells to acquire thiamine from environments where thiamine is phosphorylated, such as in the human bloodstream.


Subject(s)
Candida glabrata , Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Pyruvate Decarboxylase , Thiamine , Thiamine/metabolism , Candida glabrata/genetics , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Microb Cell Fact ; 23(1): 143, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773442

ABSTRACT

BACKGROUND: Zymomonas mobilis is well known for its outstanding ability to produce ethanol with both high specific productivity and with high yield close to the theoretical maximum. The key enzyme in the ethanol production pathway is the pyruvate decarboxylase (PDC) which is converting pyruvate to acetaldehyde. Since it is widely considered that its gene pdc is essential, metabolic engineering strategies aiming to produce other compounds derived from pyruvate need to find ways to reduce PDC activity. RESULTS: Here, we present a new platform strain (sGB027) of Z. mobilis in which the native promoter of pdc was replaced with the IPTG-inducible PT7A1, allowing for a controllable expression of pdc. Expression of lactate dehydrogenase from E. coli in sGB027 allowed the production of D-lactate with, to the best of our knowledge, the highest reported specific productivity of any microbial lactate producer as well as with the highest reported lactate yield for Z. mobilis so far. Additionally, by expressing the L-alanine dehydrogenase of Geobacillus stearothermophilus in sGB027 we produced L-alanine, further demonstrating the potential of sGB027 as a base for the production of compounds other than ethanol. CONCLUSION: We demonstrated that our new platform strain can be an excellent starting point for the efficient production of various compounds derived from pyruvate with Z. mobilis and can thus enhance the establishment of this organism as a workhorse for biotechnological production processes.


Subject(s)
Escherichia coli , Ethanol , Lactic Acid , Metabolic Engineering , Pyruvate Decarboxylase , Zymomonas , Zymomonas/metabolism , Zymomonas/genetics , Pyruvate Decarboxylase/metabolism , Pyruvate Decarboxylase/genetics , Metabolic Engineering/methods , Ethanol/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis , Escherichia coli/metabolism , Escherichia coli/genetics , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Alanine/metabolism , Pyruvic Acid/metabolism , Fermentation
3.
Plant J ; 119(2): 1059-1072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761127

ABSTRACT

Most of kiwifruit cultivars (e.g. Actinidia chinensis cv. Donghong, "DH") were sensitive to waterlogging, thus, waterlogging resistant rootstocks (e.g. Actinidia valvata Dunn, "Dunn") were widely used for kiwifruit industry. Those different species provided ideal materials to understand the waterlogging responses in kiwifruit. Compared to the weaken growth and root activities in "DH", "Dunn" maintained the relative high root activities under the prolonged waterlogging. Based on comparative analysis, transcript levels of pyruvate decarboxylase (PDCs) and alcohol dehydrogenase (ADHs) showed significantly difference between these two species. Both PDCs and ADHs had been significantly increased by waterlogging in "DH", while they were only limitedly triggered by 2 days stress and subsided during the prolonged waterlogging in "Dunn". Thus, 19 differentially expressed transcript factors (DETFs) had been isolated using weighted gene co-expression network analysis combined with transcriptomics and transcript levels of PDCs and ADHs in waterlogged "DH". Among these DETFs, dual luciferase and electrophoretic mobility shift assays indicated AcMYB68 could bind to and trigger the activity of AcPDC2 promoter. The stable over-expression of AcMYB68 significantly up-regulated the transcript levels of PDCs but inhibited the plant growth, especially the roots. Moreover, the enzyme activities of PDC in 35S::AcMYB68 were significantly enhanced during the waterlogging response than that in wild type plants. Most interestingly, comparative analysis indicated that the expression patterns of AcMYB68 and the previously characterized AcERF74/75 (the direct regulator on ADHs) either showed no responses (AcMYB68 and AcERF74) or very limited response (AcERF75) in "Dunn". Taken together, the restricted responses of AcMYB68 and AcERF74/75 in "Dunn" endow its waterlogging tolerance.


Subject(s)
Actinidia , Gene Expression Regulation, Plant , Plant Proteins , Pyruvate Decarboxylase , Actinidia/genetics , Actinidia/physiology , Actinidia/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Plant Roots/genetics , Plant Roots/physiology , Water/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological , Promoter Regions, Genetic/genetics
4.
Plant Physiol Biochem ; 207: 108417, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38354527

ABSTRACT

Strawberry is one of the most popular fruits in the world, because their high fruit quality, especially with respect to the combination of aroma, flavor, color, and nutritional compounds. Pyruvate decarboxylase (PDC) is the first of two enzymes specifically required for ethanolic fermentation and catalyzes the decarboxylation of pyruvate to yield acetaldehyde and CO2. The ethanol, an important alcohol which acts as a precursor for the ester and other alcohols formation in strawberry, is produced by the PDC. The objective was found all different PDCs genes present in the strawberry genome and investigate PDC gene expression and ligand-protein interactions in strawberry fruit. Volatile organic compounds were evaluated during the development of the fruit. After this, eight FaPDC were identified with four genes that increase the relative expression during fruit ripening process. Molecular dynamics simulations were performed to analyze the behavior of Pyr and TPP ligands within the catalytic and regulatory sites of the PDC proteins. Results indicated that energy-restrained simulations exhibited minor fluctuations in ligand-protein interactions, while unrestrained simulations revealed crucial insights into ligand affinity. TPP consistently displayed strong interactions with the catalytic site, emphasizing its pivotal role in enzymatic activity. However, FaPDC6 and FaPDC9 exhibited decreased pyruvate affinity initially, suggesting unique binding characteristics requiring further investigation. Finally, the present study contributes significantly to understanding PDC gene expression and the intricate molecular dynamics underlying strawberry fruit ripening, shedding light on potential targets for further research in this critical biological pathway.


Subject(s)
Fragaria , Pyruvate Decarboxylase , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Fragaria/genetics , Fragaria/metabolism , Fruit/metabolism , Ligands , Plant Proteins/metabolism , Ethanol/metabolism , Pyruvates/metabolism , Gene Expression Regulation, Plant
5.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203474

ABSTRACT

A cell population characterized by the release of glucose repression and known as [GAR+] emerges spontaneously in the yeast Saccharomyces cerevisiae. This study revealed that the [GAR+] variants exhibit retarded alcoholic fermentation when glucose is the sole carbon source. To identify the key to the altered glucose response, the gene expression profile of [GAR+] cells was examined. Based on RNA-seq data, the [GAR+] status was linked to impaired function of the Cyc8p-Tup1p complex. Loss of Cyc8p led to a decrease in the initial rate of alcoholic fermentation under glucose-rich conditions via the inactivation of pyruvate decarboxylase, an enzyme unique to alcoholic fermentation. These results suggest that Cyc8p can become inactive to attenuate alcoholic fermentation. These findings may contribute to the elucidation of the mechanism of non-genetic heterogeneity in yeast alcoholic fermentation.


Subject(s)
Carbon , Saccharomyces cerevisiae , Fermentation , Glucose , Pyruvate Decarboxylase/genetics , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL