Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.596
Filter
1.
Respir Res ; 25(1): 299, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113018

ABSTRACT

BACKGROUND: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. RESULTS: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. CONCLUSIONS: Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.


Subject(s)
Alveolar Epithelial Cells , Cellular Senescence , Mice, Inbred C57BL , Mice, Knockout , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/radiation effects , Alveolar Epithelial Cells/pathology , Cells, Cultured , Cellular Senescence/radiation effects , Cellular Senescence/physiology , Elongation Factor 2 Kinase/metabolism , Elongation Factor 2 Kinase/genetics , Lung Injury/metabolism , Lung Injury/genetics , Lung Injury/pathology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/genetics , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism
2.
Cancer Imaging ; 24(1): 95, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026377

ABSTRACT

BACKGROUND: Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. METHODS: Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. RESULTS: DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. CONCLUSIONS: Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.


Subject(s)
Brain Injuries , Animals , Rats , Male , Brain Injuries/etiology , Brain Injuries/diagnostic imaging , Brain Injuries/pathology , Brain Neoplasms/radiotherapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Radiation Injuries/diagnostic imaging , Radiation Injuries/pathology , Radiation Injuries/etiology , Brain/radiation effects , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/etiology , Multiparametric Magnetic Resonance Imaging/methods
3.
Radiat Res ; 202(3): 510-522, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39066627

ABSTRACT

Animal studies are needed that best simulate a large-scale, inhomogeneous body exposure after a radiological or nuclear incident and that provides a platform for future development of medical countermeasures. A partial-body irradiation (PBI) model using 137Cs gamma rays with hind limb (tibia) shielding was developed and assessed for the sequalae of radiation injuries to gastrointestinal tract, bone marrow (BM) and lung and among different genetic mouse strains (C57BL/6J, C57L/J, CBA/J and FVB/NJ). In this case, a marginal level of BM shielding (∼2%) provided adequate protection against lethality from infection and hemorrhage and enabled escalation of radiation doses with evaluation of both acute and delayed radiation syndromes. A steep radiation dose-dependent body weight loss was observed over the first 5 days attributed to enteritis with C57BL/6J mice appearing to be the most sensitive strain. Peripheral blood cell analysis revealed significant depression and recovery of leukocytes and platelets over the first month after PBI and were comparable among the four different mouse strains. Latent pulmonary injury was observed on micro-CT imaging at 4 months in C57L/J mice and confirmed histologically as severe pneumonitis that was lethal at 12 Gy. The lethality and radiological densitometry (HUs) dose responses were comparable to previous studies on C57L/J mice after total-body irradiation (TBI) and BM transplant rescue as well as after localized whole-thorax irradiation (WTI). Indeed, the lethal radiation doses and latency appeared similar for pneumonitis appearing in rhesus macaques after WTI or PBI as well as predicted for patients given systemic radiotherapy. In contrast, PBI treatment of C57BL/6 mice at a higher dose of 14 Gy had far longer survival times and developed extreme and debilitating pIeural effusions; an anomaly as similarly reported in previous thorax irradiation studies on this mouse strain. In summary, a radiation exposure model that delivers PBI to unanesthetized mice in a device that provides consistent shielding of the hind limb BM was developed for 137Cs gamma rays with physical characteristics and relevance to relatively high photon energies expected from the detonation of a nuclear device or accidental release of ionizing radiation. Standard strains such as C57BL/6J mice may be used reliably for early GI or hematological radiation syndromes while the C57L/J mouse strain stands out as the most appropriate for evaluating the delayed pulmonary effects of acute radiation exposure and recapitulating this disease in humans.


Subject(s)
Gamma Rays , Animals , Mice , Gamma Rays/adverse effects , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/diagnostic imaging , Dose-Response Relationship, Radiation , Male , Mice, Inbred C57BL , Female , Species Specificity , Cesium Radioisotopes , Bone Marrow/radiation effects , Bone Marrow/pathology
4.
Radiother Oncol ; 199: 110444, 2024 10.
Article in English | MEDLINE | ID: mdl-39067705

ABSTRACT

BACKGROUND: Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS: We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS: We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules showed limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION: This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.


Subject(s)
Necrosis , Radiation Injuries , Animals , Radiation Injuries/pathology , Radiation Injuries/etiology , Disease Models, Animal , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/etiology , Rats , Mice , Brain/radiation effects , Brain/pathology
5.
Radiat Res ; 202(3): 565-579, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39074819

ABSTRACT

Victims of a radiation terrorist event will include pregnant women and unborn fetuses. Mitochondrial dysfunction and oxidative stress are key pathogenic factors of fetal radiation injury. The goal of this preclinical study is to investigate the efficacy of mitigating fetal radiation injury by maternal administration of the mitochondrial-targeted gramicidin S (GS)-nitroxide radiation mitigator JP4-039. Pregnant female C57BL/6NTac mice received 3 Gy total-body irradiation (TBI) at mid-gestation embryonic day 13.5 (E13.5). Using novel time-and-motion-resolved 4D in utero magnetic resonance imaging (4D-uMRI), we found TBI caused extensive injury to the fetal brain that included cerebral hemorrhage, loss of cerebral tissue, and hydrocephalus with excessive accumulation of cerebrospinal fluid (CSF). Histopathology of the fetal mouse brain showed broken cerebral vessels and elevated apoptosis. Further use of novel 4D Oxy-wavelet MRI capable of probing in vivo mitochondrial function in intact brain revealed a significant reduction of mitochondrial function in the fetal brain after 3 Gy TBI. This was validated by ex vivo Oroboros mitochondrial respirometry. One day after TBI (E14.5) maternal administration of JP4-039, which passes through the placenta, significantly reduced fetal brain radiation injury and improved fetal brain mitochondrial respiration. Treatment also preserved cerebral brain tissue integrity and reduced cerebral hemorrhage and cell death. JP4-039 administration following irradiation resulted in increased survival of pups. These findings indicate that JP4-039 can be deployed as a safe and effective mitigator of fetal radiation injury from mid-gestational in utero ionizing radiation exposure.


Subject(s)
Fetus , Mitochondria , Whole-Body Irradiation , Animals , Female , Pregnancy , Mitochondria/drug effects , Mitochondria/radiation effects , Mitochondria/metabolism , Mice , Whole-Body Irradiation/adverse effects , Fetus/radiation effects , Fetus/drug effects , Radiation Injuries/drug therapy , Radiation Injuries/diagnostic imaging , Mice, Inbred C57BL , Brain/radiation effects , Brain/drug effects , Brain/diagnostic imaging , Brain/embryology , Radiation-Protective Agents/pharmacology , Nitrogen Oxides , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/diagnostic imaging , Radiation Injuries, Experimental/pathology , Magnetic Resonance Imaging
6.
BMC Cardiovasc Disord ; 24(1): 323, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918713

ABSTRACT

BACKGROUND: Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS: 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS: The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION: In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.


Subject(s)
Apoptosis , Autophagy , Dexmedetomidine , Myocytes, Cardiac , Radiation Injuries, Experimental , Animals , Autophagy/drug effects , Autophagy/radiation effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/radiation effects , Myocytes, Cardiac/metabolism , Apoptosis/drug effects , Male , Dexmedetomidine/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/drug therapy , Radiation-Protective Agents/pharmacology , Disease Models, Animal , Signal Transduction/drug effects , Mice , Autophagy-Related Proteins/metabolism , Mice, Inbred C57BL , Apoptosis Regulatory Proteins/metabolism
7.
Toxicol Appl Pharmacol ; 489: 116994, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857790

ABSTRACT

Radiation-induced cognitive impairment has recently fueled scientific interest with an increasing prevalence of cancer patients requiring whole brain irradiation (WBI) in their treatment algorithm. Saxagliptin (SAXA), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, has exhibited competent neuroprotective effects against varied neurodegenerative disorders. Hence, this study aimed at examining the efficacy of SAXA in alleviating WBI-induced cognitive deficits. Male Sprague Dawley rats were distributed into control group, WBI group exposed to 20 Gy ϒ-radiation, SAXA group treated for three weeks with SAXA (10 mg/kg. orally, once daily), and WBI/SAXA group exposed to 20 Gy ϒ-radiation then treated with SAXA (10 mg/kg. orally, once daily). SAXA effectively reversed memory deterioration and motor dysfunction induced by 20 Gy WBI during behavioural tests and preserved normal histological architecture of the hippocampal tissues of irradiated rats. Mechanistically, SAXA inhibited WBI-induced hippocampal oxidative stress via decreasing lipid peroxidation while restoring catalase antioxidant activity. Moreover, SAXA abrogated radiation-induced hippocampal neuronal apoptosis through downregulating proapoptotic Bcl-2 Associated X-protein (Bax) and upregulating antiapoptotic B-cell lymphoma 2 (Bcl-2) expressions and eventually diminishing expression of cleaved caspase 3. Furthermore, SAXA boosted hippocampal neurogenesis by upregulating brain-derived neurotrophic factor (BDNF) expression. These valuable neuroprotective capabilities of SAXA were linked to activating protein kinase B (Akt), and cAMP-response element-binding protein (CREB) along with elevating the expression of sirtuin 1 (SIRT-1). SAXA successfully mitigated cognitive dysfunction triggered by WBI, attenuated oxidative injury, and neuronal apoptosis, and enhanced neurogenesis through switching on Akt/CREB/BDNF/SIRT-1 signaling axes. Such fruitful neurorestorative effects of SAXA provide an innovative therapeutic strategy for improving the cognitive capacity of cancer patients exposed to radiotherapy.


Subject(s)
Adamantane , Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cyclic AMP Response Element-Binding Protein , Dipeptides , Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 1 , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Sirtuin 1/metabolism , Neuroprotective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dipeptides/pharmacology , Rats , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Adamantane/analogs & derivatives , Adamantane/pharmacology , Hippocampus/drug effects , Hippocampus/radiation effects , Hippocampus/metabolism , Hippocampus/pathology , Apoptosis/drug effects , Apoptosis/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Cranial Irradiation/adverse effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Behavior, Animal/drug effects , Behavior, Animal/radiation effects
8.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
9.
Biomed Pharmacother ; 177: 116978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906028

ABSTRACT

Radiation-induced brain injury (RIBI) is a significant challenge in radiotherapy for head and neck tumors, impacting patients' quality of life. In exploring potential treatments, this study focuses on memantine hydrochloride and hydrogen-rich water, hypothesized to mitigate RIBI through inhibiting the NLRP3/NLRC4/Caspase-1 pathway. In a controlled study involving 40 Sprague-Dawley rats, divided into five groups including a control and various treatment groups, we assessed the effects of these treatments on RIBI. Post-irradiation, all irradiated groups displayed symptoms like weight loss and salivation, with notable variations among different treatment approaches. Particularly, hydrogen-rich water showed a promising reduction in these symptoms. Histopathological analysis indicated substantial hippocampal damage in the radiation-only group, while the groups receiving memantine and/or hydrogen-rich water exhibited significant mitigation of such damage. Molecular studies, revealed a decrease in oxidative stress markers and an attenuated inflammatory response in the treatment groups. Immunohistochemistry further confirmed these molecular changes, suggesting the effectiveness of these agents. Echoing recent scientific inquiries into the protective roles of specific compounds against radiation-induced damages, our study adds to the growing body of evidence on the potential of memantine and hydrogen-rich water as novel therapeutic strategies for RIBI.


Subject(s)
Caspase 1 , Hydrogen , Memantine , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Water , Animals , Memantine/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hydrogen/pharmacology , Pyroptosis/drug effects , Rats , Caspase 1/metabolism , Male , Signal Transduction/drug effects , Brain Injuries/etiology , Brain Injuries/metabolism , Brain Injuries/drug therapy , Brain Injuries/prevention & control , Brain Injuries/pathology , Radiation Injuries/drug therapy , Radiation Injuries/metabolism , Radiation Injuries/pathology , Oxidative Stress/drug effects , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/prevention & control
10.
J Neuroinflammation ; 21(1): 162, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915029

ABSTRACT

Radiation retinopathy (RR) is a major side effect of ocular tumor treatment by plaque brachytherapy or proton beam therapy. RR manifests as delayed and progressive microvasculopathy, ischemia and macular edema, ultimately leading to vision loss, neovascular glaucoma, and, in extreme cases, secondary enucleation. Intravitreal anti-VEGF agents, steroids and laser photocoagulation have limited effects on RR. The role of retinal inflammation and its contribution to the microvascular damage occurring in RR remain incompletely understood. To explore cellular and vascular events after irradiation, we analyzed their time course at 1 week, 1 month and 6 months after rat eyes received 45 Gy X-beam photons. Müller glial cells, astrocytes and microglia were rapidly activated, and these markers of retinal inflammation persisted for 6 months after irradiation. This was accompanied by early cell death in the outer retina, which persisted at later time points, leading to retinal thinning. A delayed loss of small retinal capillaries and retinal hypoxia were observed after 6 months, indicating inner blood‒retinal barrier (BRB) alteration but without cell death in the inner retina. Moreover, activated microglial cells invaded the entire retina and surrounded retinal vessels, suggesting the role of inflammation in vascular alteration and in retinal cell death. Radiation also triggered early and persistent invasion of the retinal pigment epithelium by microglia and macrophages, contributing to outer BRB disruption. This study highlights the role of progressive and long-lasting inflammatory mechanisms in RR development and demonstrates the relevance of this rat model to investigate human pathology.


Subject(s)
Disease Models, Animal , Retina , Animals , Rats , Retina/pathology , Retina/radiation effects , Retinal Diseases/etiology , Retinal Diseases/pathology , Inflammation/pathology , Inflammation/etiology , Radiation Injuries, Experimental/pathology , Radiation Injuries/pathology , Radiation Injuries/etiology , Male , Microglia/radiation effects , Microglia/pathology
11.
Sci Rep ; 14(1): 13315, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858439

ABSTRACT

Exposure to high, marginally lethal doses or higher of ionizing radiation, either intentional or accidental, results in injury to various organs. Currently, there is only a limited number of safe and effective radiation countermeasures approved by US Food and Drug Administration for such injuries. These approved agents are effective for only the hematopoietic component of the acute radiation syndrome and must be administered only after the exposure event: currently, there is no FDA-approved agent that can be used prophylactically. The nutraceutical, gamma-tocotrienol (GT3) has been found to be a promising radioprotector of such exposure-related injuries, especially those of a hematopoietic nature, when tested in either rodents or nonhuman primates. We investigated the nature of injuries and the possible protective effects of GT3 within select organ systems/tissues caused by both non-lethal level (4.0 Gy), as well as potentially lethal level (5.8 Gy) of ionizing radiation, delivered as total-body or partial-body exposure. Results indicated that the most severe, dose-dependent injuries occurred within those organ systems with strong self-renewing capacities (e.g., the lymphohematopoietic and gastrointestinal systems), while in other tissues (e.g., liver, kidney, lung) endowed with less self-renewal, the pathologies noted tended to be less pronounced and less dependent on the level of exposure dose or on the applied exposure regimen. The prophylactic use of the test nutraceutical, GT3, appeared to limit the extent of irradiation-associated pathology within blood forming tissues and, to some extent, within the small intestine of the gastrointestinal tract. No distinct, global pattern of bodily protection was noted with the agent's use, although a hint of a possible radioprotective benefit was suggested not only by a lessening of apparent injury within select organ systems, but also by way of noting the lack of early onset of moribundity within select GT3-treated animals.


Subject(s)
Dietary Supplements , Radiation-Protective Agents , Animals , Radiation-Protective Agents/pharmacology , Vitamin E/pharmacology , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Chromans/pharmacology , Male , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Macaca mulatta , Liver/drug effects , Liver/radiation effects , Liver/pathology
12.
Biochem Biophys Res Commun ; 724: 150226, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865815

ABSTRACT

In patients with high-level radiation exposure, gastrointestinal injury is the main cause of death. Despite the severity of damage to the gastrointestinal tract, no specific therapeutic option is available. Tauroursodeoxycholic acid (TUDCA) is a conjugated form of ursodeoxycholic acid that suppresses endoplasmic reticulum (ER) stress and regulates various cell-signaling pathways. We investigated the effect of TUDCA premedication in alleviating intestinal damage and enhancing the survival of C57BL/6 mice administered a lethal dose (15Gy) of focal abdominal irradiation. TUDCA was administered to mice 1 h before radiation exposure, and reduced apoptosis of the jejunal crypts 12 h after irradiation. At later timepoint (3.5 days), irradiated mice manifested intestinal morphological changes that were detected via histological examination. TUDCA decreased the inflammatory cytokine levels and attenuated the decrease in serum citrulline levels after radiation exposure. Although radiation induced ER stress, TUDCA pretreatment decreased ER stress in the irradiated intestinal cells. The effect of TUDCA indicates the possibility of radiation therapy for cancer in tumor cells. TUDCA did not affect cell proliferation and apoptosis in the intestinal epithelium. TUDCA decreased the invasive ability of the CT26 metastatic colon cancer cell line. Reduced invasion after TUDCA treatment was associated with decreased matrix metalloproteinase (MMP)-7 and MMP-13 expression, which play important roles in invasion and metastasis. This study shows a potential role of TUDCA in protecting against radiation-induced intestinal damage and inhibiting tumor cell migration without any radiation and radiation therapy effect.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Mice, Inbred C57BL , Radiation-Protective Agents , Taurochenodeoxycholic Acid , Animals , Taurochenodeoxycholic Acid/pharmacology , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Radiation-Protective Agents/pharmacology , Mice , Male , Intestines/radiation effects , Intestines/drug effects , Intestines/pathology , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/metabolism , Matrix Metalloproteinase 13/metabolism , Cell Proliferation/drug effects , Cell Proliferation/radiation effects
13.
Exp Eye Res ; 244: 109946, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815794

ABSTRACT

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.


Subject(s)
Light , Poly (ADP-Ribose) Polymerase-1 , Retina , Retinal Degeneration , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Mice , Light/adverse effects , Retina/radiation effects , Retina/pathology , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/prevention & control , Mice, Inbred C57BL , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Disease Models, Animal , Blotting, Western , Male , Low-Level Light Therapy , Blue Light
14.
Int Immunopharmacol ; 136: 112278, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815353

ABSTRACT

Intestinal stem cells (ISCs) are pivotal for the maintenance and regeneration of the intestinal epithelium. Berberine (BBR) exhibits diverse biological activities, but it remains unclear whether BBR can modulate ISCs' function. Therefore, we investigated the effects of BBR on ISCs in healthy and radiation-injured mice and explored the potential underlying mechanisms involved. The results showed that BBR significantly increased the length of the small intestines, the height of the villi, and the depth and density of the crypts, promoted the proliferation of cryptal epithelial cells and increased the number of OLFM4+ ISCs and goblet cells. Crypts from the BBR-treated mice were more capable of growing into enteroids than those from untreated mice. BBR alleviated WAI-induced intestinal injury. BBR suppressed the apoptosis of crypt epithelial cells, increased the quantity of goblet cells, and increased the quantity of OLFM4+ ISCs and tdTomato+ progenies of ISCs after 8 Gy WAI-induced injury. Mechanistically, BBR treatment caused a significant increase in the quantity of p-S6, p-STAT3 and p-ERK1/2 positive cryptal epithelial cells under physiological conditions and after WAI-induced injury. In conclusion, BBR is capable of enhancing the function of ISCs either physiologically or after radiation-induced injury, indicating that BBR has potential value in the treatment of radiation-induced intestinal injury.


Subject(s)
Berberine , Intestinal Mucosa , Mice, Inbred C57BL , Stem Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Stem Cells/drug effects , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology , Male , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/pathology , Goblet Cells/drug effects , Goblet Cells/radiation effects , Goblet Cells/pathology , Radiation Injuries/drug therapy , Radiation Injuries/pathology , STAT3 Transcription Factor/metabolism , Intestine, Small/drug effects , Intestine, Small/radiation effects , Intestine, Small/pathology , Intestine, Small/injuries , Intestines/drug effects , Intestines/radiation effects
15.
Int J Radiat Oncol Biol Phys ; 120(2): 579-592, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38621606

ABSTRACT

PURPOSE: Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity. The challenge here was the influence of respiratory motion on the typical peak and valley dose patterns of pMBRT and its potential biologic effect. METHODS AND MATERIALS: The whole thorax of naïve C57BL/6 mice received one fraction of high dose (18 Gy) pMBRT or conventional proton therapy (CPT) without any respiratory control. The development of radiation-induced pulmonary fibrosis was longitudinally monitored using cone beam computed tomography. Anatomopathologic analysis was carried out at 9 months postirradiation and focused on the reaction of the lungs' parenchyma and the response of cell types involved in the development of radiation-induced fibrosis and lung regeneration as alveolar type II epithelial cells, club cells, and macrophages. RESULTS: pMBRT has milder effects on survival, skin reactions, and lung fibrosis compared with CPT. The pMBRT-induced lung changes were more regional and less severe, with evidence of potential reactive proliferation of alveolar type II epithelial cells and less extensive depletion of club cells and macrophage invasion than the more damaging effects observed in CPT. CONCLUSIONS: pMBRT appears suitable to treat moving targets, holding a significant ability to preserve healthy lung tissue, even without respiratory control or precise targeting.


Subject(s)
Lung , Mice, Inbred C57BL , Proton Therapy , Pulmonary Fibrosis , Proton Therapy/adverse effects , Proton Therapy/methods , Animals , Mice , Lung/radiation effects , Pulmonary Fibrosis/etiology , Organ Sparing Treatments/methods , Thorax/radiation effects , Skin/radiation effects , Organs at Risk/radiation effects , Respiration , Cone-Beam Computed Tomography , Radiation Pneumonitis/etiology , Radiotherapy Dosage , Alveolar Epithelial Cells/radiation effects , Radiation Injuries, Experimental/pathology , Female
16.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593468

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Subject(s)
Intestinal Mucosa , Receptors, Lysophosphatidic Acid , Regeneration , Signal Transduction , Animals , Mice , Apoptosis/radiation effects , Cell Proliferation/radiation effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestine, Small/radiation effects , Intestine, Small/metabolism , Lysophospholipids/metabolism , Mice, Knockout , Organoids/metabolism , Organoids/radiation effects , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Regeneration/radiation effects , Stem Cells/radiation effects , Stem Cells/metabolism , YAP-Signaling Proteins/metabolism
17.
Int Immunopharmacol ; 132: 111945, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38555816

ABSTRACT

BACKGROUND: Emodin, a natural anthraquinone derivative isolated from the roots of Rheum officinale Baill, has many pharmacological effects including anti-inflammatory, antioxidant, antiviral, antibacterial and anti-cancer. However, little is known about the effect of emodin on acute radiation proctitis (ARP). The present study was conducted to determine its effects and elucidate its mechanisms involving AKT/MAPK/NF-κB/VEGF pathways in ARP mice. METHODS: Total 60 C57BL/6 mice were divided randomly into control group, ARP group, AKT inhibitor MK-2206 group, and different doses of emodin groups. ARP mice were induced by 27 Gy of 6 MV X-ray pelvic local irradiation. MK-2206 was given orally for 2 weeks on alternate days. Emodin was administered daily by oral gavage for 2 weeks. Subsequently, all mice were sacrificed on day 15. The rectal tissues were obtained for further tests. The general signs score and the pathological grade were used to evaluate the severity of ARP. The expression of NF-κB, VEGF and AQP1 were determined by immunohistochemistry and western blot. The expression of p-AKT, p-ERK, p-JNK, p-p38, Bcl-2 and Bax were assessed using western blot. RESULTS: The worse general signs and damaged tissue structure of ARP mice were profoundly ameliorated by emodin. The expression of p-AKT, p-ERK, NF-κB, VEGF and AQP1 were significantly increased, resulting in the inflammation-induced angiogenesis in ARP mice. However, the expression of p-JNK and p-p38 were decreased, leading to the reduction of apoptosis in ARP mice. Excitedly, emodin reversed these changes, not only inhibited inflammation-induced angiogenesis, but also promoted apoptosis. Notably, the effects of emodin were similar to that of AKT inhibitor MK-2206, suggesting the involvement of AKT signaling in the effect of emodin. CONCLUSION: These results suggest that emodin attenuates ARP in mice, and the underlying mechanism might involve inhibition of the AKT/ERK/NF-κB/VEGF pathways and the induction of apoptosis mediated by JNK and p38.


Subject(s)
Emodin , Mice, Inbred C57BL , NF-kappa B , Proctitis , Proto-Oncogene Proteins c-akt , Signal Transduction , Vascular Endothelial Growth Factor A , Animals , Emodin/pharmacology , Emodin/therapeutic use , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proctitis/drug therapy , Proctitis/etiology , Vascular Endothelial Growth Factor A/metabolism , Mice , Signal Transduction/drug effects , Radiation Injuries/drug therapy , Radiation Injuries/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Rectum/pathology , Rectum/drug effects
18.
Int J Radiat Biol ; 100(5): 767-776, 2024.
Article in English | MEDLINE | ID: mdl-38442208

ABSTRACT

PURPOSE: Toxicities from head and neck (H&N) radiotherapy (RT) may affect patient quality of life and can be dose-limiting. Proteins from the transforming growth factor beta (TGF-ß) family are key players in the fibrotic response. While TGF-ß1 is known to be pro-fibrotic, TGF-ß3 has mainly been considered anti-fibrotic. Moreover, TGF-ß3 has been shown to act protective against acute toxicities after radio- and chemotherapy. In the present study, we investigated the effect of TGF-ß3 treatment during fractionated H&N RT in a mouse model. MATERIALS AND METHODS: 30 C57BL/6J mice were assigned to three treatment groups. The RT + TGF-ß3 group received local fractionated H&N RT with 66 Gy over five days, combined with TGF-ß3-injections at 24-hour intervals. Animals in the RT reference group received identical RT without TGF-ß3 treatment. The non-irradiated control group was sham-irradiated according to the same RT schedule. In the follow-up period, body weight and symptoms of oral mucositis and lip dermatitis were monitored. Saliva was sampled at five time points. The experiment was terminated 105 d after the first RT fraction. Submandibular and sublingual glands were preserved, sectioned, and stained with Masson's trichrome to visualize collagen. RESULTS: A subset of mice in the RT + TGF-ß3 group displayed increased severity of oral mucositis and increased weight loss, resulting in a significant increase in mortality. Collagen content was significantly increased in the submandibular and sublingual glands for the surviving RT + TGF-ß3 mice, compared with non-irradiated controls. In the RT reference group, collagen content was significantly increased in the submandibular gland only. Both RT groups displayed lower saliva production after treatment compared to controls. TGF-ß3 treatment did not impact saliva production. CONCLUSIONS: When repeatedly administered during fractionated RT at the current dose, TGF-ß3 treatment increased acute H&N radiation toxicities and increased mortality. Furthermore, TGF-ß3 treatment may increase the severity of radiation-induced salivary gland fibrosis.


Subject(s)
Fibrosis , Mice, Inbred C57BL , Salivary Glands , Stomatitis , Transforming Growth Factor beta3 , Animals , Transforming Growth Factor beta3/metabolism , Mice , Stomatitis/etiology , Stomatitis/pathology , Salivary Glands/radiation effects , Salivary Glands/pathology , Disease Models, Animal , Male , Radiation Injuries/pathology , Radiation Injuries/etiology , Female , Radiation Injuries, Experimental/pathology
19.
Int J Radiat Oncol Biol Phys ; 120(1): 189-204, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38485099

ABSTRACT

PURPOSE: Radiation-induced intestinal injury (RIII) commonly occur during abdominal-pelvic cancer radiation therapy; however, no effective prophylactic or therapeutic agents are available to manage RIII currently. This study aimed to clarify the potential of probiotic consortium supplementation in alleviating RIII. METHODS AND MATERIALS: Male C57BL/6J mice were orally administered a probiotic mixture comprising Bifidobacterium longum BL21, Lactobacillus paracasei LC86, and Lactobacillus plantarum Lp90 for 30 days before exposure to 13 Gy of whole abdominal irradiation. The survival rates, clinical scores, and histologic changes in the intestines of mice were assessed. The impacts of probiotic consortium treatment on intestinal stem cell proliferation, differentiation, and epithelial barrier function; oxidative stress; and inflammatory cytokines were evaluated. A comprehensive examination of the gut microbiota composition was conducted through 16S rRNA sequencing, while changes in metabolites were identified using liquid chromatography-mass spectrometry. RESULTS: The probiotic consortium alleviated RIII, as reflected by increased survival rates, improved clinical scores, and mitigated mucosal injury. The probiotic consortium treatment exhibited enhanced therapeutic effects at the histologic level compared with individual probiotic strains, although there was no corresponding improvement in survival rates and colon length. Moreover, the probiotic consortium stimulated intestinal stem cell proliferation and differentiation, enhanced the integrity of the intestinal epithelial barrier, and regulated redox imbalance and inflammatory responses in irradiated mice. Notably, the treatment induced a restructuring of the gut microbiota composition, particularly enriching short-chain fatty acid-producing bacteria. Metabolomic analysis revealed distinctive metabolic changes associated with the probiotic consortium, including elevated levels of anti-inflammatory and antiradiation metabolites. CONCLUSIONS: The probiotic consortium attenuated RIII by modulating the gut microbiota and metabolites, improving inflammatory symptoms, and regulating oxidative stress. These findings provide new insights into the maintenance of intestinal health with probiotic consortium supplementation and will facilitate the development of probiotic-based therapeutic strategies for RIII in clinical practice.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Intestinal Mucosa , Mice, Inbred C57BL , Probiotics , Animals , Probiotics/pharmacology , Probiotics/therapeutic use , Male , Mice , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestinal Mucosa/pathology , Gastrointestinal Microbiome/drug effects , Radiation Injuries/prevention & control , Radiation Injuries/pathology , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Intestines/microbiology , Cell Differentiation/drug effects , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Stem Cells , Cytokines/metabolism
20.
Biomol Biomed ; 24(5): 1331-1349, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-38552230

ABSTRACT

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.


Subject(s)
Lung Injury , Single-Cell Analysis , Animals , Rats , Lung Injury/etiology , Lung Injury/genetics , Lung Injury/metabolism , Lung Injury/pathology , Single-Cell Analysis/methods , Transcriptome/radiation effects , Lung/pathology , Lung/radiation effects , Lung/metabolism , Reactive Oxygen Species/metabolism , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/genetics , Gene Expression Profiling/methods , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/radiation effects , Myocytes, Smooth Muscle/pathology , Male , Radiation Injuries/pathology , Radiation Injuries/genetics , Radiation Injuries/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL