Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.876
1.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38697842

Historically, the orbitofrontal cortex (OFC) has been implicated in a variety of behaviors ranging from reversal learning and inhibitory control to more complex representations of reward value and task space. While modern interpretations of the OFC's function have focused on a role in outcome evaluation, these cognitive processes often require an organism to inhibit a maladaptive response or strategy. Single-unit recordings from the OFC in rats performing a stop-change task show that the OFC responds strongly to STOP trials. To investigate the role that the OFC plays in stop-change performance, we expressed halorhodopsin (eNpHR3.0) in excitatory neurons in the OFC and tested rats on the stop-change task. Previous work suggests that the OFC differentiates between STOP trials based on trial sequence (i.e., gS trials: STOP trials preceded by a GO vs sS trials: STOP trials preceded by a STOP). We found that yellow light activation of the eNpHR3.0-expressing neurons significantly decreased accuracy only on STOP trials that followed GO trials (gS trials). Further, optogenetic inhibition of the OFC speeded reaction times on error trials. This suggests that the OFC plays a role in inhibitory control processes and that this role needs to be accounted for in modern interpretations of OFC function.


Halorhodopsins , Neurons , Optogenetics , Prefrontal Cortex , Rats, Long-Evans , Animals , Male , Prefrontal Cortex/physiology , Neurons/physiology , Halorhodopsins/metabolism , Inhibition, Psychological , Reaction Time/physiology , Rats , Action Potentials/physiology
2.
Nature ; 629(8012): 630-638, 2024 May.
Article En | MEDLINE | ID: mdl-38720085

Hippocampal representations that underlie spatial memory undergo continuous refinement following formation1. Here, to track the spatial tuning of neurons dynamically during offline states, we used a new Bayesian learning approach based on the spike-triggered average decoded position in ensemble recordings from freely moving rats. Measuring these tunings, we found spatial representations within hippocampal sharp-wave ripples that were stable for hours during sleep and were strongly aligned with place fields initially observed during maze exploration. These representations were explained by a combination of factors that included preconfigured structure before maze exposure and representations that emerged during θ-oscillations and awake sharp-wave ripples while on the maze, revealing the contribution of these events in forming ensembles. Strikingly, the ripple representations during sleep predicted the future place fields of neurons during re-exposure to the maze, even when those fields deviated from previous place preferences. By contrast, we observed tunings with poor alignment to maze place fields during sleep and rest before maze exposure and in the later stages of sleep. In sum, the new decoding approach allowed us to infer and characterize the stability and retuning of place fields during offline periods, revealing the rapid emergence of representations following new exploration and the role of sleep in the representational dynamics of the hippocampus.


Bayes Theorem , Hippocampus , Maze Learning , Sleep , Spatial Memory , Animals , Sleep/physiology , Rats , Hippocampus/physiology , Male , Maze Learning/physiology , Spatial Memory/physiology , Rats, Long-Evans , Wakefulness/physiology , Neurons/physiology , Theta Rhythm/physiology , Models, Neurological
3.
Curr Biol ; 34(10): 2256-2264.e3, 2024 05 20.
Article En | MEDLINE | ID: mdl-38701787

The hippocampal formation contains neurons responsive to an animal's current location and orientation, which together provide the organism with a neural map of space.1,2,3 Spatially tuned neurons rely on external landmark cues and internally generated movement information to estimate position.4,5 An important class of landmark cue are the boundaries delimiting an environment, which can define place cell field position6,7 and stabilize grid cell firing.8 However, the precise nature of the sensory information used to detect boundaries remains unknown. We used 2-dimensional virtual reality (VR)9 to show that visual cues from elevated walls surrounding the environment are both sufficient and necessary to stabilize place and grid cell responses in VR, when only visual and self-motion cues are available. By contrast, flat boundaries formed by the edges of a textured floor did not stabilize place and grid cells, indicating only specific forms of visual boundary stabilize hippocampal spatial firing. Unstable grid cells retain internally coherent, hexagonally arranged firing fields, but these fields "drift" with respect to the virtual environment over periods >5 s. Optic flow from a virtual floor does not slow drift dynamics, emphasizing the importance of boundary-related visual information. Surprisingly, place fields are more stable close to boundaries even with floor and wall cues removed, suggesting invisible boundaries are inferred using the motion of a discrete, separate cue (a beacon signaling reward location). Subsets of place cells show allocentric directional tuning toward the beacon, with strength of tuning correlating with place field stability when boundaries are removed.


Cues , Grid Cells , Virtual Reality , Animals , Grid Cells/physiology , Male , Hippocampus/physiology , Space Perception/physiology , Rats , Place Cells/physiology , Visual Perception/physiology , Rats, Long-Evans , Orientation/physiology
4.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38724267

Current theories of decision-making propose that decisions arise through competition between choice options. Computational models of the decision process estimate how quickly information about choice options is integrated and how much information is needed to trigger a choice. Experiments using this approach typically report data from well-trained participants. As such, we do not know how the decision process evolves as a decision-making task is learned for the first time. To address this gap, we used a behavioral design separating learning the value of choice options from learning to make choices. We trained male rats to respond to single visual stimuli with different reward values. Then, we trained them to make choices between pairs of stimuli. Initially, the rats responded more slowly when presented with choices. However, as they gained experience in making choices, this slowing reduced. Response slowing on choice trials persisted throughout the testing period. We found that it was specifically associated with increased exponential variability when the rats chose the higher value stimulus. Additionally, our analysis using drift diffusion modeling revealed that the rats required less information to make choices over time. These reductions in the decision threshold occurred after just a single session of choice learning. These findings provide new insights into the learning process of decision-making tasks. They suggest that the value of choice options and the ability to make choices are learned separately and that experience plays a crucial role in improving decision-making performance.


Choice Behavior , Rats, Long-Evans , Reward , Animals , Male , Choice Behavior/physiology , Decision Making/physiology , Rats , Learning/physiology , Reaction Time/physiology , Photic Stimulation/methods , Behavior, Animal/physiology
5.
J Neurosci ; 44(20)2024 May 15.
Article En | MEDLINE | ID: mdl-38569923

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Gyrus Cinguli , Optogenetics , Rats, Long-Evans , Animals , Gyrus Cinguli/physiology , Male , Rats , Female , Attention/physiology , Reward , Choice Behavior/physiology , Decision Making/physiology , Neural Inhibition/physiology
6.
J Physiol ; 602(10): 2315-2341, 2024 May.
Article En | MEDLINE | ID: mdl-38654581

Brain rhythms have been postulated to play central roles in animal cognition. A prominently reported dichotomy of hippocampal rhythms links theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) exclusively to preparatory and consummatory behaviours, respectively. However, because of the differential power expression of these two signals across hippocampal strata, such exclusivity requires validation through analyses of simultaneous multi-strata recordings. We assessed co-occurrence of theta-frequency oscillations with ripples in multi-channel recordings of extracellular potentials across hippocampal strata from foraging rats. We detected all ripple events from an identified stratum pyramidale (SP) channel. We then defined theta epochs based on theta oscillations detected from the stratum lacunosum-moleculare (SLM) or the stratum radiatum (SR). We found ∼20% of ripple events (in SP) to co-occur with theta epochs identified from SR/SLM channels, defined here as theta ripples. Strikingly, when theta epochs were instead identified from the SP channel, such co-occurrences were significantly reduced because of a progressive reduction in theta power along the SLM-SR-SP axis. Behaviourally, we found most theta ripples to occur during immobile periods, with comparable theta power during exploratory and immobile theta epochs. Furthermore, the progressive reduction in theta power along the SLM-SR-SP axis was common to exploratory and immobile periods. Finally, we found a strong theta-phase preference of theta ripples within the fourth quadrant [3π/2 - 2π] of the associated theta oscillation. The prevalence of theta ripples expands the potential roles of ripple-frequency oscillations to span the continuum of encoding, retrieval and consolidation, achieved through interactions with theta oscillations. KEY POINTS: The brain manifests oscillations in recorded electrical potentials, with different frequencies of oscillation associated with distinct behavioural states. A prominently reported dichotomy assigns theta-frequency oscillations (4-12 Hz) and ripples (120-250 Hz) recorded in the hippocampus to be exclusively associated with preparatory and consummatory behaviours, respectively. Our multi-strata recordings from the rodent hippocampus coupled with cross-strata analyses provide direct quantitative evidence for the occurrence of ripple events nested within theta oscillations. These results highlight the need for an analysis pipeline that explicitly accounts for the specific strata where individual oscillatory power is high, in analysing simultaneously recorded data from multiple strata. Our observations open avenues for investigations involving cross-strata interactions between theta oscillations and ripples across different behavioural states.


Hippocampus , Theta Rhythm , Animals , Male , Hippocampus/physiology , Rats , Rats, Long-Evans , Feeding Behavior/physiology
7.
Dev Psychobiol ; 66(4): e22495, 2024 May.
Article En | MEDLINE | ID: mdl-38643359

Most studies of adolescent and adult behavior involved one age group of each, whereas the dynamic changes in brain development suggest that there may be behavioral flux in adolescence. In two studies, we investigated developmental changes in social reward motivation in female and male Long-Evans rats from prepuberty to early adulthood in a social operant conditioning task. Given the earlier onset of puberty in females than in males, we predicted the course of social reward development would differ between the sexes. Overall, the pattern of results from both studies suggests that the trajectory of social motivation across adolescence is characterized by upward and downward shifts that do not depend on the sex of the rats. During training, in both studies, the mean number of social gate openings and percentage of social gate openings was higher at P30 (prepubertal, early adolescence) and P50 (late adolescence) than at P40 (mid adolescence) and P70 (adulthood) irrespective of sex. Nevertheless, the specific age comparisons that were significant depended on the study. In both studies, P30 rats had greater levels of social motivation than did adults in accessing a social reward when increased effort was required (progressive ratio tests). In an extinction test, only P30 and P50 rats continued to show more nose-pokes at the previously social gate than at the nonsocial gate, suggesting resistance to extinction. The results highlight the importance of characterizing behavior at several timepoints in adolescence to understand the neural mechanisms, many of which show similar discontinuities as they develop across adolescence.


Motivation , Sexual Maturation , Male , Rats , Female , Animals , Rats, Long-Evans , Reward , Conditioning, Operant
8.
Neuromolecular Med ; 26(1): 10, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570425

The manifestations of tuberous sclerosis complex (TSC) in humans include epilepsy, autism spectrum disorders (ASD) and intellectual disability. Previous studies suggested the linkage of TSC to altered cerebral blood flow and metabolic dysfunction. We previously reported a significant elevation in cerebral blood flow in an animal model of TSC and autism of young Eker rats. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin could restore normal oxygen consumption and cerebral blood flow. In this study, we investigated whether inhibiting a component of the mTOR signaling pathway, p70 ribosomal S6 kinase (S6K1), would yield comparable effects. Control Long Evans and Eker rats were divided into vehicle and PF-4708671 (S6K1 inhibitor, 75 mg/kg for 1 h) treated groups. Cerebral regional blood flow (14C-iodoantipyrine) was determined in isoflurane anesthetized rats. We found significantly increased basal cortical (+ 32%) and hippocampal (+ 15%) blood flow in the Eker rats. PF-4708671 significantly lowered regional blood flow in the cortex and hippocampus of the Eker rats. PF-4708671 did not significantly lower blood flow in these regions in the control Long Evans rats. Phosphorylation of S6-Ser240/244 and Akt-Ser473 was moderately decreased in Eker rats but only the latter reached statistical significance upon PF-4708671 treatment. Our findings suggest that moderate inhibition of S6K1 with PF-4708671 helps to restore normal cortical blood flow in Eker rats and that this information might have therapeutic potential in tuberous sclerosis complex and autism.


Autistic Disorder , Tuberous Sclerosis , Animals , Humans , Rats , Autistic Disorder/drug therapy , Autistic Disorder/metabolism , Mammals/metabolism , Phosphorylation , Rats, Long-Evans , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/therapeutic use , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Tuberous Sclerosis/drug therapy , Tuberous Sclerosis/metabolism
9.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38627063

Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.


Conditioning, Eyelid , Hippocampus , Memory Consolidation , Mental Recall , Rats, Long-Evans , Hippocampus/physiology , Male , Conditioning, Eyelid/physiology , Animals , Memory Consolidation/physiology , Mental Recall/physiology , Association Learning/physiology , Rats , Conditioning, Classical/physiology , Blinking/physiology
10.
Behav Brain Res ; 466: 115007, 2024 May 28.
Article En | MEDLINE | ID: mdl-38648867

Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.


Discrimination Learning , Forelimb , Touch , Animals , Rats , Male , Forelimb/physiology , Touch/physiology , Discrimination Learning/physiology , Hand Strength/physiology , Touch Perception/physiology , Psychomotor Performance/physiology , Discrimination, Psychological/physiology , Motor Skills/physiology , Rats, Long-Evans , Reversal Learning/physiology
11.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Article En | MEDLINE | ID: mdl-38651310

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Basal Ganglia , Dystonia , Motor Cortex , Neural Pathways , Parkinsonian Disorders , Rats, Long-Evans , Animals , Motor Cortex/physiopathology , Motor Cortex/pathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Rats , Neural Pathways/physiopathology , Dystonia/physiopathology , Dystonia/pathology , Dystonia/etiology , Basal Ganglia/pathology , Male , Globus Pallidus/pathology , Disease Models, Animal
12.
J Comput Neurosci ; 52(2): 133-144, 2024 May.
Article En | MEDLINE | ID: mdl-38581476

Spatial navigation through novel spaces and to known goal locations recruits multiple integrated structures in the mammalian brain. Within this extended network, the hippocampus enables formation and retrieval of cognitive spatial maps and contributes to decision making at choice points. Exploration and navigation to known goal locations produce synchronous activity of hippocampal neurons resulting in rhythmic oscillation events in local networks. Power of specific oscillatory frequencies and numbers of these events recorded in local field potentials correlate with distinct cognitive aspects of spatial navigation. Typically, oscillatory power in brain circuits is analyzed with Fourier transforms or short-time Fourier methods, which involve assumptions about the signal that are likely not true and fail to succinctly capture potentially informative features. To avoid such assumptions, we applied a method that combines manifold discovery techniques with dynamical systems theory, namely diffusion maps and Takens' time-delay embedding theory, that avoids limitations seen in traditional methods. This method, called diffusion mapped delay coordinates (DMDC), when applied to hippocampal signals recorded from juvenile rats freely navigating a Y-maze, replicates some outcomes seen with standard approaches and identifies age differences in dynamic states that traditional analyses are unable to detect. Thus, DMDC may serve as a suitable complement to more traditional analyses of LFPs recorded from behaving subjects that may enhance information yield.


Hippocampus , Animals , Hippocampus/physiology , Male , Rats , Rats, Long-Evans , Neurons/physiology , Spatial Navigation/physiology , Maze Learning/physiology , Models, Neurological , Action Potentials/physiology
13.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38621992

Phase entrainment of cells by theta oscillations is thought to globally coordinate the activity of cell assemblies across different structures, such as the hippocampus and neocortex. This coordination is likely required for optimal processing of sensory input during recognition and decision-making processes. In quadruple-area ensemble recordings from male rats engaged in a multisensory discrimination task, we investigated phase entrainment of cells by theta oscillations in areas along the corticohippocampal hierarchy: somatosensory barrel cortex (S1BF), secondary visual cortex (V2L), perirhinal cortex (PER), and dorsal hippocampus (dHC). Rats discriminated between two 3D objects presented in tactile-only, visual-only, or both tactile and visual modalities. During task engagement, S1BF, V2L, PER, and dHC LFP signals showed coherent theta-band activity. We found phase entrainment of single-cell spiking activity to locally recorded as well as hippocampal theta activity in S1BF, V2L, PER, and dHC. While phase entrainment of hippocampal spikes to local theta oscillations occurred during sustained epochs of task trials and was nonselective for behavior and modality, somatosensory and visual cortical cells were only phase entrained during stimulus presentation, mainly in their preferred modality (S1BF, tactile; V2L, visual), with subsets of cells selectively phase-entrained during cross-modal stimulus presentation (S1BF: visual; V2L: tactile). This effect could not be explained by modulations of firing rate or theta amplitude. Thus, hippocampal cells are phase entrained during prolonged epochs, while sensory and perirhinal neurons are selectively entrained during sensory stimulus presentation, providing a brief time window for coordination of activity.


Discrimination, Psychological , Neurons , Somatosensory Cortex , Theta Rhythm , Visual Cortex , Animals , Male , Theta Rhythm/physiology , Somatosensory Cortex/physiology , Visual Cortex/physiology , Discrimination, Psychological/physiology , Neurons/physiology , Hippocampus/physiology , Visual Perception/physiology , Touch Perception/physiology , Action Potentials/physiology , Rats, Long-Evans , Rats
14.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38621991

The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.


CA1 Region, Hippocampal , Mammillary Bodies , Neurons , Rats, Long-Evans , Sleep , Theta Rhythm , Wakefulness , Animals , Mammillary Bodies/physiology , Male , Neurons/physiology , Sleep/physiology , Rats , Theta Rhythm/physiology , Wakefulness/physiology , CA1 Region, Hippocampal/physiology , Action Potentials/physiology , Electrophysiological Phenomena/physiology
15.
Cell Rep ; 43(4): 113986, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38598336

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.


Forelimb , Motor Cortex , Neuronal Plasticity , Animals , Forelimb/physiology , Neuronal Plasticity/physiology , Motor Cortex/physiology , Motor Cortex/cytology , Rats , Learning/physiology , Hand Strength/physiology , Neurons/physiology , Male , Pyramidal Tracts/physiology , Motor Skills/physiology , Female , Optogenetics , Rats, Long-Evans
16.
J Integr Neurosci ; 23(4): 83, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38682231

BACKGROUND: Much of the existing animal literature on the devaluation task suggests that prior repeated exposure to drugs of abuse during adulthood can impair goal-directed action, but the literature on human drug users is mixed. Also, the initiation of drug use often occurs during adolescence, but examinations of the effects of drug exposure during adolescence on behavior in the devaluation task are lacking. METHODS: We examined whether repeated exposure during adolescence to amphetamine (3 mg/kg injections every-other day from post-natal day 27-45) or ketamine (twice daily 30 mg/kg injections from post-natal day 35-44) would impair behavior in a devaluation test when tested drug-free in adulthood. Rats were trained to press a left lever with a steady cue-light above it for one reinforcer and a right lever with a flashing cue-light above it for a different reinforcer. We tested whether any impairments in goal-directed action could be overcome by compensation between strategies by giving rats information based on lever-location and cue-lights during the test that was either congruent (allowing compensation) or incongruent (preventing compensation between strategies) with the configurations during training. RESULTS: Our results provided no evidence for impairment of goal-directed action during adulthood after adolescent amphetamine or ketamine exposure. CONCLUSIONS: We discuss possible reasons for this discrepancy with the prior literature, including (1) the age of exposure and (2) the pattern in the previous literature that most previous demonstrations of drug exposure impairing devaluation in laboratory animals may be attributed to either drug-associated cues present in the testing environment and/or accelerated habit learning in tasks that predispose laboratory animals towards habit formation with extended training (with training procedures that should resist the formation of habits in the current experiment). However, additional research is needed to examine the effects of these factors, as well a potential role for the particular doses and washout periods to determine the cause of our finding of no devaluation impairment after drug exposure.


Amphetamine , Ketamine , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Amphetamine/pharmacology , Amphetamine/administration & dosage , Male , Rats , Conditioning, Operant/drug effects , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Rats, Long-Evans , Behavior, Animal/drug effects , Age Factors , Cues
17.
Physiol Behav ; 280: 114547, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614418

Research in rodents has shown that exposure to excessive early life audiovisual stimulation leads to altered anxiety-like behaviors and cognitive deficits. Since this period of stimulation typically begins prior to weaning, newborn rodents receive sensory overstimulation (SOS) as a litter within their home cage while the dam is present. However, the effects of SOS during the postpartum period remain unexplored. To this end, we adapted an SOS paradigm for use in rats and exposed rat dams and their litters from postpartum days (PD) 10-23. Maternal observations were conducted to determine whether SOS produced changes in positive and/or negative maternal behaviors. Next, we assessed changes in anxiety-like behavior and cognition by testing dams in the elevated zero maze, open field, and novel object recognition tests. To assess potential effects on HPA-axis function, levels of the stress hormone corticosterone (CORT) were measured approximately 1-week after the cessation of SOS exposure. Our results indicate increased nursing and licking in SOS dams compared to controls, although SOS dams also exhibited significant increases in pup dragging. Moreover, SOS dams exhibited reduced self-care behaviors and nest-building compared to control dams. No differences were found for anxiety-like behaviors, object recognition memory, or CORT levels. This study is the first to assess the impact of postpartum SOS exposure in rat dams. Our findings suggest an SOS-induced enhancement in positive caregiving, but limited impact in all other measures.


Anxiety , Corticosterone , Maternal Behavior , Postpartum Period , Animals , Female , Maternal Behavior/physiology , Postpartum Period/physiology , Corticosterone/blood , Rats , Anxiety/physiopathology , Animals, Newborn , Recognition, Psychology/physiology , Rats, Long-Evans , Maze Learning/physiology
18.
Curr Biol ; 34(9): 1831-1843.e7, 2024 05 06.
Article En | MEDLINE | ID: mdl-38604168

The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.


Corpus Striatum , Learning , Motor Cortex , Motor Skills , Rats, Long-Evans , Animals , Motor Cortex/physiology , Learning/physiology , Rats , Corpus Striatum/physiology , Male , Motor Skills/physiology
19.
Curr Biol ; 34(9): 2011-2019.e7, 2024 05 06.
Article En | MEDLINE | ID: mdl-38636511

Environmental enrichment (EE) improves memory, particularly the ability to discriminate similar past experiences.1,2,3,4,5,6 The hippocampus supports this ability via pattern separation, the encoding of similar events using dissimilar memory representations.7 This is carried out in the dentate gyrus (DG) and CA3 subfields.8,9,10,11,12 Upregulation of adult neurogenesis in the DG improves memory through enhanced pattern separation.1,2,3,4,5,6,11,13,14,15,16 Adult-born granule cells (abGCs) in DG are suggested to contribute to pattern separation by driving inhibition in regions such as CA3,13,14,15,16,17,18 leading to sparser, nonoverlapping representations of similar events (although a role for abGCs in driving excitation in the hippocampus has also been reported16). Place cells in the hippocampus contribute to pattern separation by remapping to spatial and contextual alterations to the environment.19,20,21,22,23,24,25,26,27 How spatial responses in CA3 are affected by EE and input from increased numbers of abGCs in DG is, however, unknown. Here, we investigate the neural mechanisms facilitating improved memory following EE using associative recognition memory tasks that model the automatic and integrative nature of episodic memory. We find that EE-dependent improvements in difficult discriminations are related to increased neurogenesis and sparser memory representations across the hippocampus. Additionally, we report for the first time that EE changes how CA3 place cells discriminate similar contexts. CA3 place cells of enriched rats show greater spatial tuning, increased firing rates, and enhanced remapping to contextual changes. These findings point to more precise and flexible CA3 memory representations in enriched rats, which provides a putative mechanism for EE-dependent improvements in fine memory discrimination.


CA3 Region, Hippocampal , Environment , Animals , Rats , CA3 Region, Hippocampal/physiology , Male , Neurogenesis/physiology , Rats, Long-Evans , Memory/physiology , Dentate Gyrus/physiology
20.
Behav Processes ; 218: 105044, 2024 May.
Article En | MEDLINE | ID: mdl-38679343

The goal is to understand consequences of anabolic-androgenic steroid (AAS) abuse on cognitive function, using rats as a model. Economic decision making was evaluated in an operant test of effort value discounting, where subjects choose between 2 levers that deliver large and small rewards differing in maximum value and reward contrast. The hypothesis is that chronic high-dose testosterone increases preference for large rewards. Male rats were treated chronically with testosterone (7.5 mg/kg) or vehicle. Initially, all rats preferred the large reward lever when large and small rewards remained fixed at 3 and 1 sugar pellets, respectively. When different reward values were introduced, and with increasing response requirements, testosterone-treated rats made fewer responses for the large reward, and increased omissions. They earned fewer rewards overall. To determine if testosterone impairs memory, rats were tested for recognition memory with the novel object recognition and social transmission of food preference tasks, and for spatial memory with the radial arm maze and Morris water maze. There was not effect of chronic high-dose testosterone on any memory task. These results suggest that testosterone shifts economic decision making towards larger rewards even when they are disadvantageous, but does not alter memory in rats.


Decision Making , Reward , Testosterone , Animals , Male , Testosterone/pharmacology , Rats , Decision Making/drug effects , Decision Making/physiology , Memory/drug effects , Conditioning, Operant/drug effects , Rats, Long-Evans
...