Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.335
1.
Anal Chim Acta ; 1310: 342716, 2024 Jun 29.
Article En | MEDLINE | ID: mdl-38811135

BACKGROUND: Assembling framework nucleic acid (FNA) nanoarchitectures and tuning luminescent quantum dots (QDs) for fluorescence assays represent a versatile strategy in analytical territory. Rationally, FNA constructs could offer a preferential orientation to efficiently recognize the target and improve detection sensitivity, meanwhile, regulating size-dependent multicolor emissions of QDs in one analytical setting for ratiometric fluorescence assay would greatly simplify operation procedures. Nonetheless, such FNA/QDs-based ratiometric fluorescence nanoprobes remain rarely explored. RESULTS: We designed a sensitive and signal amplification-free fluorescence aptasensor for lead ions (Pb2+) that potentially cause extensive contamination to environment, cosmetic, food and pharmaceuticals. Red and green emission CdTe quantum dots (rQDs and gQDs) were facilely prepared. Moreover, silica nanosphere encapsulating rQDs served as quantitative internal reference and scaffold to anchor a predesigned FNA and DNA sandwich containing Pb2+ binding aptamer and gQD modified DNA signal reporter. On binding of Pb2+, the gQD-DNA signal reporter was set free, resulting in fluorescence quenching at graphene oxide (GO) interface. Owing to the rigid structure of FNA, the fluorescence signal reporter orderly arranged at the silica nanosphere could sensitively respond to Pb2+ stimulation. The dose-dependent fluorescence signal-off mode enabled ratiometric analysis of Pb2+ without cumbersome signal amplification. Linear relationship was established between fluorescence intensity ratio (I555/I720) and Pb2+ concentration from 10 nM to 2 µM, with detection limit of 1.7 nM (0.43 ppb), well addressing the need for Pb2+ routine monitoring. The designed nanoprobe was applied to detection of Pb2+ in soil, cosmetic, milk, drug, and serum samples, with the sensitivity comparable to conventional ICP-MS technique. SIGNIFICANCE: Given the programmable design of FNA and efficient recognition of target, flexible tuning of QDs emission, and signal amplification-free strategy, the present fluorescence nanoprobe could be a technical criterion for other heavy metal ions detection in a straightforward manner.


DNA , Graphite , Lead , Nanospheres , Quantum Dots , Silicon Dioxide , Spectrometry, Fluorescence , Quantum Dots/chemistry , Lead/analysis , Lead/chemistry , Graphite/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , DNA/chemistry , Cadmium Compounds/chemistry , Limit of Detection , Tellurium/chemistry , Aptamers, Nucleotide/chemistry , Fluorescence , Biosensing Techniques/methods
2.
Luminescence ; 39(5): e4778, 2024 May.
Article En | MEDLINE | ID: mdl-38772865

To establish a new method for detecting crystal violet (CV), a harmful dye, herein, a genre of novel biomass carbon dots (CDs) was synthesized via a microwave method and employed as a fluorescent probe, in which water spinach and polyethylene glycol (PEG) performed as raw materials. Based on the inner filter effect (IFE) between the luminescent CDs and CV, the blue emission of this probe at 430 nm could be quenched by CV. Hence, a new strategy was proposed to selectively determine CV in aquaculture ambient. Moreover, under the optimal experiment conditions, this method showed a good linearity between the concentration of CV (c) and fluorescence quenching rate (ΔF/F0) in the concentration range of 4-200 µmol/L with the corresponding correlation coefficient (r) and the detection limit of 0.997 and 710 nmol/L, respectively. With advantages of environmental protectivity, sensitivity, affordability, and user-friendliness, the facilely fabricated CDs could be successfully applied in detecting CV in aquaculture samples, providing a technical foundation for monitoring the pollution of CV and ensuring the quality and safety of aquatic products.


Biomass , Carbon , Fluorescent Dyes , Gentian Violet , Microwaves , Quantum Dots , Gentian Violet/chemistry , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Fluorescence , Polyethylene Glycols/chemistry
3.
Molecules ; 29(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731398

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Adenosine Triphosphate , Carbon , Citric Acid , Mitochondria , Polyethyleneimine , Protein Kinases , Polyethyleneimine/chemistry , Carbon/chemistry , Adenosine Triphosphate/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Quantum Dots/chemistry , Animals , Amyloid beta-Peptides/metabolism , Membrane Potential, Mitochondrial/drug effects , Humans , Cell Line , Reactive Oxygen Species/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
4.
Int J Nanomedicine ; 19: 4045-4060, 2024.
Article En | MEDLINE | ID: mdl-38736656

Purpose: Dry eye disease (DED) is a multifactorial ocular surface disease with a rising incidence. Therefore, it is urgent to construct a reliable and efficient drug delivery system for DED treatment. Methods: In this work, we loaded C-dots nanozyme into a thermosensitive in situ gel to create C-dots@Gel, presenting a promising composite ocular drug delivery system to manage DED. Results: This composite ocular drug delivery system (C-dots@Gel) demonstrated the ability to enhance adherence to the corneal surface and extend the ocular surface retention time, thereby enhancing bioavailability. Furthermore, no discernible ocular surface irritation or systemic toxicity was observed. In the DED mouse model induced by benzalkonium chloride (BAC), it was verified that C-dots@Gel effectively mitigated DED by stabilizing the tear film, prolonging tear secretion, repairing corneal surface damage, and augmenting the population of conjunctival goblet cells. Conclusion: Compared to conventional dosage forms (C-dots), the C-dots@Gel could prolong exhibited enhanced retention time on the ocular surface and increased bioavailability, resulting in a satisfactory therapeutic outcome for DED.


Antioxidants , Carbon , Cornea , Dry Eye Syndromes , Hydrogels , Animals , Dry Eye Syndromes/drug therapy , Mice , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Antioxidants/administration & dosage , Hydrogels/chemistry , Hydrogels/administration & dosage , Hydrogels/pharmacokinetics , Cornea/drug effects , Drug Delivery Systems/methods , Disease Models, Animal , Biological Availability , Tears/drug effects , Tears/chemistry , Benzalkonium Compounds/chemistry , Benzalkonium Compounds/administration & dosage , Benzalkonium Compounds/pharmacokinetics , Female , Male , Temperature , Quantum Dots/chemistry
5.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Article En | MEDLINE | ID: mdl-38736654

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Fingolimod Hydrochloride , Hydrogels , Neural Stem Cells , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/administration & dosage , Neural Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Rats , Recovery of Function/drug effects , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Disease Models, Animal , Female , Spinal Cord/drug effects
6.
Luminescence ; 39(5): e4779, 2024 May.
Article En | MEDLINE | ID: mdl-38769873

Carbon dots have attracted widespread attention due to their excellent optical properties and so on and are therefore used in various fields such as anti-counterfeiting. There are many reports on carbon dot-based room-temperature phosphorescent materials, but there are still fewer reports on carbon dot-based room-temperature phosphorescent materials with time-dependent color-changing properties. In this work, a time-dependent color-changing carbon dot-based room-temperature phosphorescent material with the ability to change from green to blue was successfully prepared by a simple one-pot heating method using hydroxyurea as the only raw material. In this process, hydroxyurea is used as both a carbon and nitrogen source, and in the process of material formation, hydroxyurea also partially forms cyanuric acid as a matrix to make the carbon dots uniformly dispersed in it. By blending the ratio of the dual emission centers of the carbon dots themselves, the final effect of time-dependent color-changing is achieved by taking advantage of the intensity changes and color differences of each emission center. The present work provides new ideas for the preparation of time-dependent color-changing carbon dot-based room-temperature phosphorescent materials.


Carbon , Color , Quantum Dots , Temperature , Carbon/chemistry , Quantum Dots/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Time Factors
7.
J Environ Manage ; 359: 121076, 2024 May.
Article En | MEDLINE | ID: mdl-38710148

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Carbon , Cellulose , Hydrogels , Mercury , Water Pollutants, Chemical , Mercury/analysis , Cellulose/chemistry , Adsorption , Hydrogels/chemistry , Carbon/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Quantum Dots/chemistry
8.
Langmuir ; 40(20): 10634-10647, 2024 May 21.
Article En | MEDLINE | ID: mdl-38723623

Hematin, an iron-containing porphyrin compound, plays a crucial role in various biological processes, including oxygen transport, storage, and functionality of the malarial parasite. Specifically, hematin-Fe interacts with the nitrogen atom of antimalarial drugs, forming an intermediate step crucial for their function. The electron transfer functionality of hematin in biological systems has been scarcely investigated. In this study, we developed a biomimicking electrical wiring of hematin-Fe with a model N-drug system, represented as {hematin-Fe---N-drug}. We achieved this by immobilizing hematin on a multiwalled carbon nanotube (MWCNT)/N-graphene quantum dot (N-GQD) modified electrode (MWCNT/N-GQD@Hemat). N-GQD serves as a model molecular drug system containing nitrogen atoms to mimic the {hematin-Fe---N-drug} interaction. The prepared bioelectrode exhibited a distinct redox peak at a measured potential (E1/2) of -0.410 V vs Ag/AgCl, accompanied by a surface excess value of 3.54 × 10-9 mol cm-2. This observation contrasts significantly with the weak or electroinactive electrochemical responses documented in literature-based hematin systems. We performed a comprehensive set of physicochemical and electrochemical characterizations on the MWCNT/N-GQD@Hemat system, employing techniques including FESEM, TEM, Raman spectroscopy, IR spectroscopy, and AFM. To evaluate the biomimetic electrode's electroactivity, we investigated the selective-mediated reduction of H2O2 as a model system. As an important aspect of our research, we demonstrated the use of scanning electrochemical microscopy to visualize the in situ electron transfer reaction of the biomimicking electrode. In an independent study, we showed enzyme-less electrocatalytic reduction and selective electrocatalytic sensing of H2O2 with a detection limit of 319 nM. We achieved this using a batch injection analysis-coupled disposable screen-printed electrode system in physiological solution.


Hemin , Hydrogen Peroxide , Nanotubes, Carbon , Oxidation-Reduction , Hydrogen Peroxide/chemistry , Hemin/chemistry , Nanotubes, Carbon/chemistry , Electrodes , Graphite/chemistry , Quantum Dots/chemistry , Nitrogen/chemistry , Surface Properties , Electrochemical Techniques/methods , Catalysis
9.
Anal Methods ; 16(20): 3287-3296, 2024 May 23.
Article En | MEDLINE | ID: mdl-38738631

This study introduces a novel approach for the simultaneous determination of topotecan (TOP) and pantoprazole (PNT), two drugs whose interaction is critical in clinical applications. The significance of this study originates from the need to understand the pharmacokinetic changes of TOP after PNT administration, which can inform necessary dose adjustments of TOP. To achieve this, nitrogen blue emissive carbon dots (B@NCDs) were produced and employed due to their unique fluorescent properties. When TOP is added to B@NCDs, it exhibits strong native fluorescence at 545 nm without influencing the B@NCDs' fluorescence at 447 nm. Conversely, PNT causes quenching of B@NCDs fluorescence, a property that enables the distinct detection of both drugs. The B@NCDs were fully characterized using different techniques, including ultraviolet-visible spectrophotometry, fluorescence analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and FTIR spectroscopy. The proposed method demonstrated excellent linearity, selectivity, and sensitivity, with low detection limits (LOD, S/N = 3); 0.0016 µg mL-1 for TOP and 0.36 µg mL-1 for PNT. Applied to spiked rabbit plasma samples, this method offers a new approach for evaluating the pharmacokinetic interaction between TOP and PNT. It enables the determination of all pharmacokinetic parameters of TOP before and after coadministration with PNT, providing essential insights into whether dose adjustments are necessary. This research not only contributes to the field of drug monitoring and interaction studies but also exemplifies the potential of B@NCDs in complex biological matrices, paving the way for further pharmacological and therapeutic applications.


Carbon , Pantoprazole , Quantum Dots , Topotecan , Pantoprazole/pharmacokinetics , Pantoprazole/chemistry , Topotecan/pharmacokinetics , Topotecan/chemistry , Topotecan/analysis , Carbon/chemistry , Quantum Dots/chemistry , Spectrometry, Fluorescence/methods , Animals , Limit of Detection , Fluorescent Dyes/chemistry
10.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739846

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Benzidines , Boron Compounds , Colorimetry , Escherichia coli , Quantum Dots , beta-Galactosidase , Quantum Dots/chemistry , Colorimetry/methods , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Boron Compounds/chemistry , Benzidines/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Limit of Detection , Oxidation-Reduction , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/isolation & purification
11.
Anal Methods ; 16(20): 3202-3208, 2024 May 23.
Article En | MEDLINE | ID: mdl-38742397

A sensitive photoelectrochemical (PEC) biosensor for silver ions (Ag+) was developed based on Zn-Co doped C and CdS quantum dot (CdS QD) nanomaterials. Hydrophobic modified sodium alginate (HMA), which could stabilize and improve the PEC performance of CdS QDs, was also used for the construction of PEC sensors. Especially, Zn-Co doped C, CdS QDs and HMA were sequentially modified onto an electrode surface via the drop-coating method, and a C base rich DNA strand was then immobilized onto the modified electrode. As the C base in DNA specifically recognized Ag+, it formed a C-Ag+-C complex in the presence of Ag+, which created a spatial steric hindrance, resulting in a reduced PEC response. The sensing platform is sensitive to Ag+ in the range of 10.0 fM to 0.10 µM, with a limit of detection of 3.99 fM. This work offers an ideal platform to determine trace heavy metal ions in environmental monitoring and bioanalysis.


Biosensing Techniques , Cadmium Compounds , Electrochemical Techniques , Quantum Dots , Silver , Sulfides , Zinc , Silver/chemistry , Biosensing Techniques/methods , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Electrochemical Techniques/methods , Zinc/chemistry , Cobalt/chemistry , Carbon/chemistry , Ions/chemistry , Ions/analysis , Photochemical Processes , Limit of Detection
12.
Mikrochim Acta ; 191(6): 332, 2024 05 15.
Article En | MEDLINE | ID: mdl-38748375

Nifedipine (NIF), as one of the dihydropyridine calcium channel blockers, is widely used in the treatment of hypertension. However, misuse or ingestion of NIF can result in serious health issues such as myocardial infarction, arrhythmia, stroke, and even death. It is essential to design a reliable and sensitive detection method to monitor NIF. In this work, an innovative molecularly imprinted polymer dual-emission fluorescent sensor (CDs@PDA-MIPs) strategy was successfully designed for sensitive detection of NIF. The fluorescent intensity of the probe decreased with increasing NIF concentration, showing a satisfactory linear relationship within the range 1.0 × 10-6 M ~ 5.0 × 10-3 M. The LOD of NIF was 9.38 × 10-7 M (S/N = 3) in fluorescence detection. The application of the CDs@PDA-MIPs in actual samples such as urine and Qiangli Dingxuan tablets has been verified, with recovery ranging from 97.8 to 102.8% for NIF. Therefore, the fluorescent probe demonstrates great potential as a sensing system for detecting NIF.


Carbon , Dopamine , Fluorescent Dyes , Limit of Detection , Molecularly Imprinted Polymers , Nifedipine , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Nifedipine/chemistry , Nifedipine/analysis , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Dopamine/urine , Dopamine/analysis , Carbon/chemistry , Spectrometry, Fluorescence/methods , Humans , Polymerization , Molecular Imprinting , Tablets/analysis
13.
J Nanobiotechnology ; 22(1): 240, 2024 May 12.
Article En | MEDLINE | ID: mdl-38735931

Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.


Gold , Graphite , Oxidative Stress , Quantum Dots , Reactive Oxygen Species , Triple Negative Breast Neoplasms , Zinc Oxide , Triple Negative Breast Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Female , Cell Line, Tumor , Gold/chemistry , Graphite/chemistry , Zinc Oxide/chemistry , Animals , Quantum Dots/chemistry , Mice , Metal Nanoparticles/chemistry , Apoptosis/drug effects , Hyaluronic Acid/chemistry , Electrons
14.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704412

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
15.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692786

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Cadmium Compounds , Electrochemical Techniques , Metal-Organic Frameworks , Prostate-Specific Antigen , Quantum Dots , Sulfides , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Humans , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Metal-Organic Frameworks/chemistry , Gold/chemistry , Cerium/chemistry , Biosensing Techniques , Photochemical Processes , Limit of Detection , Electrodes , Luminescent Measurements
16.
Biotechnol J ; 19(5): e2400156, 2024 May.
Article En | MEDLINE | ID: mdl-38804136

In spite of tremendous efforts dedicated to addressing bacterial infections and biofilm formation, the post-antibiotic ear continues to witness a gap between the established materials and an easily accessible yet biocompatible antibacterial reagent. Here we show carbon dots (CDs) synthesized via a single hydrothermal process can afford promising antibacterial activity that can be further enhanced by exposure to light. By using citric acid and polyethyleneimine as the precursors, the photoluminescence CDs can be produced within a one-pot, one-step hydrothermal reaction in only 2 h. The CDs demonstrate robust antibacterial properties against both Gram-positive and Gram-negative bacteria and, notably, a considerable enhancement of antibacterial effect can be observed upon photo-irradiation. Mechanistic insights reveal that the CDs generate singlet oxygen (1O2) when exposed to light, leading to an augmented reactive oxygen species level. The approach for disruption of biofilms and inhibition of biofilm formation by using the CDs has also been established. Our findings present a potential solution to combat antibacterial resistance and offer a path to reduce dependence on traditional antibiotics.


Anti-Bacterial Agents , Biofilms , Carbon , Quantum Dots , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carbon/chemistry , Carbon/pharmacology , Quantum Dots/chemistry , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Light , Singlet Oxygen/metabolism , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Citric Acid/chemistry , Citric Acid/pharmacology , Gram-Negative Bacteria/drug effects
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791366

The rise in the antibiotic resistance of bacteria has increased scientific interest in the study of materials with unique mechanisms of antimicrobial action. This paper presents the results of studies on the antimicrobial activity of carbon materials and textiles decorated with them. A comparative analysis of the bactericidal and fungicidal activities of graphene oxide, electrochemically exfoliated multigraphene, carbon dots, and their combinations was performed. Microbiological studies on reference strains of E. coli, S. aureus, and C. albicans showed that graphene oxide inhibited growth with up to 98% efficiency. Electrochemically exfoliated multigraphene was less effective (up to 40%). This study found no significant antimicrobial activity of carbon dots and the combination of carbon dots with graphene oxide significantly weakened their effectiveness. However, the combination of electrochemically exfoliated multigraphene and carbon dots exhibits a synergistic effect (up to 76%). A study on the antimicrobial activity of decorated cotton textiles demonstrated the effectiveness of antimicrobial textiles with graphene oxide, electrochemically exfoliated multigraphene, and a combination of carbon dots with electrochemically exfoliated multigraphene.


Anti-Infective Agents , Cotton Fiber , Graphite , Graphite/chemistry , Graphite/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Carbon/chemistry , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Textiles , Quantum Dots/chemistry
18.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791408

Recently, fluorescent sensors have gained considerable attention due to their high sensitivity, low cost and noninvasiveness. Among the different materials that can be used for this purpose, carbon dots (CDs) represent valuable candidates for applications in sensing. These, indeed, are easily synthesized, show high quantum yield and are highly biocompatible. However, it was pointed out that the photoluminescence properties of these nanomaterials are strictly dependent on the synthetic and purification methods adopted. The presence of halloysite nanotubes (HNTs), a natural, low cost and biocompatible clay mineral, has been found to be efficient in obtaining small and highly monodispersed CDs without long and tedious purification techniques. Herein, we report the comparison of synthetic pathways for obtaining halloysite-N-doped CDs (HNTs-NCDs) that could be used in biological sensing. One was based on the synthesis of N-doped CDs by a bottom-up approach on HNTs' surface by a MW pyrolysis process; the other one was based on the post-modification of pristine N-doped CDs with halloysite derivatives. The evaluation of the best synthetic route was performed by different physico-chemical techniques. It was found that the bottom-up approach led to the formation of N-doped CDs with different functional groups onto the HNTs' surface. This evidence was also translated in the different fluorescence quantum yields and the existence of several functional groups in the obtained materials was investigated by potentiometric titrations. Furthermore, the ability of the synthesized nanomaterials as sensors for Fe3+ ions detection was assessed by spectroscopic measurements, and the cellular uptake was verified by confocal/fluorescence microscopies as well.


Clay , Quantum Dots , Quantum Dots/chemistry , Clay/chemistry , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Carbon/chemistry , Humans , Nanostructures/chemistry , Nanotubes/chemistry
19.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791556

Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics.


Carbon , Liquid Crystals , Microfluidics , Liquid Crystals/chemistry , Carbon/chemistry , Microfluidics/methods , Quantum Dots/chemistry , Temperature
20.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791579

Encapsulation with polymers is a well-known strategy to stabilize and functionalize nanomaterials and tune their physicochemical properties. Amphiphilic copolymers are promising in this context, but their structural diversity and complexity also make understanding and predicting their behavior challenging. This is particularly the case in complex media which are relevant for intended applications in medicine and nanobiotechnology. Here, we studied the encapsulation of gold nanoparticles and quantum dots with amphiphilic copolymers differing in their charge and molecular structure. Protein adsorption to the nanoconjugates was studied with fluorescence correlation spectroscopy, and their surface activity was studied with dynamic interfacial tensiometry. Encapsulation of the nanoparticles without affecting their characteristic properties was possible with all tested polymers and provided good stabilization. However, the interaction with proteins and cells significantly depended on structural details. We identified statistical copolymers providing strongly reduced protein adsorption and low unspecific cellular uptake. Interestingly, different zwitterionic amphiphilic copolymers showed substantial differences in their resulting bio-repulsive properties. Among the polymers tested herein, statistical copolymers with sulfobetaine and phosphatidylcholine sidechains performed better than copolymers with carboxylic acid- and dimethylamino-terminated sidechains.


Gold , Metal Nanoparticles , Polymers , Gold/chemistry , Metal Nanoparticles/chemistry , Adsorption , Polymers/chemistry , Humans , Quantum Dots/chemistry , Surface Properties , Proteins/chemistry
...