Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 655
Filter
1.
Am J Hematol ; 99(7): 1415-1419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38712615

ABSTRACT

Clinically meaningful benefits in the signs, symptoms, and impacts of #PKDeficiency as assessed by disease-specific patient-reported outcome measures were observed in mitapivat-treated adult patients in two phase 3 clinical trials.


Subject(s)
Patient Reported Outcome Measures , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Pyruvate Kinase/deficiency , Adult , Male , Female , Middle Aged , Anemia, Hemolytic, Congenital Nonspherocytic , Treatment Outcome
2.
Br J Haematol ; 205(1): 236-242, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811201

ABSTRACT

Pyruvate kinase (PK) is a key enzyme of anaerobic glycolysis. The genetic heterogeneity of PK deficiency (PKD) is high, and over 400 unique variants have been identified. Twenty-nine patients who had been diagnosed as PKD genetically in seven distinct paediatric haematology departments were evaluated. Fifteen of 23 patients (65.2%) had low PK levels. The PK:hexokinase ratio had 100% sensitivity for PKD diagnosis, superior to PK enzyme assay. Two novel intronic variants (c.695-1G>A and c.694+43C>T) have been described. PKD should be suspected in patients with chronic non-spherocytic haemolytic anaemia, even if enzyme levels are falsely normal. Total PKLR gene sequencing is necessary for the characterization of patients with PKD and for genetic counselling.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Introns , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Male , Female , Pyruvate Metabolism, Inborn Errors/genetics , Child , Child, Preschool , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Turkey , Infant , Adolescent , Mutation
3.
Blood Cells Mol Dis ; 107: 102841, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581917

ABSTRACT

Pyruvate kinase (PK) deficiency is a rare autosomal recessive disorder characterized by chronic hemolytic anemia of variable severity. Nine Polish patients with severe hemolytic anemia but normal PK activity were found to carry mutations in the PKLR gene encoding PK, five already known ones and one novel (c.178C > T). We characterized two of the known variants by molecular modeling (c.1058delAAG) and minigene splicing analysis (c.101-1G > A). The former gives a partially destabilized PK tetramer, likely of suboptimal activity, and the c.101-1G > A variant gives alternatively spliced mRNA carrying a premature stop codon, encoding a severely truncated PK and likely undergoing nonsense-mediated decay.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Mutation , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/deficiency , Poland , Pyruvate Metabolism, Inborn Errors/genetics , Male , Female , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Child , Child, Preschool , Models, Molecular , Infant , Adolescent , Codon, Nonsense , Alternative Splicing
4.
Lancet Haematol ; 11(3): e228-e239, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330977

ABSTRACT

Pyruvate kinase (PK) deficiency is the most common cause of chronic congenital non-spherocytic haemolytic anaemia worldwide, with an estimated prevalence of one in 100 000 to one in 300 000 people. PK deficiency results in chronic haemolytic anaemia, with wide ranging and serious consequences affecting health, quality of life, and mortality. The goal of the International Guidelines for the Diagnosis and Management of Pyruvate Kinase Deficiency was to develop evidence-based guidelines for the clinical care of patients with PK deficiency. These clinical guidelines were developed by use of GRADE methodology and the AGREE II framework. Experts were invited after consideration of area of expertise, scholarly contributions in PK deficiency, and country of practice for global representation. The expert panel included 29 expert physicians (including adult and paediatric haematologists and other subspecialists), geneticists, laboratory specialists, nurses, a guidelines methodologist, patients with PK deficiency, and caregivers from ten countries. Five key topic areas were identified, the panel prioritised key questions, and a systematic literature search was done to generate evidence summaries that were used in the development of draft recommendations. The expert panel then met in person to finalise and vote on recommendations according to a structured consensus procedure. Agreement of greater than or equal to 67% among the expert panel was required for inclusion of a recommendation in the final guideline. The expert panel agreed on 31 total recommendations across five key topics: diagnosis and genetics, monitoring and management of chronic complications, standard management of anaemia, targeted and advanced therapies, and special populations. These new guidelines should facilitate best practices and evidence-based PK deficiency care into clinical practice.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/diagnosis , Pyruvate Metabolism, Inborn Errors/therapy , Quality of Life
5.
Blood Adv ; 8(10): 2433-2441, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38330179

ABSTRACT

ABSTRACT: Pyruvate kinase (PK) deficiency is a rare, hereditary disease characterized by chronic hemolytic anemia. Iron overload is a common complication regardless of age, genotype, or transfusion history. Mitapivat, an oral, allosteric PK activator, improves anemia and hemolysis in adult patients with PK deficiency. Mitapivat's impact on iron overload and ineffective erythropoiesis was evaluated in adults with PK deficiency who were not regularly transfused in the phase 3 ACTIVATE trial and long-term extension (LTE) (#NCT03548220/#NCT03853798). Patients in the LTE received mitapivat throughout ACTIVATE/LTE (baseline to week 96; mitapivat-to-mitapivat [M/M] arm) or switched from placebo (baseline to week 24) to mitapivat (week 24 to week 96; placebo-to-mitapivat [P/M] arm). Changes from baseline in markers of iron overload and erythropoiesis were assessed to week 96. Improvements in hepcidin (mean, 4770.0 ng/L; 95% confidence interval [CI], -1532.3 to 11 072.3), erythroferrone (mean, -9834.9 ng/L; 95% CI, -14 328.4 to -5341.3), soluble transferrin receptor (mean, -56.0 nmol/L; 95% CI, -84.8 to -27.2), and erythropoietin (mean, -32.85 IU/L; 95% CI, -54.65 to -11.06) were observed in the M/M arm (n = 40) from baseline to week 24, sustained to week 96. No improvements were observed in the P/M arm (n = 40) to week 24; however, upon transitioning to mitapivat, improvements similar to those observed in the M/M arm were seen. Mean changes from baseline in liver iron concentration by magnetic resonance imaging at week 96 in the M/M arm and the P/M arm were -2.0 mg Fe/g dry weight (dw; 95% CI, -4.8 to -0.8) and -1.8 mg Fe/g dw (95% CI, -4.4 to 0.80), respectively. Mitapivat is the first disease-modifying pharmacotherapy shown to have beneficial effects on iron overload and ineffective erythropoiesis in patients with PK deficiency. This trial was registered at www.ClinicalTrials.gov as #NCT03548220 (ACTIVATE) and #NCT03853798 (LTE).


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Erythropoiesis , Iron Overload , Pyruvate Kinase , Pyruvate Metabolism, Inborn Errors , Humans , Iron Overload/etiology , Iron Overload/drug therapy , Erythropoiesis/drug effects , Adult , Pyruvate Kinase/deficiency , Male , Female , Middle Aged , Young Adult , Alanine/therapeutic use , Alanine/analogs & derivatives , Piperazines , Quinolines
7.
Blood ; 143(10): 866-871, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38118071

ABSTRACT

ABSTRACT: Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia, Sickle Cell , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors , Humans , Anemia, Hemolytic, Congenital Nonspherocytic/drug therapy , Anemia, Hemolytic, Congenital Nonspherocytic/etiology , Erythrocytes , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/complications
8.
London; NICE; Feb. 16, 2023. 3 p.
Non-conventional in English | BIGG - GRADE guidelines | ID: biblio-1415728

ABSTRACT

NICE is unable to make a recommendation on mitapivat (Pyrukynd) for treating pyruvate kinase deficiency in adults because Agios did not provide an evidence submission. We will review this decision if the company decides to make a submission.


Subject(s)
Humans , Adult , Pyruvate Kinase/deficiency , Drug Evaluation
9.
Lancet Haematol ; 9(10): e724-e732, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988546

ABSTRACT

BACKGROUND: Mitapivat, an oral activator of pyruvate kinase (PK) in red blood cells (RBCs), has shown significant improvements in haemoglobin and haemolysis among patients with pyruvate kinase deficiency who were not receiving regular transfusions. We aimed to evaluate the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency receiving regular transfusions. METHODS: ACTIVATE-T was an open-label, single-arm, phase 3 trial conducted in 20 centres across Europe, North America, and Asia. Eligible participants were adults (aged ≥18 years) with a clinical laboratory confirmation of pyruvate kinase deficiency receiving regular transfusions (at least six episodes in the previous year). Participants received oral mitapivat during a 16-week dose-optimisation period (5 mg, 20 mg, 50 mg twice daily) and 24-week fixed-dose period. The primary endpoint was a reduction in transfusion burden (≥33% reduction in number of RBC units transfused during the fixed-dose period, compared with the participant's individual historical transfusion burden, standardised to 24 weeks). Efficacy and safety were assessed in all participants who received at least one dose of mitapivat. This trial is registered with ClinicalTrials.gov, NCT03559699, and is complete. FINDINGS: Between June 26, 2018, and Feb 4, 2020, 27 participants (20 [74%] female and seven [26%] male; 20 [74%] White, three [11%] Asian, and four [15%] not reported) were enrolled and received at least one dose of mitapivat. Median duration of exposure to mitapivat was 40·3 weeks (IQR 40·0-41·3). A reduction in transfusion burden by at least 33% was found in ten (37%) participants (95% CI 19-58; p=0·0002). The most common treatment-emergent adverse events were increase in alanine aminotransferase (ten [37%] participants), headache (ten [37%]), increase in aspartate aminotransferase (five [19%]), fatigue (five [19%]), and nausea (five [19%]). Two grade 3 treatment-emergent adverse events were related to study treatment: joint swelling (one participant [4%]) and an increase in aspartate aminotransferase (one participant [4%]). Three participants had serious treatment-emergent adverse events, none related to the study treatment: increased blood triglycerides, ovarian cyst, and renal colic (each in one participant [4%]). No treatment-related deaths were observed. INTERPRETATION: Mitapivat represents a novel therapy that can reduce transfusion burden in some adults with pyruvate kinase deficiency receiving regular transfusions, and is the first disease-modifying agent approved in this disease. FUNDING: Agios Pharmaceuticals.


Subject(s)
Hemoglobins , Pyruvate Kinase , Adolescent , Adult , Alanine Transaminase , Anemia, Hemolytic, Congenital Nonspherocytic , Aspartate Aminotransferases , Female , Humans , Male , Pharmaceutical Preparations , Piperazines , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors , Quinolines , Treatment Outcome , Triglycerides
14.
Pediatr Blood Cancer ; 69(8): e29696, 2022 08.
Article in English | MEDLINE | ID: mdl-35452178

ABSTRACT

Pyruvate kinase (PK) deficiency is a rare, congenital red blood cell disorder caused by a single gene defect. The spectrum of genotypes, variants, and phenotypes are broad, commonly requiring a multimodal approach including enzyme and genetic testing for accurate and reliable diagnosis. Similarly, management of primary and secondary sequelae of PK deficiency varies, mainly including supportive care with transfusions and surgical interventions to improve symptoms and quality of life. Given the risk of acute and long-term complications of PK deficiency and its treatment, regular monitoring and management of iron burden and organ dysfunction is critical. Therefore, all children and adolescents with PK deficiency should receive regular hematology care with visits at least every 6 months regardless of transfusion status. We continue to learn more about the spectrum of symptoms and complications of PK deficiency and best practice for monitoring and management through registry efforts (NCT03481738). The treatment of PK deficiency has made strides over the last few years with newer disease-modifying therapies being developed and studied, with the potential to change the course of disease in childhood and beyond.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Pyruvate Metabolism, Inborn Errors , Adolescent , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Erythrocytes , Humans , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Pyruvate Metabolism, Inborn Errors/diagnosis , Pyruvate Metabolism, Inborn Errors/genetics , Pyruvate Metabolism, Inborn Errors/therapy , Quality of Life
15.
N Engl J Med ; 386(15): 1432-1442, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35417638

ABSTRACT

BACKGROUND: Pyruvate kinase deficiency is a rare, hereditary, chronic condition that is associated with hemolytic anemia. In a phase 2 study, mitapivat, an oral, first-in-class activator of erythrocyte pyruvate kinase, increased the hemoglobin level in patients with pyruvate kinase deficiency. METHODS: In this global, phase 3, randomized, placebo-controlled trial, we evaluated the efficacy and safety of mitapivat in adults with pyruvate kinase deficiency who were not receiving regular red-cell transfusions. The patients were assigned to receive either mitapivat (5 mg twice daily, with potential escalation to 20 or 50 mg twice daily) or placebo for 24 weeks. The primary end point was a hemoglobin response (an increase from baseline of ≥1.5 g per deciliter in the hemoglobin level) that was sustained at two or more scheduled assessments at weeks 16, 20, and 24. Secondary efficacy end points were the average change from baseline in the hemoglobin level, markers of hemolysis and hematopoiesis, and the change from baseline at week 24 in two pyruvate kinase deficiency-specific patient-reported outcome measures. RESULTS: Sixteen of the 40 patients (40%) in the mitapivat group had a hemoglobin response, as compared with none of the 40 patients in the placebo group (adjusted difference, 39.3 percentage points; 95% confidence interval, 24.1 to 54.6; two-sided P<0.001). Patients who received mitapivat had a greater response than those who received placebo with respect to each secondary end point, including the average change from baseline in the hemoglobin level. The most common adverse events were nausea (in 7 patients [18%] in the mitapivat group and 9 patients [23%] in the placebo group) and headache (in 6 patients [15%] and 13 patients [33%], respectively). Adverse events of grade 3 or higher occurred in 10 patients (25%) who received mitapivat and 5 patients (13%) who received placebo. CONCLUSIONS: In patients with pyruvate kinase deficiency, mitapivat significantly increased the hemoglobin level, decreased hemolysis, and improved patient-reported outcomes. No new safety signals were identified in the patients who received mitapivat. (Funded by Agios Pharmaceuticals; ACTIVATE ClinicalTrials.gov number, NCT03548220.).


Subject(s)
Piperazines , Pyruvate Kinase , Quinolines , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/drug therapy , Double-Blind Method , Hemoglobins/analysis , Hemoglobins/drug effects , Hemolysis/drug effects , Humans , Piperazines/pharmacology , Piperazines/therapeutic use , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/drug therapy , Quinolines/pharmacology , Quinolines/therapeutic use
16.
Cells ; 11(7)2022 03 28.
Article in English | MEDLINE | ID: mdl-35406697

ABSTRACT

Background: Hereditary spherocytosis (HS) and pyruvate kinase deficiency (PKD) are the most common causes of hereditary chronic hemolytic anemia. Here, we describe clinical and genetic characteristics of a Spanish family with concomitant ß-spectrin (SPTB) c.647G>A variant and pyruvate kinase (PKLR) c.1706G>A variant. Methods: A family of 11 members was studied. Hematological investigation, hemolysis tests, and specific red cell studies were performed in all family members, according to conventional procedures. An ektacytometric study was performed using the osmoscan module of the Lorca ektacytometer (MaxSis. RR Mechatronics). The presence of the SPTB and PKLR variants was confirmed by t-NGS. Results: The t-NGS genetic characterization of the 11 family members showed the presence of a heterozygous mutation for the ß-spectrin (SPTB; c.647G>A) in seven members with HS, three of them co-inherited the PKLR variant c.1706G>A. In the remaining four members, no gene mutation was found. Ektacytometry allowed a clear diagnostic orientation of HS, independently from the PKLR variant. Conclusions: This family study allows concluding that the SPTB mutation, (c.647G>A) previously described as likely pathogenic (LP), should be classified as pathogenic (P), according to the recommendations for pathogenicity of the American College of Medical Genetics and the Association for Molecular Pathology. In addition, after 6 years of clinical follow-up of the patients with HS, it can be inferred that the chronic hemolytic anemia may be attributable to the SPTB mutation only, without influence of the concomitant PKLR. Moreover, only the family members with the SPTB mutation exhibited an ektacytometric profile characteristic of HS.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Spherocytosis, Hereditary , Anemia, Hemolytic, Congenital Nonspherocytic/complications , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Humans , Lasers , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Pyruvate Metabolism, Inborn Errors , Spectrin/genetics , Spherocytosis, Hereditary/complications , Spherocytosis, Hereditary/diagnosis , Spherocytosis, Hereditary/genetics
17.
Clin Chim Acta ; 531: 112-119, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35351432

ABSTRACT

BACKGROUND AND AIMS: Hereditary anemia (HA) encloses a wide group of rare inherited disorders with clinical and hematologic overlaps that complicate diagnosis. MATERIALS AND METHODS: A 48-gene panel was developed to diagnose HA by Next Generation Sequencing (NGS) in a large cohort of 165 patients from 160 unrelated families. RESULTS: Patients were divided in: A) patients who had a suspicion of a specific type of HA (n = 109), and B) patients who had a suspicion of HA but with no clear type (n = 56). Diagnostic performance was 83.5% in group A and a change of the initial diagnosis occurred in 11% of these patients. In group B, 35.7% of patients achieved a genetic diagnosis. NGS identified 6 cases of xerocytosis, 6 of pyruvate kinase (PK) deficiency, 4 of G6PD, and 1 case of phytosterolemia with no initial suspicion of these pathologies, which is clinically relevant since they have specific treatment. Five patients were found to carry variants associated to two different pathologies (4 of them combining a metabolic deficiency and a membrane defect), and 44 new variants were identified in 41 patients. CONCLUSION: The use of NGS is a sensitive technique to diagnose HA and it shows better performance when patients are better characterized.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia, Hemolytic, Congenital , Pyruvate Metabolism, Inborn Errors , Anemia, Hemolytic, Congenital/diagnosis , Anemia, Hemolytic, Congenital/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Mutation , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors/diagnosis , Pyruvate Metabolism, Inborn Errors/genetics
18.
J Med Case Rep ; 16(1): 66, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35168679

ABSTRACT

BACKGROUND: Pyruvate kinase deficiency is an exceptionally rare autosomal recessive Mendelian disorder caused by bi-allelic pathogenic variants in the PKLR gene. It is mainly characterized by chronic nonspherocytic hemolytic anemia though other symptoms such as splenomegaly, hepatomegaly, pallor, fatigue, iron overload, shortness of breath, hyperbilirubinemia, and gallstones might also prevail. CASE PRESENTATION: We present here a novel genetic defect in the PKLR gene that correlates with pyruvate kinase deficiency phenotype in a consanguineous family from North-Western Pakistan. The family included three affected individuals who were all born to consanguineous parents. The proband, a 13-year-old female of Pashtun ethnicity, showed chronic nonautoimmune hemolytic anemia since birth, extremely low hemoglobin (7.6 g/dL) and pyruvate kinase (12.4 U/g Hb) levels, splenomegaly, and hepatomegaly. Bone marrow aspirate showed a markedly decreased myeloid to erythroid ratio and hypercellular marrow particles due to hyperplasia of the erythroid elements. Molecular characterization of the proband's genomic DNA uncovered a likely pathogenic homozygous missense variant p.[D339N] in exon 7 of the PKLR gene. In-depth in silico analysis and familial cosegregation implies p.[D339N] as the likely cause of pyruvate kinase deficiency in this family. Further in vitro or in vivo studies are required to validate the impact of p.[D339N] on protein structure and/or stability, and to determine its role in the disease pathophysiology. CONCLUSIONS: In summary, these findings suggest a novel genetic defect in the PKLR gene as a likely cause of pyruvate kinase deficiency, thus further expanding the mutational landscape of this rare Mendelian disorder.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Pyruvate Metabolism, Inborn Errors , Adolescent , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Female , Humans , Mutation , Pakistan , Pyruvate Kinase/deficiency , Pyruvate Kinase/genetics , Pyruvate Metabolism, Inborn Errors/genetics
20.
Blood Adv ; 6(6): 1844-1853, 2022 03 22.
Article in English | MEDLINE | ID: mdl-34470054

ABSTRACT

Pyruvate kinase deficiency (PKD) is the most common cause of congenital nonspherocytic hemolytic anemia. Although recognition of the disease spectrum has recently expanded, data describing its impact on health-related quality of life (HRQoL) are limited. In this prospective international cohort of 254 patients (131 adults and 123 children) with PKD, we used validated measures to assess the impact of disease on HRQoL (EuroQol 5-Dimension Questionnaire, Pediatric Quality of Life Inventory Generic Core Scale version 4.0, and Functional Assessment of Cancer Therapy-Anemia) and fatigue (Patient Reported Outcomes Measurement Information System Fatigue and Pediatric Functional Assessment of Chronic Illness Therapy-Fatigue). Significant variability in HRQoL and fatigue was reported for adults and children, although individual scores were stable over a 2-year interval. Although adults who were regularly transfused reported worse HRQoL and fatigue compared with those who were not (EuroQol-visual analog scale, 58 vs 80; P = .01), this difference was not seen in children. Regularly transfused adults reported lower physical, emotional, and functional well-being and more anemia symptoms. HRQoL and fatigue significantly differed in children by genotype, with the worst scores in those with 2 severe PKLR mutations; this difference was not seen in adults. However, iron chelation was associated with significantly worse HRQoL scores in children and adults. Pulmonary hypertension was also associated with significantly worse HRQoL. Additionally, 59% of adults and 35% of children reported that their jaundice upset them, identifying this as an important symptom for consideration. Although current treatments for PKD are limited to supportive care, new therapies are in clinical trials. Understanding the impact of PKD on HRQoL is important to assess the utility of these treatments. This trial was registered at www.clinicaltrials.gov as #NCT02053480.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Adult , Anemia, Hemolytic, Congenital Nonspherocytic/complications , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/therapy , Child , Fatigue/etiology , Humans , Prospective Studies , Pyruvate Kinase/deficiency , Pyruvate Metabolism, Inborn Errors , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL