Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.338
Filter
1.
Mol Cancer ; 23(1): 144, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39004737

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) represents a prevalent malignant tumor, with approximately 40% of patients encountering treatment challenges or relapse attributed to rituximab resistance, primarily due to diminished or absent CD20 expression. Our prior research identified PDK4 as a key driver of rituximab resistance through its negative regulation of CD20 expression. Further investigation into PDK4's resistance mechanism and the development of advanced exosome nanoparticle complexes may unveil novel resistance targets and pave the way for innovative, effective treatment modalities for DLBCL. METHODS: We utilized a DLBCL-resistant cell line with high PDK4 expression (SU-DHL-2/R). We infected it with short hairpin RNA (shRNA) lentivirus for RNA sequencing, aiming to identify significantly downregulated mRNA in resistant cells. Techniques including immunofluorescence, immunohistochemistry, and Western blotting were employed to determine PDK4's localization and expression in resistant cells and its regulatory role in phosphorylation of Histone deacetylase 8 (HDAC8). Furthermore, we engineered advanced exosome nanoparticle complexes, aCD20@ExoCTX/siPDK4, through cellular, genetic, and chemical engineering methods. These nanoparticles underwent characterization via Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM), and their cellular uptake was assessed through flow cytometry. We evaluated the nanoparticles' effects on apoptosis in DLBCL-resistant cells and immune cells using CCK-8 assays and flow cytometry. Additionally, their capacity to counteract resistance and exert anti-tumor effects was tested in a resistant DLBCL mouse model. RESULTS: We found that PDK4 initiates HDAC8 activation by phosphorylating the Ser-39 site, suppressing CD20 protein expression through deacetylation. The aCD20@ExoCTX/siPDK4 nanoparticles served as effective intracellular delivery mechanisms for gene therapy and monoclonal antibodies, simultaneously inducing apoptosis in resistant DLBCL cells and triggering immunogenic cell death in tumor cells. This dual action effectively reversed the immunosuppressive tumor microenvironment, showcasing a synergistic therapeutic effect in a subcutaneous mouse tumor resistance model. CONCLUSIONS: This study demonstrates that PDK4 contributes to rituximab resistance in DLBCL by modulating CD20 expression via HDAC8 phosphorylation. The designed exosome nanoparticles effectively overcome this resistance by targeting the PDK4/HDAC8/CD20 pathway, representing a promising approach for drug delivery and treating patients with Rituximab-resistant DLBCL.


Subject(s)
Drug Resistance, Neoplasm , Exosomes , Lymphoma, Large B-Cell, Diffuse , Nanoparticles , Rituximab , Humans , Exosomes/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Rituximab/pharmacology , Rituximab/therapeutic use , Animals , Mice , Nanoparticles/chemistry , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects
2.
Bioorg Med Chem Lett ; 109: 129839, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844173

ABSTRACT

Activation of pyruvate dehydrogenase (PDH) by inhibition of pyruvate dehydrogenase kinase (PDHK) has the potential for the treatment of diabetes mellitus and its complications, caused by the malfunction of the glycolytic system and glucose oxidation. In this paper, we describe the identification of novel PDHK inhibitors with a fluorene structure. High-throughput screening using our in-house library provided compound 6 as a weak inhibitor that occupied the allosteric lipoyl group binding site in PDHK2. Structure-based drug design (SBDD) while addressing physicochemical properties succeeded in boosting inhibitory activity approximately 700-fold. Thus obtained compound 32 showed favorable pharmacokinetics profiles supported by high membrane permeability and metabolic stability, and exhibited activation of PDH in rat livers and a glucose lowering effect in Zucker fatty rats.


Subject(s)
Drug Design , Fluorenes , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Rats, Zucker , Animals , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Rats , Fluorenes/chemistry , Fluorenes/chemical synthesis , Fluorenes/pharmacology , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Molecular Structure , Humans , Dose-Response Relationship, Drug
3.
Blood Adv ; 8(15): 3906-3913, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38838230

ABSTRACT

ABSTRACT: Neutrophils contribute to deep vein thrombosis (DVT) by releasing prothrombotic neutrophil extracellular traps (NETs). NET formation (known as NETosis) is an energy-intensive process that requires an increased rate of aerobic glycolysis. The metabolic enzymes pyruvate dehydrogenase kinases (PDKs) inhibit the pyruvate dehydrogenase complex to divert the pyruvate flux from oxidative phosphorylation toward aerobic glycolysis. Herein, we identified that the combined deletion of PDK2 and PDK4 (PDK2/4-/-) renders mice less susceptible to DVT (measured by thrombus incidence, weight, and length) in the inferior vena cava-stenosis model at day 2 after surgery. Compared with wild-type (WT) mice, the venous thrombus obtained from PDK2/4-/- mice exhibited reduced citrullinated histone content, a known marker of NETs. In line with in vivo observations, phorbol 12-myristate 13-acetate (PMA)-stimulated PDK2/4-/- neutrophils displayed reduced NETosis and secretion of cathepsin G and elastase compared with PMA-stimulated WT neutrophils. The formation of platelet aggregates mediated by PMA-stimulated PDK2/4-/- neutrophils were significantly reduced compared with PMA-stimulated WT neutrophils. Finally, PDK2/4-/- neutrophils exhibited reduced levels of intracellular Ca2+ concentration, extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and glycolytic proton efflux rate (a measure of aerobic glycolysis), known to facilitate NETosis. Together, these findings elucidate, to our knowledge, for the first time, the fundamental role of PDK2/4 in regulating NETosis and acute DVT.


Subject(s)
Neutrophils , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Venous Thrombosis , Animals , Venous Thrombosis/etiology , Venous Thrombosis/metabolism , Mice , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Neutrophils/metabolism , Mice, Knockout , Disease Models, Animal , Extracellular Traps/metabolism , Disease Susceptibility , Gene Deletion
4.
Cancer Immunol Immunother ; 73(8): 151, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832951

ABSTRACT

BACKGROUND: Immunotherapy for gastric cancer remains a challenge due to its limited efficacy. Metabolic reprogramming toward glycolysis has emerged as a promising avenue for enhancing the sensitivity of tumors to immunotherapy. Pyruvate dehydrogenase kinases (PDKs) play pivotal roles in regulating glycolysis. The importance of PDKs in the context of gastric cancer immunotherapy and their potential as therapeutic targets have not been fully explored. METHODS: PDK and PD-L1 expression was analyzed using data from the GSE66229 and The Cancer Genome Atlas (TCGA) cohorts. Additionally, the Immune Checkpoint Blockade Therapy Atlas (ICBatlas) database was utilized to assess PDK expression in an immune checkpoint blockade (ICB) therapy group. Subsequently, the upregulation of PD-L1 and the enhancement of anticancer effects achieved by targeting PDK were validated through in vivo and in vitro assays. The impact of PDK on histone acetylation was investigated using ChIP‒qPCR to detect changes in histone acetylation levels. RESULTS: Our analysis revealed a notable negative correlation between PD-L1 and PDK expression. Downregulation of PDK led to a significant increase in PD-L1 expression. PDK inhibition increased histone acetylation levels by promoting acetyl-CoA generation. The augmentation of acetyl-CoA production and concurrent inhibition of histone deacetylation were found to upregulate PD-L1 expression in gastric cancer cells. Additionally, we observed a significant increase in the anticancer effect of PD-L1 antibodies following treatment with a PDK inhibitor. CONCLUSIONS: Downregulation of PDK in gastric cancer cells leads to an increase in PD-L1 expression levels, thus potentially improving the efficacy of PD-L1 immune checkpoint blockade therapy.


Subject(s)
B7-H1 Antigen , Glycolysis , Immunotherapy , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Stomach Neoplasms , Up-Regulation , B7-H1 Antigen/metabolism , Humans , Animals , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/immunology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Immunotherapy/methods , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Mice, Nude
5.
Toxicol In Vitro ; 99: 105848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772495

ABSTRACT

Nirmatrelvir (NMV) is a recently developed selective inhibitor of the main protease of Sars-Cov-2 that reduces the severity of infection. Despite its widespread use and various side effects, NMV's effect on male fertility is still unclear. This study was thus established to investigate how NMV affects male fertility. For experiments, Duroc spermatozoa were incubated with various concentrations of NMV (0, 0.1, 1, 10, 50, and 100 µM). Then, sperm motility, motion kinematics, capacitation status, intracellular ATP level, and cell viability were evaluated. In addition, the expression levels of phospho-PKA substrates, tyrosine-phosphorylated proteins, and PI3K/PDK1/AKT signaling pathway-related proteins were measured by western blotting. Our results showed that sperm motility, motion kinematics, proportion of capacitated spermatozoa, and intracellular ATP level were significantly decreased by NMV in a dose-dependent manner. Moreover, PKA activation was significantly suppressed by NMV, and expression levels of PI3K, phospho-PDK1, AKT, and phospho-AKT (Thr308 and Ser473) were significantly increased in a dose-dependent manner. Combining these findings, it is suggested that NMV has detrimental effects on sperm function by inducing abnormal changes in the PI3K/PDK1/AKT signaling pathway, resulting in PKA deactivation. Therefore, there is a need to pay particular attention to its male reproductive toxicity when NMV is administered.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Sperm Motility , Spermatozoa , Male , Proto-Oncogene Proteins c-akt/metabolism , Spermatozoa/drug effects , Signal Transduction/drug effects , Sperm Motility/drug effects , Animals , Phosphatidylinositol 3-Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Swine , Adenosine Triphosphate/metabolism , Sperm Capacitation/drug effects , Cell Survival/drug effects
6.
BMC Complement Med Ther ; 24(1): 190, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750550

ABSTRACT

BACKGROUND: Bawei Chenxiang Wan (BCW) is among the most effective and widely used therapies for coronary heart disease and angina pectoris in Tibet. However, whether it confers protection through a right-ventricle (RV) myocardial metabolic mechanism is unknown. METHODS: Male Sprague-Dawley rats were orally administrated with BCW, which was injected concurrently with a bolus of Sugen5416, and subjected to hypoxia exposure (SuHx; 5000 m altitude) for 4 weeks. Right ventricular hypertrophy (RVH) in high-altitude heart disease (HAHD) was assessed using Fulton's index (FI; ratio of RV to left ventricle + septum weights) and heart-weight-to-body-weight ratio (HW/BW). The effect of therapeutic administration of BCW on the RVH hemodynamics was assessed through catheterization (mean right ventricular pressure and mean pulmonary artery pressure (mRVP and mPAP, respectively)). Tissue samples were used to perform histological staining, and confirmatory analyses of mRNA and protein levels were conducted to detect alterations in the mechanisms of RVH in HAHD. The protective mechanism of BCW was further verified via cell culture. RESULTS: BCW considerably reduced SuHx-associated RVH, as indicated by macro morphology, HW/BW ratio, FI, mPAP, mRVP, hypertrophy markers, heart function, pathological structure, and myocardial enzymes. Moreover, BCW can alleviate the disorder of glucose and fatty acid metabolism through upregulation of carnitine palmitoyltransferase1ɑ, citrate synthase, and acetyl-CoA and downregulation of glucose transport-4, phosphofructokinase, and pyruvate, which resulted in the reduced levels of free fatty acid and lactic acid and increased aerobic oxidation. This process may be mediated via the regulation of sirtuin 3 (SIRT3)-hypoxia-inducible factor 1α (HIF1α)-pyruvate dehydrogenase kinase (PDK)/pyruvate dehydrogenase (PDH) signaling pathway. Subsequently, the inhibition of SIRT3 expression by 3-TYP (a selective inhibitor of SIRT3) can reverse substantially the anti-RVH effect of BCW in HAHD, as indicated by hypertrophy marker and serum myocardial enzyme levels. CONCLUSIONS: BCW prevented SuHx-induced RVH in HAHD via the SIRT3-HIF1ɑ-PDK/PDH signaling pathway to alleviate the disturbance in fatty acid and glucose metabolism. Therefore, BCW can be used as an alternative drug for the treatment of RVH in HAHD.


Subject(s)
Drugs, Chinese Herbal , Hypertrophy, Right Ventricular , Hypoxia-Inducible Factor 1, alpha Subunit , Rats, Sprague-Dawley , Animals , Male , Rats , Drugs, Chinese Herbal/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypertrophy, Right Ventricular/drug therapy , Sirtuin 3/metabolism , Fatty Acids/metabolism , Signal Transduction/drug effects , Glucose/metabolism , Altitude Sickness/drug therapy , Disease Models, Animal , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
7.
Int Immunopharmacol ; 134: 112245, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749334

ABSTRACT

Gastric cancer (GC) has posed a great threat to the lives of people around the world. To date, safer and more cost-effective therapy for GC is lacking. Traditional Chinese medicine (TCM) may provide some new options for this. Guiqi Baizhu Formula (GQBZF), a classic TCM formula, has been extensively used to treat GC, while its bioactive components and therapeutic mechanisms remain unclear. In this study, we evaluated the underlying mechanisms of GQBZF in treating GC by integrative approach of chemical bioinformatics. GQBZF lyophilized powder (0.0625 mg/mL, 0.125 mg/mL) significantly attenuated the expression of p-IGF1R, PI3K, p-PDK1, p-VEGFR2 to inhibit the proliferation, migration and induce apoptosis of gastric cancer cells, which was consistent with the network pharmacology. Additionally, atractylenolide Ⅰ, quercetin, glycyrol, physcione and aloe-emodin, emodin, kaempferol, licoflavone A were found to be the key compounds of GQBZF regulating IGF1R and VEGFR2, respectively. And among which, glycyrol and emodin were determined as key active compounds against GC by farther vitro experiments and LC/MS. Meanwhile, we also found that glycyrol inhibited MKN-45 cells proliferation and enhanced apoptosis, which might be related to the inhibition of IGF1R/PI3K/PDK1, and emodin could significantly attenuate the MKN-45 cells migration, which might be related to the inhibition of VEGFR2-related signaling pathway. These results were verified again by molecular dynamics simulation and binding interaction pattern. In summary, this study suggested that GQBZF and its key active components (glycyrol and emodin) can suppress IGF1R/PI3K/PDK1 and VEGFR2-related signaling pathway, thereby inhibiting tumor cell proliferation and migration and inducing apoptosis. These findings provided an important strategy for developing new agents and facilitated clinical use of GQBZF against GC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Computational Biology , Drugs, Chinese Herbal , Receptor, IGF Type 1 , Stomach Neoplasms , Vascular Endothelial Growth Factor Receptor-2 , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Receptor, IGF Type 1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Computational Biology/methods , Signal Transduction/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Somatomedin/metabolism , Network Pharmacology , Antineoplastic Agents, Phytogenic/pharmacology
8.
Bioorg Chem ; 148: 107436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735265

ABSTRACT

BACKGROUND: Camptothecin (CPT), a pentacyclic alkaloid with antitumor properties, is derived from the Camptotheca acuminata. Topotecan and irinotecan (CPT derivatives) were first approved by the Food and Drug Administration for cancer treatment over 25 years ago and remain key anticancer drugs today. However, their use is often limited by clinical toxicity. Despite extensive development efforts, many of these derivatives have not succeeded clinically, particularly in their effectiveness against pancreatic cancer which remains modest. AIM OF THE STUDY: This study aimed to evaluate the therapeutic activity of FLQY2, a CPT derivative synthesized in our laboratory, against pancreatic cancer, comparing its efficacy and mechanism of action with those of established clinical drugs. METHODS: The cytotoxic effects of FLQY2 on cancer cells were assessed using an MTT assay. Patient-derived organoid (PDO) models were employed to compare the sensitivity of FLQY2 to existing clinical drugs across various cancers. The impact of FLQY2 on apoptosis and cell cycle arrest in Mia Paca-2 pancreatic cancer cells was examined through flow cytometry. Transcriptomic and proteomic analyses were conducted to explore the underlying mechanisms of FLQY2's antitumor activity. Western blotting was used to determine the levels of proteins regulated by FLQY2. Additionally, the antitumor efficacy of FLQY2 in vivo was evaluated in a pancreatic cancer xenograft model. RESULTS: FLQY2 demonstrated (1) potent cytotoxicity; (2) superior tumor-suppressive activity in PDO models compared to current clinical drugs such as gemcitabine, 5-fluorouracil, cisplatin, paclitaxel, ivosidenib, infinitinib, and lenvatinib; (3) significantly greater tumor inhibition than paclitaxel liposomes in a pancreatic cancer xenograft model; (4) robust antitumor effects, closely associated with the inhibition of the TOP I and PDK1/AKT/mTOR signaling pathways. In vitro studies revealed that FLQY2 inhibited cell proliferation, colony formation, induced apoptosis, and caused cell cycle arrest at nanomolar concentrations. Furthermore, the combination of FLQY2 and gemcitabine exhibited significant inhibitory and synergistic effects. CONCLUSION: The study confirmed the involvement of topoisomerase I and the PDK1/AKT/mTOR pathways in mediating the antitumor activity of FLQY2 in treating Mia Paca-2 pancreatic cancer. Therefore, FLQY2 has potential as a novel therapeutic option for patients with pancreatic cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Drug Screening Assays, Antitumor , Pancreatic Neoplasms , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Camptothecin/pharmacology , Camptothecin/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Animals , Mice , Apoptosis/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Mice, Nude , Tumor Cells, Cultured , Cell Line, Tumor
9.
Biochem Biophys Res Commun ; 721: 150106, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38795634

ABSTRACT

3-phosphoinositide-dependent protein kinase 1 (PDK1) exhibits a substantial influence on immune cell development by establishing a vital connection between PI3K and downstream mTOR signaling cascades. However, it remains unclear whether PDK1 signaling affects the homeostasis and functionality of immune cells. To explore the impact of PDK1 on different immune cells within immune organs, transgenic mouse strains with lymphocyte-specific PDK1 knockout (PDK1fl/fl CD2-Cre) were generated. Unlike wild-type (WT) mice, lymphocyte-specific PDK1 knockout (KO) mice exhibited thymic atrophy, elevated percentages of CD8+ T cells and neutrophils, and reduced proportions of γδ T cells, B cells, and NK cells in the spleen. Functional analysis revealed elevated release of IFN-γ and IL-17A by T cells in PDK1 KO mice, contrasting with diminished levels observed in γδ T cells and Treg cells. Furthermore, the activation, cytotoxicity, and migratory potential of γδ T cells in PDK1 KO mice are heightened, indicating a potential association with the regulation of the mTOR signaling pathway. To conclude, the findings of this research demonstrated that specific knockout of PDK1 in lymphocytes hindered T cell development in the thymus and exhibited a substantial influence on immune cell homeostasis in the spleen and lymph nodes.


Subject(s)
Mice, Knockout , Thymus Gland , Animals , Mice , Thymus Gland/immunology , Spleen/immunology , 3-Phosphoinositide-Dependent Protein Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases/genetics , Signal Transduction , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Interleukin-17/metabolism , Interleukin-17/immunology , CD8-Positive T-Lymphocytes/immunology
10.
Biomed Pharmacother ; 175: 116736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739992

ABSTRACT

AIMS: The xanthone dimer 12-O-deacetyl-phomoxanthone A (12-ODPXA) was extracted from the secondary metabolites of the endophytic fungus Diaporthe goulteri. The 12-ODPXA compound exhibited anticancer properties in murine lymphoma; however, the anti-ovarian cancer (OC) mechanism has not yet been explored. Therefore, the present study evaluated whether 12-ODPXA reduces OC cell proliferation, metastasis, and invasion by downregulating pyruvate dehydrogenase kinase (PDK)4 expression. METHODS: Cell counting kit-8, colony formation, flow cytometry, wound healing, and transwell assays were performed to examine the effects of 12-ODPXA on OC cell proliferation, apoptosis, migration, and invasion. Transcriptome analysis was used to predict the changes in gene expression. Protein expression was determined using western blotting. Glucose, lactate, and adenosine triphosphate (ATP) test kits were used to measure glucose consumption and lactate and ATP production, respectively. Zebrafish xenograft models were constructed to elucidate the anti-OC effects of 12-ODPXA. RESULTS: The 12-ODPXA compound inhibited OC cell proliferation, migration, invasion, and glycolysis while inducing cell apoptosis via downregulation of PDK4. In vivo experiments showed that 12-ODPXA suppressed tumor growth and migration in zebrafish. CONCLUSION: Our data demonstrate that 12-ODPXA inhibits ovarian tumor growth and metastasis by downregulating PDK4, revealing the underlying mechanisms of action of 12-ODPXA in OC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Down-Regulation , Ovarian Neoplasms , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Xanthones , Zebrafish , Animals , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Humans , Xanthones/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Xenograft Model Antitumor Assays/methods , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Metastasis , Neoplasm Invasiveness
11.
Cancer Med ; 13(9): e7221, 2024 May.
Article in English | MEDLINE | ID: mdl-38733179

ABSTRACT

BACKGROUND: Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS: The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, ß-catenin and downstream molecules of the WNT/ß-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS: This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/ß-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of ß-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the ß-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by ß-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION: In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/ß-catenin/PDK1 signaling axis.


Subject(s)
Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Long Noncoding , Uterine Cervical Neoplasms , Wnt Signaling Pathway , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Female , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Glycolysis , Cell Movement
12.
Oncogene ; 43(26): 1985-1999, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734828

ABSTRACT

Ovarian cancer is one of the most common gynecological malignant tumors with insidious onset, strong invasiveness, and poor prognosis. Metabolic alteration, particularly aerobic glycolysis, which is tightly regulated by transcription factors, is associated with the malignant behavior of OC. We screened FOXK2 in this study as a key transcription factor that regulates glycolysis in OC. FOXK2 is overly expressed in OC, and poor prognosis is predicted by overexpression. FOXK2 promotes OC cell proliferation both in vitro and in vivo and cell migration in vitro. Further studies showed that PDK2 directly binds to the forkhead-associated (FHA) domain of FOXK2 to phosphorylate FOXK2 at Thr13 and Ser30, thereby enhancing the transcriptional activity of FOXK2. FOXK2 transcriptionally regulates the expression of PDK2, thus forming positive feedback to sustain glycolysis in OC cells.


Subject(s)
Cell Proliferation , Forkhead Transcription Factors , Glycolysis , Ovarian Neoplasms , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Female , Glycolysis/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Cell Line, Tumor , Phosphorylation , Animals , Cell Proliferation/genetics , Mice , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Feedback, Physiological , Mice, Nude , Prognosis
13.
Placenta ; 153: 1-21, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810540

ABSTRACT

INTRODUCTION: Studies have shown that EMT (epithelial-mesenchymal transition) and energy metabolism influence each other, and it is unclear whether the trophoblast energy metabolism phenotype is dominated by glycolysis or mitochondrial respiration, and the relationship between trophoblast energy metabolism and EMT is still unclear. METHODS: Exosomes were isolated from the DSC of URSA patients and their miRNA profile was characterized by miRNA sequencing. Wound healing assays and transwell assays were used to assess the invasion and migration ability of trophoblasts. Mitochondrial stress and glycolysis stress test were used to evaluate energy metabolism phenotype of trophoblast. Luciferase reporter assays, qRT-PCR and WB were conducted to uncover the underlying mechanism. Finally, animal experiments were employed to explore the effect of DSC-exos on embryo absorption in mice. RESULTS: Our results showed that URSA-DSC-exos suppressed trophoblast EMT to reduce their migration and invasion, miR-22-5p_R-1 was the most upregulated miRNAs. URSA-DSC-exos can suppress trophoblast MGS (metabolic switch from mitochondrial respiration to glycolysis) and inhibit trophoblast migration and invasion by transferring miR-22-5p_R-1. Mechanistically, miR-22-5p_R-1 suppress trophoblast MGS and inhibit trophoblast EMT by directly suppressing PDK4 expression at the post-transcriptional level. Furthermore, in vivo experiment suggested that URSA-DSC-exos aggravated embryo absorption in mice. Clinically, PDK4 and EMT molecule were aberrant in villous of URSA patients, and negative correlations were found between miR-22-5p_R-1 and PDK4. DISCUSSION: Our findings indicated that URSA-DSC-exos induced MGS obstacle playing an important role in intercellular communication between trophoblast and DSC, illuminating a novel mechanism in DSC regulation of trophoblasts and their role in URSA.


Subject(s)
Abortion, Habitual , Exosomes , Glycolysis , MicroRNAs , Mitochondria , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Trophoblasts , Female , MicroRNAs/metabolism , MicroRNAs/genetics , Trophoblasts/metabolism , Humans , Pregnancy , Exosomes/metabolism , Animals , Mice , Mitochondria/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Abortion, Habitual/metabolism , Abortion, Habitual/genetics , Epithelial-Mesenchymal Transition , Adult , Decidua/metabolism , Decidua/pathology
14.
Sci Rep ; 14(1): 11497, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769106

ABSTRACT

Barth syndrome (BTHS) is a rare disorder caused by mutations in the TAFAZZIN gene. Previous studies from both patients and model systems have established metabolic dysregulation as a core component of BTHS pathology. In particular, features such as lactic acidosis, pyruvate dehydrogenase (PDH) deficiency, and aberrant fatty acid and glucose oxidation have been identified. However, the lack of a mechanistic understanding of what causes these conditions in the context of BTHS remains a significant knowledge gap, and this has hindered the development of effective therapeutic strategies for treating the associated metabolic problems. In the current study, we utilized tafazzin-knockout C2C12 mouse myoblasts (TAZ-KO) and cardiac and skeletal muscle tissue from tafazzin-knockout mice to identify an upstream mechanism underlying impaired PDH activity in BTHS. This mechanism centers around robust upregulation of pyruvate dehydrogenase kinase 4 (PDK4), resulting from hyperactivation of AMP-activated protein kinase (AMPK) and subsequent transcriptional upregulation by forkhead box protein O1 (FOXO1). Upregulation of PDK4 in tafazzin-deficient cells causes direct phospho-inhibition of PDH activity accompanied by increased glucose uptake and elevated intracellular glucose concentration. Collectively, our findings provide a novel mechanistic framework whereby impaired tafazzin function ultimately results in robust PDK4 upregulation, leading to impaired PDH activity and likely linked to dysregulated metabolic substrate utilization. This mechanism may underlie previously reported findings of BTHS-associated metabolic dysregulation.


Subject(s)
AMP-Activated Protein Kinases , Forkhead Box Protein O1 , Mice, Knockout , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Animals , Mice , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , AMP-Activated Protein Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Up-Regulation , Signal Transduction , Myoblasts/metabolism , Cell Line , Glucose/metabolism , Acyltransferases
15.
PeerJ ; 12: e17208, 2024.
Article in English | MEDLINE | ID: mdl-38650649

ABSTRACT

Background: Stroke is a disease with high morbidity, disability, and mortality. Immune factors play a crucial role in the occurrence of ischemic stroke (IS), but their exact mechanism is not clear. This study aims to identify possible immunological mechanisms by recognizing immune-related biomarkers and evaluating the infiltration pattern of immune cells. Methods: We downloaded datasets of IS patients from GEO, applied R language to discover differentially expressed genes, and elucidated their biological functions using GO, KEGG analysis, and GSEA analysis. The hub genes were then obtained using two machine learning algorithms (least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE)) and the immune cell infiltration pattern was revealed by CIBERSORT. Gene-drug target networks and mRNA-miRNA-lncRNA regulatory networks were constructed using Cytoscape. Finally, we used RT-qPCR to validate the hub genes and applied logistic regression methods to build diagnostic models validated with ROC curves. Results: We screened 188 differentially expressed genes whose functional analysis was enriched to multiple immune-related pathways. Six hub genes (ANTXR2, BAZ2B, C5AR1, PDK4, PPIH, and STK3) were identified using LASSO and SVM-RFE. ANTXR2, BAZ2B, C5AR1, PDK4, and STK3 were positively correlated with neutrophils and gamma delta T cells, and negatively correlated with T follicular helper cells and CD8, while PPIH showed the exact opposite trend. Immune infiltration indicated increased activity of monocytes, macrophages M0, neutrophils, and mast cells, and decreased infiltration of T follicular helper cells and CD8 in the IS group. The ceRNA network consisted of 306 miRNA-mRNA interacting pairs and 285 miRNA-lncRNA interacting pairs. RT-qPCR results indicated that the expression levels of BAZ2B, C5AR1, PDK4, and STK3 were significantly increased in patients with IS. Finally, we developed a diagnostic model based on these four genes. The AUC value of the model was verified to be 0.999 in the training set and 0.940 in the validation set. Conclusion: Our research explored the immune-related gene expression modules and provided a specific basis for further study of immunomodulatory therapy of IS.


Subject(s)
Ischemic Stroke , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Ischemic Stroke/immunology , Ischemic Stroke/genetics , Ischemic Stroke/blood , Protein Serine-Threonine Kinases/genetics , Gene Regulatory Networks , Biomarkers/blood , Gene Expression Profiling , Support Vector Machine , MicroRNAs/genetics , MicroRNAs/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism
16.
Gene ; 918: 148476, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38657876

ABSTRACT

AIMS: To investigate the association between mitochondrial events and immune response in periodontitis and related regulatory genes. MAIN METHODS: Gene expression profiles in gingival tissues were retrieved from the Gene Expression Omnibus. Mitochondria-immune response-related differentially expressed genes (MIR-DEGs) between the healthy and periodontitis samples were determined. WGCNA, GO, and KEGG were used to investigate the function and the enriched pathways of MIR-DEGs. The correlation between MIR-DEGs expression and clinical probing pocket depth was analyzed. The MIR-DEGs were further identified and verified in animal samples. A periodontitis model was established in C57BL/6 mice with silk ligation. Micro-computed tomography was used to assess alveolar bone loss. Western blot, quantitative real-time polymerase chain reaction, and immunohistochemical analyses further validated the differential expression of the MIR-DEGs. KEY FINDINGS: A total of ten MIR-DEGs (CYP24A1, PRDX4, GLDC, PDK1, BCL2A1, CBR3, ARMCX3, BNIP3, IFI27, and UNG) were identified, the expression of which could effectively distinguish patients with periodontitis from the healthy controls. Enhanced immune response was detected in the periodontitis group with that in the healthy controls, especially in B cells. PDK1 was a critical MIR-DEG correlated with B cell immune response and clinical periodontal probing pocket depth. Both animal and clinical periodontal samples presented higher gene and protein expression of PDK1 than the control samples. Additionally, PDK1 colocalized with B cells in both animal and clinical periodontal tissues. SIGNIFICANCE: Mitochondria participate in the regulation of the immune response in periodontitis. PDK1 may be the key mitochondria-related gene regulating B-cell immune response in periodontitis.


Subject(s)
Mice, Inbred C57BL , MicroRNAs , Mitochondria , Periodontitis , Animals , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Gingiva/metabolism , Gingiva/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Male , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Gene Expression Profiling , Female , Transcriptome , Serine-Threonine Kinase 3 , Gene Expression Regulation
17.
J Cancer Res Clin Oncol ; 150(4): 218, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678126

ABSTRACT

BACKGROUND: Targeting ferroptosis mediated by autophagy presents a novel therapeutic approach to breast cancer, a mortal neoplasm on the global scale. Pyruvate dehydrogenase kinase isozyme 4 (PDK4) has been denoted as a determinant of breast cancer metabolism. The target of this study was to untangle the functional mechanism of PDK4 in ferroptosis dependent on autophagy in breast cancer. METHODS: RT-qPCR and western blotting examined PDK4 mRNA and protein levels in breast cancer cells. Immunofluorescence staining appraised light chain 3 (LC3) expression. Fe (2 +) assay estimated total iron level. Relevant assay kits and C11-BODIPY (591/581) staining evaluated lipid peroxidation level. DCFH-DA staining assayed intracellular reactive oxygen species (ROS) content. Western blotting analyzed the protein levels of autophagy, ferroptosis and apoptosis-signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) pathway-associated proteins. RESULTS: PDK4 was highly expressed in breast cancer cells. Knockdown of PDK4 induced the autophagy of breast cancer cells and 3-methyladenine (3-MA), an autophagy inhibitor, countervailed the promoting role of PDK4 interference in ferroptosis in breast cancer cells. Furthermore, PDK4 knockdown activated ASK1/JNK pathway and ASK1 inhibitor (GS-4997) partially abrogated the impacts of PDK4 absence on the autophagy and ferroptosis in breast cancer cells. CONCLUSION: To sum up, deficiency of PDK4 activated ASK1/JNK pathway to stimulate autophagy-dependent ferroptosis in breast cancer.


Subject(s)
Autophagy , Breast Neoplasms , Ferroptosis , MAP Kinase Kinase Kinase 5 , Humans , Ferroptosis/physiology , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Autophagy/physiology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinase 5/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , MAP Kinase Signaling System/physiology , Animals , Cell Line, Tumor , Mice , Reactive Oxygen Species/metabolism
18.
Mol Med ; 30(1): 56, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671369

ABSTRACT

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Ginsenosides , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Oxidative Phosphorylation , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Cell Line, Tumor , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Nude , Cell Movement/drug effects , Apoptosis/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
19.
Exp Mol Med ; 56(5): 1137-1149, 2024 May.
Article in English | MEDLINE | ID: mdl-38689087

ABSTRACT

Osimertinib, a selective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), effectively targets the EGFR T790M mutant in non-small cell lung cancer (NSCLC). However, the newly identified EGFR C797S mutation confers resistance to osimertinib. In this study, we explored the role of pyruvate dehydrogenase kinase 1 (PDK1) in osimertinib resistance. Patients exhibiting osimertinib resistance initially displayed elevated PDK1 expression. Osimertinib-resistant cell lines with the EGFR C797S mutation were established using A549, NCI-H292, PC-9, and NCI-H1975 NSCLC cells for both in vitro and in vivo investigations. These EGFR C797S mutant cells exhibited heightened phosphorylation of EGFR, leading to the activation of downstream oncogenic pathways. The EGFR C797S mutation appeared to increase PDK1-driven glycolysis through the EGFR/AKT/HIF-1α axis. Combining osimertinib with the PDK1 inhibitor leelamine helped successfully overcome osimertinib resistance in allograft models. CRISPR-mediated PDK1 knockout effectively inhibited tumor formation in xenograft models. Our study established a clear link between the EGFR C797S mutation and elevated PDK1 expression, opening new avenues for the discovery of targeted therapies and improving our understanding of the roles of EGFR mutations in cancer progression.


Subject(s)
Acrylamides , Aniline Compounds , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Mutation , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Humans , Acrylamides/pharmacology , Acrylamides/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drug Resistance, Neoplasm/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Animals , Cell Line, Tumor , Mice , Xenograft Model Antitumor Assays , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Male , Indoles , Pyrimidines
20.
Endocrinol Diabetes Metab ; 7(3): e00482, 2024 May.
Article in English | MEDLINE | ID: mdl-38556697

ABSTRACT

BACKGROUND: Stevioside (SV) with minimal calories is widely used as a natural sweetener in beverages due to its high sweetness and safety. However, the effects of SV on glucose uptake and the pyruvate dehydrogenase kinase isoenzyme (PDK4) as an important protein in the regulation of glucose metabolism, remain largely unexplored. In this study, we used C2C12 skeletal muscle cells that was induced by palmitic acid (PA) to assess the effects and mechanisms of SV on glucose uptake and PDK4. METHODS: The glucose uptake of C2C12 cells was determined by 2-NBDG; expression of the Pdk4 gene was measured by quantitative real-time PCR; and expression of the proteins PDK4, p-AMPK, TBC1D1 and GLUT4 was assessed by Western blotting. RESULTS: In PA-induced C2C12 myotubes, SV could significantly promote cellular glucose uptake by decreasing PDK4 levels and increasing p-AMPK and TBC1D1 levels. SV could promote the translocation of GLUT4 from the cytoplasm to the cell membrane in cells. Moreover, in Pdk4-overexpressing C2C12 myotubes, SV decreased the level of PDK4 and increased the levels of p-AMPK and TBC1D1. CONCLUSION: SV was found to ameliorate PA-induced abnormal glucose uptake via the PDK4/AMPK/TBC1D1 pathway in C2C12 myotubes. Although these results warranted further investigation for validation, they may provide some evidence of SV as a safe natural sweetener for its use in sugar-free beverages to prevent and control T2DM.


Subject(s)
AMP-Activated Protein Kinases , Diterpenes, Kaurane , Glucosides , Palmitic Acid , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Muscle, Skeletal/metabolism , Glucose/metabolism , Glucose/pharmacology , Muscle Fibers, Skeletal/metabolism , Sweetening Agents/pharmacology , Sweetening Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL