Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45.407
1.
Sci Rep ; 14(1): 10824, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734701

Acute stress is assumed to affect executive processing of stimulus information, although extant studies have yielded heterogeneous findings. The temporal flanker task, in which a target stimulus is preceded by a distractor of varying utility, offers a means of investigating various components involved in the adjustment of information processing and conflict control. Both behavioral and EEG data obtained with this task suggest stronger distractor-related response activation in conditions associated with higher predictivity of the distractor for the upcoming target. In two experiments we investigated distractor-related processing and conflict control after inducing acute stress (Trier Social Stress Test). Although the stressed groups did not differ significantly from unstressed control groups concerning behavioral markers of attentional adjustment (i.e., Proportion Congruent Effect), or event-related sensory components in the EEG (i.e., posterior P1 and N1), the lateralized readiness potential demonstrated reduced activation evoked by (predictive) distractor information under stress. Our results suggest flexible adjustment of attention under stress but hint at decreased usage of nominally irrelevant stimulus information for biasing response selection.


Attention , Electroencephalography , Stress, Psychological , Humans , Male , Female , Attention/physiology , Young Adult , Adult , Stress, Psychological/physiopathology , Evoked Potentials/physiology , Reaction Time/physiology
2.
Sci Rep ; 14(1): 11341, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762574

The hypothalamus is the key regulator for energy homeostasis and is functionally connected to striatal and cortical regions vital for the inhibitory control of appetite. Hence, the ability to non-invasively modulate the hypothalamus network could open new ways for the treatment of metabolic diseases. Here, we tested a novel method for network-targeted transcranial direct current stimulation (net-tDCS) to influence the excitability of brain regions involved in the control of appetite. Based on the resting-state functional connectivity map of the hypothalamus, a 12-channel net-tDCS protocol was generated (Neuroelectrics Starstim system), which included anodal, cathodal and sham stimulation. Ten participants with overweight or obesity were enrolled in a sham-controlled, crossover study. During stimulation or sham control, participants completed a stop-signal task to measure inhibitory control. Overall, stimulation was well tolerated. Anodal net-tDCS resulted in faster stop signal reaction time (SSRT) compared to sham (p = 0.039) and cathodal net-tDCS (p = 0.042). Baseline functional connectivity of the target network correlated with SSRT after anodal compared to sham stimulation (p = 0.016). These preliminary data indicate that modulating hypothalamus functional network connectivity via net-tDCS may result in improved inhibitory control. Further studies need to evaluate the effects on eating behavior and metabolism.


Feasibility Studies , Hypothalamus , Obesity , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Hypothalamus/physiology , Male , Adult , Female , Obesity/therapy , Obesity/physiopathology , Cross-Over Studies , Appetite/physiology , Middle Aged , Nerve Net/physiology , Appetite Regulation/physiology , Reaction Time/physiology
3.
Cogn Res Princ Implic ; 9(1): 29, 2024 05 12.
Article En | MEDLINE | ID: mdl-38735013

Auditory stimuli that are relevant to a listener have the potential to capture focal attention even when unattended, the listener's own name being a particularly effective stimulus. We report two experiments to test the attention-capturing potential of the listener's own name in normal speech and time-compressed speech. In Experiment 1, 39 participants were tested with a visual word categorization task with uncompressed spoken names as background auditory distractors. Participants' word categorization performance was slower when hearing their own name rather than other names, and in a final test, they were faster at detecting their own name than other names. Experiment 2 used the same task paradigm, but the auditory distractors were time-compressed names. Three compression levels were tested with 25 participants in each condition. Participants' word categorization performance was again slower when hearing their own name than when hearing other names; the slowing was strongest with slight compression and weakest with intense compression. Personally relevant time-compressed speech has the potential to capture attention, but the degree of capture depends on the level of compression. Attention capture by time-compressed speech has practical significance and provides partial evidence for the duplex-mechanism account of auditory distraction.


Attention , Names , Speech Perception , Humans , Attention/physiology , Female , Male , Speech Perception/physiology , Adult , Young Adult , Speech/physiology , Reaction Time/physiology , Acoustic Stimulation
4.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38697842

Historically, the orbitofrontal cortex (OFC) has been implicated in a variety of behaviors ranging from reversal learning and inhibitory control to more complex representations of reward value and task space. While modern interpretations of the OFC's function have focused on a role in outcome evaluation, these cognitive processes often require an organism to inhibit a maladaptive response or strategy. Single-unit recordings from the OFC in rats performing a stop-change task show that the OFC responds strongly to STOP trials. To investigate the role that the OFC plays in stop-change performance, we expressed halorhodopsin (eNpHR3.0) in excitatory neurons in the OFC and tested rats on the stop-change task. Previous work suggests that the OFC differentiates between STOP trials based on trial sequence (i.e., gS trials: STOP trials preceded by a GO vs sS trials: STOP trials preceded by a STOP). We found that yellow light activation of the eNpHR3.0-expressing neurons significantly decreased accuracy only on STOP trials that followed GO trials (gS trials). Further, optogenetic inhibition of the OFC speeded reaction times on error trials. This suggests that the OFC plays a role in inhibitory control processes and that this role needs to be accounted for in modern interpretations of OFC function.


Halorhodopsins , Neurons , Optogenetics , Prefrontal Cortex , Rats, Long-Evans , Animals , Male , Prefrontal Cortex/physiology , Neurons/physiology , Halorhodopsins/metabolism , Inhibition, Psychological , Reaction Time/physiology , Rats , Action Potentials/physiology
5.
J Exp Biol ; 227(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38690629

Identifying the kinematic and behavioral variables of prey that influence evasion from predator attacks remains challenging. To address this challenge, we have developed an automated escape system that responds quickly to an approaching predator and pulls the prey away from the predator rapidly, similar to real prey. Reaction distance, response latency, escape speed and other variables can be adjusted in the system. By repeatedly measuring the response latency and escape speed of the system, we demonstrated the system's ability to exhibit fast and rapid responses while maintaining consistency across successive trials. Using the live predatory fish species Coreoperca kawamebari, we show that escape speed and reaction distance significantly affect the outcome of predator-prey interactions. These findings indicate that the developed escape system is useful for identifying kinematic and behavioral features of prey that are critical for predator evasion, as well as for measuring the performance of predators.


Escape Reaction , Predatory Behavior , Animals , Escape Reaction/physiology , Biomechanical Phenomena , Automation , Reaction Time/physiology
6.
Acta Psychol (Amst) ; 246: 104284, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703657

In order to investigate whether handwriting has an advantage in learning word form, sound, and meaning, this study randomly selected 40 elementary school student participants (20 males, 20 females, aged 11.4 ± 1.34 years). Using an experimental approach, we compared the learning outcomes of word sound matching, word meaning matching, and word form judgment tasks under two conditions: handwriting and visual learning. After three consecutive days of learning and testing, we found that handwriting generally outperformed visual learning in terms of accuracy and response time in word form, sound, and meaning learning. Additionally, we observed differences in the timing of significant discrepancies in learning outcomes between the two methods across the three tasks. Specifically, in terms of accuracy, discrepancies first appeared in the word sound matching task on the first day, followed by the word form judgment task, and lastly the word meaning matching task. Regarding response time, significant differences between learning methods first emerged in the word form judgment task, followed by the word sound and word meaning tasks. Thus, combining accuracy and response time data, we conclude that handwriting is more advantageous than visual learning for word acquisition, with a differential impact on word form, sound, and meaning, where word form and sound are prioritized over meaning.


Handwriting , Humans , Female , Male , Child , Reaction Time/physiology , Students , Learning/physiology , Language
7.
Neuroimage ; 293: 120634, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705431

Spatial image transformation of the self-body is a fundamental function of visual perspective-taking. Recent research underscores the significance of intero-exteroceptive information integration to construct representations of our embodied self. This raises the intriguing hypothesis that interoceptive processing might be involved in the spatial image transformation of the self-body. To test this hypothesis, the present study used functional magnetic resonance imaging to measure brain activity during an arm laterality judgment (ALJ) task. In this task, participants were tasked with discerning whether the outstretched arm of a human figure, viewed from the front or back, was the right or left hand. The reaction times for the ALJ task proved longer when the stimulus presented orientations of 0°, 90°, and 270° relative to the upright orientation, and when the front view was presented rather than the back view. Reflecting the increased reaction time, increased brain activity was manifested in a cluster centered on the dorsal anterior cingulate cortex (ACC), suggesting that the activation reflects the involvement of an embodied simulation in ALJ. Furthermore, this cluster of brain activity exhibited overlap with regions where the difference in activation between the front and back views positively correlated with the participants' interoceptive sensitivity, as assessed through the heartbeat discrimination task, within the pregenual ACC. These results suggest that the ACC plays an important role in integrating intero-exteroceptive cues to spatially transform the image of our self-body.


Brain Mapping , Gyrus Cinguli , Magnetic Resonance Imaging , Humans , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Female , Male , Young Adult , Adult , Brain Mapping/methods , Interoception/physiology , Body Image , Functional Laterality/physiology , Reaction Time/physiology , Space Perception/physiology , Arm/physiology
8.
J Vis ; 24(5): 4, 2024 May 01.
Article En | MEDLINE | ID: mdl-38722274

Image differences between the eyes can cause interocular discrepancies in the speed of visual processing. Millisecond-scale differences in visual processing speed can cause dramatic misperceptions of the depth and three-dimensional direction of moving objects. Here, we develop a monocular and binocular continuous target-tracking psychophysics paradigm that can quantify such tiny differences in visual processing speed. Human observers continuously tracked a target undergoing Brownian motion with a range of luminance levels in each eye. Suitable analyses recover the time course of the visuomotor response in each condition, the dependence of visual processing speed on luminance level, and the temporal evolution of processing differences between the eyes. Importantly, using a direct within-observer comparison, we show that continuous target-tracking and traditional forced-choice psychophysical methods provide estimates of interocular delays that agree on average to within a fraction of a millisecond. Thus, visual processing delays are preserved in the movement dynamics of the hand. Finally, we show analytically, and partially confirm experimentally, that differences between the temporal impulse response functions in the two eyes predict how lateral target motion causes misperceptions of motion in depth and associated tracking responses. Because continuous target tracking can accurately recover millisecond-scale differences in visual processing speed and has multiple advantages over traditional psychophysics, it should facilitate the study of temporal processing in the future.


Motion Perception , Psychophysics , Vision, Binocular , Humans , Motion Perception/physiology , Psychophysics/methods , Vision, Binocular/physiology , Photic Stimulation/methods , Adult , Depth Perception/physiology , Male , Vision, Monocular/physiology , Female , Young Adult , Reaction Time/physiology
9.
PLoS One ; 19(5): e0302660, 2024.
Article En | MEDLINE | ID: mdl-38709724

The Stroop task is a well-established tool to investigate the influence of competing visual categories on decision making. Neuroimaging as well as rTMS studies have demonstrated the involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given its reliability, the numerical Stroop task was used to compare the effects of different TMS targeting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the superiority of individualized fMRI targeting. We performed the present study to test whether fMRI-guided rTMS effects on numerical Stroop task performance could still be observed while using more advanced techniques that have emerged in the last decade (e.g., electrical sham, robotic coil holder system, etc.). To do so we used a traditional reaction time analysis and we performed, post-hoc, a more advanced comprehensive drift diffusion modeling approach. Fifteen participants performed the numerical Stroop task while active or sham 10 Hz rTMS was applied over the region of the right intraparietal sulcus (IPS) showing the strongest functional activation in the Incongruent > Congruent contrast. This target was determined based on individualized fMRI data collected during a separate session. Contrary to our assumption, the classical reaction time analysis did not show any superiority of active rTMS over sham, probably due to confounds such as potential cumulative rTMS effects, and the effect of practice. However, the modeling approach revealed a robust effect of rTMS on the drift rate variable, suggesting differential processing of congruent and incongruent properties in perceptual decision-making, and more generally, illustrating that more advanced computational analysis of performance can elucidate the effects of rTMS on the brain where simpler methods may not.


Magnetic Resonance Imaging , Reaction Time , Stroop Test , Transcranial Magnetic Stimulation , Humans , Magnetic Resonance Imaging/methods , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Reaction Time/physiology , Young Adult , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Decision Making/physiology , Brain Mapping/methods
10.
Multisens Res ; 37(2): 89-124, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38714311

Prior studies investigating the effects of routine action video game play have demonstrated improvements in a variety of cognitive processes, including improvements in attentional tasks. However, there is little evidence indicating that the cognitive benefits of playing action video games generalize from simplified unisensory stimuli to multisensory scenes - a fundamental characteristic of natural, everyday life environments. The present study addressed if video game experience has an impact on crossmodal congruency effects when searching through such multisensory scenes. We compared the performance of action video game players (AVGPs) and non-video game players (NVGPs) on a visual search task for objects embedded in video clips of realistic scenes. We conducted two identical online experiments with gender-balanced samples, for a total of N = 130. Overall, the data replicated previous findings reporting search benefits when visual targets were accompanied by semantically congruent auditory events, compared to neutral or incongruent ones. However, according to the results, AVGPs did not consistently outperform NVGPs in the overall search task, nor did they use multisensory cues more efficiently than NVGPs. Exploratory analyses with self-reported gender as a variable revealed a potential difference in response strategy between experienced male and female AVGPs when dealing with crossmodal cues. These findings suggest that the generalization of the advantage of AVG experience to realistic, crossmodal situations should be made with caution and considering gender-related issues.


Attention , Video Games , Visual Perception , Humans , Male , Female , Visual Perception/physiology , Young Adult , Adult , Attention/physiology , Auditory Perception/physiology , Photic Stimulation , Adolescent , Reaction Time/physiology , Cues , Acoustic Stimulation
11.
Multisens Res ; 37(2): 143-162, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38714315

A vital heuristic used when making judgements on whether audio-visual signals arise from the same event, is the temporal coincidence of the respective signals. Previous research has highlighted a process, whereby the perception of simultaneity rapidly recalibrates to account for differences in the physical temporal offsets of stimuli. The current paper investigated whether rapid recalibration also occurs in response to differences in central arrival latencies, driven by visual-intensity-dependent processing times. In a behavioural experiment, observers completed a temporal-order judgement (TOJ), simultaneity judgement (SJ) and simple reaction-time (RT) task and responded to audio-visual trials that were preceded by other audio-visual trials with either a bright or dim visual stimulus. It was found that the point of subjective simultaneity shifted, due to the visual intensity of the preceding stimulus, in the TOJ, but not SJ task, while the RT data revealed no effect of preceding intensity. Our data therefore provide some evidence that the perception of simultaneity rapidly recalibrates based on stimulus intensity.


Acoustic Stimulation , Auditory Perception , Photic Stimulation , Reaction Time , Visual Perception , Humans , Visual Perception/physiology , Auditory Perception/physiology , Male , Female , Reaction Time/physiology , Adult , Young Adult , Judgment/physiology
12.
J Psychiatry Neurosci ; 49(3): E145-E156, 2024.
Article En | MEDLINE | ID: mdl-38692692

BACKGROUND: Neuroimaging studies have revealed abnormal functional interaction during the processing of emotional faces in patients with major depressive disorder (MDD), thereby enhancing our comprehension of the pathophysiology of MDD. However, it is unclear whether there is abnormal directional interaction among face-processing systems in patients with MDD. METHODS: A group of patients with MDD and a healthy control group underwent a face-matching task during functional magnetic resonance imaging. Dynamic causal modelling (DCM) analysis was used to investigate effective connectivity between 7 regions in the face-processing systems. We used a Parametric Empirical Bayes model to compare effective connectivity between patients with MDD and controls. RESULTS: We included 48 patients and 44 healthy controls in our analyses. Both groups showed higher accuracy and faster reaction time in the shape-matching condition than in the face-matching condition. However, no significant behavioural or brain activation differences were found between the groups. Using DCM, we found that, compared with controls, patients with MDD showed decreased self-connection in the right dorsolateral prefrontal cortex (DLPFC), amygdala, and fusiform face area (FFA) across task conditions; increased intrinsic connectivity from the right amygdala to the bilateral DLPFC, right FFA, and left amygdala, suggesting an increased intrinsic connectivity centred in the amygdala in the right side of the face-processing systems; both increased and decreased positive intrinsic connectivity in the left side of the face-processing systems; and comparable task modulation effect on connectivity. LIMITATIONS: Our study did not include longitudinal neuroimaging data, and there was limited region of interest selection in the DCM analysis. CONCLUSION: Our findings provide evidence for a complex pattern of alterations in the face-processing systems in patients with MDD, potentially involving the right amygdala to a greater extent. The results confirm some previous findings and highlight the crucial role of the regions on both sides of face-processing systems in the pathophysiology of MDD.


Amygdala , Depressive Disorder, Major , Facial Recognition , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Facial Recognition/physiology , Amygdala/diagnostic imaging , Amygdala/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Bayes Theorem , Young Adult , Brain Mapping , Facial Expression , Middle Aged , Reaction Time/physiology
13.
Cortex ; 175: 41-53, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703715

Visual search is speeded when a target is repeatedly presented in an invariant scene context of nontargets (contextual cueing), demonstrating observers' capability for using statistical long-term memory (LTM) to make predictions about upcoming sensory events, thus improving attentional orienting. In the current study, we investigated whether expectations arising from individual, learned environmental structures can encompass multiple target locations. We recorded event-related potentials (ERPs) while participants performed a contextual cueing search task with repeated and non-repeated spatial item configurations. Notably, a given search display could be associated with either a single target location (standard contextual cueing) or two possible target locations. Our result showed that LTM-guided attention was always limited to only one target position in single- but also in the dual-target displays, as evidenced by expedited reaction times (RTs) and enhanced N1pc and N2pc deflections contralateral to one ("dominant") target of up to two repeating target locations. This contrasts with the processing of non-learned ("minor") target positions (in dual-target displays), which revealed slowed RTs alongside an initial N1pc "misguidance" signal that then vanished in the subsequent N2pc. This RT slowing was accompanied by enhanced N200 and N400 waveforms over fronto-central electrodes, suggesting that control mechanisms regulate the competition between dominant and minor targets. Our study thus reveals a dissociation in processing dominant versus minor targets: While LTM templates guide attention to dominant targets, minor targets necessitate control processes to overcome the automatic bias towards previously learned, dominant target locations.


Attention , Cues , Electroencephalography , Evoked Potentials , Reaction Time , Humans , Attention/physiology , Male , Female , Evoked Potentials/physiology , Reaction Time/physiology , Young Adult , Adult , Electroencephalography/methods , Visual Perception/physiology , Photic Stimulation/methods , Orientation/physiology , Memory, Long-Term/physiology
14.
Int J Psychophysiol ; 200: 112356, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701899

Using the N-back task, we investigated how memory load influences the neural activity of the Chinese character cognitive subprocess (recognition, updating, and maintenance) in Mainland Chinese speakers. Twenty-seven participants completed the Chinese character N-back paradigm while having their event-related potentials recorded. The study employed time and frequency domain analyses of EEG data. Results showed that accuracy decreased and response times increased with larger N values. For ERPs, N2pc and P300 amplitudes decreased and SW amplitude increased with larger N values. For time frequency analyses, the desynchronization of alpha oscillations decreased after stimulus onset, but the synchronization of alpha oscillations increased during the maintenance phase. The results suggest that greater memory load is related to a decrease in cognitive resources during updating and an increase in cognitive resources during information maintenance. The results of a behavioral-ERP data structural equation model analysis showed that the ERP indicators in the maintenance phase predicted behavioral performance.


Electroencephalography , Evoked Potentials , Humans , Male , Female , Young Adult , Adult , Evoked Potentials/physiology , Pattern Recognition, Visual/physiology , Memory, Short-Term/physiology , Psychomotor Performance/physiology , Recognition, Psychology/physiology , Reaction Time/physiology , Event-Related Potentials, P300/physiology
15.
Cognition ; 248: 105806, 2024 Jul.
Article En | MEDLINE | ID: mdl-38749291

The typical pattern of alternating turns in conversation seems trivial at first sight. But a closer look quickly reveals the cognitive challenges involved, with much of it resulting from the fast-paced nature of conversation. One core ingredient to turn coordination is the anticipation of upcoming turn ends so as to be able to ready oneself for providing the next contribution. Across two experiments, we investigated two variables inherent to face-to-face conversation, the presence of visual bodily signals and preceding discourse context, in terms of their contribution to turn end anticipation. In a reaction time paradigm, participants anticipated conversational turn ends better when seeing the speaker and their visual bodily signals than when they did not, especially so for longer turns. Likewise, participants were better able to anticipate turn ends when they had access to the preceding discourse context than when they did not, and especially so for longer turns. Critically, the two variables did not interact, showing that visual bodily signals retain their influence even in the context of preceding discourse. In a pre-registered follow-up experiment, we manipulated the visibility of the speaker's head, eyes and upper body (i.e. torso + arms). Participants were better able to anticipate turn ends when the speaker's upper body was visible, suggesting a role for manual gestures in turn end anticipation. Together, these findings show that seeing the speaker during conversation may critically facilitate turn coordination in interaction.


Anticipation, Psychological , Humans , Female , Male , Adult , Young Adult , Anticipation, Psychological/physiology , Visual Perception/physiology , Gestures , Communication , Reaction Time/physiology
16.
Sci Rep ; 14(1): 11817, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783047

We assessed lifespan development of multitasking in a sample of 187 individuals aged 8-82 years. Participants performed a visuo-spatial working memory (VSWM) task together with either postural control or reaction time (RT) tasks. Using criterion-referenced testing we individually adjusted difficulty levels for the VSWM task to control for single-task differences. Age-differences in single-task performances followed U-shaped patterns with young adults outperforming children and older adults. Multitasking manipulations yielded robust performance decrements in VSWM, postural control and RT tasks. Presumably due to our adjustment of VSWM challenges, costs in this task were small and similar across age groups suggesting that age-differential costs found in earlier studies largely reflected differences already present during single-task performance. Age-differences in multitasking costs for concurrent tasks depended on specific combinations. For VSWM and RT task combinations increases in RT were the smallest for children but pronounced in adults highlighting the role of cognitive control processes. Stabilogram diffusion analysis of postural control demonstrated that long-term control mechanisms were affected by concurrent VSWM demands. This interference was pronounced in older adults supporting concepts of compensation or increased cognitive involvement in sensorimotor processes at older age. Our study demonstrates how a lifespan approach can delineate the explanatory scope of models of human multitasking.


Memory, Short-Term , Reaction Time , Humans , Aged , Adult , Adolescent , Child , Female , Male , Aged, 80 and over , Reaction Time/physiology , Middle Aged , Young Adult , Memory, Short-Term/physiology , Postural Balance/physiology , Psychomotor Performance/physiology , Multitasking Behavior/physiology , Task Performance and Analysis , Aging/physiology , Longevity/physiology , Cognition/physiology
17.
Sci Rep ; 14(1): 11796, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783060

As the depth of coal mining increases, the temperature and humidity of the underground environment also rise, which can negatively impact the physiological health of miners, and may even pose a threat to their safety and lives. However, studies on the neurocognitive mechanisms underlying the relationship between temperature, humidity, and miners' alertness are scant. This study investigates several research objectives: (A) the differences in reaction time and error rate in different temperature and humidity conditions, which factor has a greater impact; (B) the differences in the levels of Oxy-Hb in different conditions and which factor has a greater impact; (C) the differences of activation degree between different regions of interest; and (D) the differences in the shape of Oxy-Hb time course between different conditions between different regions of interests. The fNIRS was used to measure the activity in 100 participants' prefrontal cortex in this study. The results showed that both temperature and humidity would lead to decreased alertness of miners, which would not only prolong the reaction time, increase the error rate, and increase the Oxy-Hb concentration, but also lead to increased activation of the prefrontal cortex and greater activation of the right side than that of the left side, the Oxy-Hb time course was different on both sides, and temperature has a greater effect on alertness than humidity.


Humidity , Reaction Time , Spectroscopy, Near-Infrared , Temperature , Humans , Male , Adult , Spectroscopy, Near-Infrared/methods , Reaction Time/physiology , Coal Mining , Miners , Prefrontal Cortex/physiology , Young Adult , Oxyhemoglobins/metabolism , Female
18.
Exp Brain Res ; 242(6): 1495-1505, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704771

Post-error slowing (PES), the tendency to slow down a behavioral response after a previous error, has typically been investigated during simple cognitive tasks using response time as a measure of PES magnitude. More recently, PES was investigated during a single reach-to-grasp task to determine where post-error adjustments are employed in a more ecological setting. Kinematic analyses in the previous study detected PES during pre-movement planning and within the grasping component of movement execution. In the current study (N = 22), we increased the cognitive demands of a reach-to-grasp task by adding a choice between target and distractor locations to further explore PES, and other post-error adjustments, under different task conditions. We observed a significant main effect of task condition on overall reaction time (RT); however, it did not significantly impact PES or other post-error adjustments. Nonetheless, the results of this study suggest post-error adjustment is a flexible process that can be observed during pre-movement planning and within the onset and magnitude of the reaching component, as well as in the magnitudes of the grasping component. Considering the sum of the results in the context of existing literature, we conclude that the findings add support to a functional account of error reactivity, such that post-error adjustments are implemented intentionally to improve performance.


Hand Strength , Psychomotor Performance , Reaction Time , Humans , Psychomotor Performance/physiology , Male , Female , Adult , Young Adult , Reaction Time/physiology , Hand Strength/physiology , Biomechanical Phenomena/physiology , Movement/physiology , Motor Activity/physiology
19.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38724267

Current theories of decision-making propose that decisions arise through competition between choice options. Computational models of the decision process estimate how quickly information about choice options is integrated and how much information is needed to trigger a choice. Experiments using this approach typically report data from well-trained participants. As such, we do not know how the decision process evolves as a decision-making task is learned for the first time. To address this gap, we used a behavioral design separating learning the value of choice options from learning to make choices. We trained male rats to respond to single visual stimuli with different reward values. Then, we trained them to make choices between pairs of stimuli. Initially, the rats responded more slowly when presented with choices. However, as they gained experience in making choices, this slowing reduced. Response slowing on choice trials persisted throughout the testing period. We found that it was specifically associated with increased exponential variability when the rats chose the higher value stimulus. Additionally, our analysis using drift diffusion modeling revealed that the rats required less information to make choices over time. These reductions in the decision threshold occurred after just a single session of choice learning. These findings provide new insights into the learning process of decision-making tasks. They suggest that the value of choice options and the ability to make choices are learned separately and that experience plays a crucial role in improving decision-making performance.


Choice Behavior , Rats, Long-Evans , Reward , Animals , Male , Choice Behavior/physiology , Decision Making/physiology , Rats , Learning/physiology , Reaction Time/physiology , Photic Stimulation/methods , Behavior, Animal/physiology
20.
Am Ann Deaf ; 168(5): 241-257, 2024.
Article En | MEDLINE | ID: mdl-38766937

Our study investigated the differences in speech performance and neurophysiological response in groups of school-age children with unilateral hearing loss (UHL) who were otherwise typically developing (TD). We recruited a total of 16 primary school-age children for our study (UHL = 9/TD = 7), who were screened by doctors at Shin Kong Wu-Ho-Su Memorial Hospital. We used the Peabody Picture Vocabulary Test-Revised (PPVT-R) to test word comprehension, and the PPVT-R percentile rank (PR) value was proportional to the auditory memory score (by The Children's Oral Comprehension Test) in both groups. Later, we assessed the latency and amplitude of auditory ERP P300 and found that the latency of auditory ERP P300 in the UHL group was prolonged compared with that in the TD group. Although students with UHL have typical hearing in one ear, based on our results, long-term UHL might be the cause of atypical organization of brain areas responsible for auditory processing or even visual perceptions attributed to speech delay and learning difficulties.


Event-Related Potentials, P300 , Hearing Loss, Unilateral , Humans , Child , Event-Related Potentials, P300/physiology , Male , Female , Hearing Loss, Unilateral/physiopathology , Hearing Loss, Unilateral/rehabilitation , Reaction Time/physiology , Speech Perception/physiology , Evoked Potentials, Auditory/physiology , China , Case-Control Studies , Language , Comprehension
...