Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.960
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892328

ABSTRACT

Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Curcumin , Photosensitizing Agents , Rec A Recombinases , Curcumin/pharmacology , Photosensitizing Agents/pharmacology , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Photochemotherapy/methods , SOS Response, Genetics/drug effects , Escherichia coli K12/drug effects , Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Povidone/chemistry , Povidone/pharmacology , Microbial Sensitivity Tests , Escherichia coli/drug effects , Light , DNA-Binding Proteins
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906847

ABSTRACT

AIM: Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS: We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/ß-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS: In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Hot Temperature , Rec A Recombinases , Spores, Bacterial , Spores, Bacterial/radiation effects , Spores, Bacterial/genetics , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heating , Membrane Proteins/metabolism , Membrane Proteins/genetics
3.
Commun Biol ; 7(1): 597, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762617

ABSTRACT

In gram-negative bacteria, IS26 often exists in multidrug resistance (MDR) regions, forming a pseudocompound transposon (PCTn) that can be tandemly amplified. It also generates a circular intermediate called the "translocatable unit (TU)", but the TU has been detected only by PCR. Here, we demonstrate that in a Klebsiella pneumoniae MDR clone, mono- and multimeric forms of the TU were generated from the PCTn in a preexisting MDR plasmid where the inserted form of the TU was also tandemly amplified. The two modes of amplification were reproduced by culturing the original clone under antimicrobial selection pressure, and the amplified state was maintained in the absence of antibiotics. Mono- and multimeric forms of the circularized TU were generated in a RecA-dependent manner from the tandemly amplified TU, which can be generated in RecA-dependent and independent manners. These findings provide novel insights into the dynamic processes of genome amplification in bacteria.


Subject(s)
DNA Transposable Elements , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Drug Resistance, Multiple, Bacterial/genetics , DNA Transposable Elements/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Plasmids/genetics , Anti-Bacterial Agents/pharmacology
4.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697010

ABSTRACT

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Subject(s)
DNA, Bacterial , Escherichia coli , Microscopy, Fluorescence , Single Molecule Imaging , Microscopy, Fluorescence/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Single Molecule Imaging/methods , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , SOS Response, Genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Optical Tweezers
5.
Arch Microbiol ; 206(6): 281, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805057

ABSTRACT

As a legume crop widely cultured in the world, faba bean (Vicia faba L.) forms root nodules with diverse Rhizobium species in different regions. However, the symbionts associated with this plant in Mexico have not been studied. To investigate the diversity and species/symbiovar affiliations of rhizobia associated with faba bean in Mexico, rhizobia were isolated from this plant grown in two Mexican sites in the present study. Based upon the analysis of recA gene phylogeny, two genotypes were distinguished among a total of 35 isolates, and they were identified as Rhizobium hidalgonense and Rhizobium redzepovicii, respectively, by the whole genomic sequence analysis. Both the species harbored identical nod gene cluster and the same phylogenetic positions of nodC and nifH. So, all of them were identified into the symbiovar viciae. As a minor group, R. hidalgonense was only isolated from slightly acid soil and R. redzepovicii was the dominant group in both the acid and neutral soils. In addition, several genes related to resistance to metals (zinc, copper etc.) and metalloids (arsenic) were detected in genomes of the reference isolates, which might offer them some adaptation benefits. As conclusion, the community composition of faba bean rhizobia in Mexico was different from those reported in other regions. Furthermore, our study identified sv. viciae as the second symbiovar in the species R. redzepovicii. These results added novel evidence about the co-evolution, diversification and biogeographic patterns of rhizobia in association with their host legumes in distinct geographic regions.


Subject(s)
Phylogeny , Rhizobium , Soil Microbiology , Symbiosis , Vicia faba , Vicia faba/microbiology , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/classification , Mexico , Bacterial Proteins/genetics , Root Nodules, Plant/microbiology , Soil/chemistry , N-Acetylglucosaminyltransferases/genetics , Oxidoreductases/genetics , Rec A Recombinases/genetics , Multigene Family
6.
Nucleic Acids Res ; 52(12): 6977-6993, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808668

ABSTRACT

The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.


Subject(s)
DNA Replication , DNA, Single-Stranded , DnaB Helicases , Mutation , Rec A Recombinases , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , DNA, Single-Stranded/metabolism , DnaB Helicases/metabolism , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Polymerization , DNA-Binding Proteins
7.
Biochem Biophys Res Commun ; 710: 149890, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608491

ABSTRACT

Low level expression in Escherichia coli of the RecA protein from the radiation resistant bacterium Deinococcus radiodurans protects a RecA deficient strain of E. coli from UV-A irradiation by up to ∼160% over basal UV-A resistance. The protection effect is inverse protein dose dependent: increasing the expression level of the D. radiodurans RecA (DrRecA) protein decreases the protection factor. This inverse protein dose dependence effect helps resolve previously conflicting reports of whether DrRecA expression is protective or toxic for E. coli. In contrast to the D. radiodurans protein effect, conspecific plasmid expression of E. coli RecA protein in RecA deficient E. coli is consistently protective over several protein expression levels, as well as consistently more protective to higher levels of UV-A exposure than that provided by the D. radiodurans protein. The results indicate that plasmid expression of D. radiodurans RecA can modestly enhance the UV resistance of living E. coli, but that the heterospecific protein shifts from protective to toxic as expression is increased.


Subject(s)
Deinococcus , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Deinococcus/genetics , Deinococcus/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Plasmids/genetics , Ultraviolet Rays , DNA Repair , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Microbiol Res ; 284: 127713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608339

ABSTRACT

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Deinococcus , Gene Editing , Deinococcus/genetics , Gene Editing/methods , DNA Repair/genetics , Genome, Bacterial , DNA Breaks, Double-Stranded , Homologous Recombination , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids/genetics , Mutagenesis , Genomic Instability , Clustered Regularly Interspaced Short Palindromic Repeats , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , DNA Damage
9.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38567730

ABSTRACT

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Plasmids , Rec A Recombinases , Plasmids/genetics , Escherichia coli/genetics , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Recombination, Genetic , Deoxyribonucleases, Type I Site-Specific/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/genetics , DNA, Bacterial/metabolism , DNA Transposable Elements/genetics , DNA Restriction Enzymes , DNA-Binding Proteins
10.
Drug Resist Updat ; 75: 101087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678745

ABSTRACT

In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Rec A Recombinases , SOS Response, Genetics , SOS Response, Genetics/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Ciprofloxacin/pharmacology , Humans , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Drug Resistance, Bacterial/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Damage/drug effects , Whole Genome Sequencing , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects , Adaptation, Physiological , DNA Repair/drug effects , DNA-Binding Proteins
11.
Antimicrob Agents Chemother ; 68(5): e0146223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534113

ABSTRACT

Although the mechanistic connections between SOS-induced mutagenesis and antibiotic resistance are well established, our current understanding of the impact of SOS response levels, recovery durations, and transcription/translation activities on mutagenesis remains relatively limited. In this study, when bacterial cells were exposed to mutagens like ultraviolet light for defined time intervals, a compelling connection between the rate of mutagenesis and the RecA-mediated SOS response levels became evident. Our observations also indicate that mutagenesis primarily occurs during the subsequent recovery phase following the removal of the mutagenic agent. When transcription/translation was inhibited or energy molecules were depleted at the onset of treatment or during the early recovery phase, there was a noticeable decrease in SOS response activation and mutagenesis. However, targeting these processes later in the recovery phase does not have the same effect in reducing mutagenesis, suggesting that the timing of inhibiting transcription/translation or depleting energy molecules is crucial for their efficacy in reducing mutagenesis. Active transcription, translation, and energy availability within the framework of SOS response and DNA repair mechanisms appear to be conserved attributes, supported by their consistent manifestation across diverse conditions, including the use of distinct mutagens such as fluoroquinolones and various bacterial strains.


Subject(s)
Escherichia coli , Mutagenesis , Rec A Recombinases , SOS Response, Genetics , Ultraviolet Rays , SOS Response, Genetics/drug effects , SOS Response, Genetics/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Anti-Bacterial Agents/pharmacology , DNA Repair , Mutagens/pharmacology , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Transcription, Genetic
12.
Int J Biol Macromol ; 261(Pt 2): 129843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302027

ABSTRACT

Homologous recombination plays a key role in double-strand break repair, stalled replication fork repair, and meiosis. The RecA/Rad51 family recombinases catalyze the DNA strand invasion reaction that occurs during homologous recombination. However, the high sequence differences between homologous groups have hindered the thoroughly studies of this ancient protein family. The dynamic mechanisms of the family, particularly at the residual level, remain poorly understood. In this work, five representative RecA/Rad51 recombinase family members from all major kingdoms of living organisms: prokaryotes, eukaryotes, archaea, and viruses, were selected to explore the molecular mechanisms behind their conserved biological significance. A variety of techniques, including all-atom molecular dynamics simulation, perturbation response scanning, and protein structure network analysis, were used to examine the flexibility and correlation of protein domains, distribution of sensors and effectors and conserved hub residues. Furthermore, the potential communication routes between the ATP-binding region and the DNA-binding region of each recombinase were identified. Our results demonstrate the conserved molecular dynamics of these recombinases in the early stage of homologous recombination, including cooperative motions between regions, conserved sensing and effecting functional residue distribution, and conserved hub residues. Meanwhile, the unique ATP-DNA communication routes of each recombinase was also revealed. These results provide new insights into the mechanism of RecA/Rad51 family proteins, and provide new theoretical guidance for the development of allosteric inhibitors and the application of RecA/Rad51 family proteins.


Subject(s)
Rad51 Recombinase , Rec A Recombinases , Rad51 Recombinase/genetics , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , DNA-Binding Proteins/metabolism , DNA, Single-Stranded , DNA/chemistry , Recombinases/genetics , Recombinases/metabolism , Adenosine Triphosphate
13.
PLoS One ; 18(7): e0288611, 2023.
Article in English | MEDLINE | ID: mdl-37440583

ABSTRACT

In E. coli, double strand breaks (DSBs) are resected and loaded with RecA protein. The genome is then rapidly searched for a sequence that is homologous to the DNA flanking the DSB. Mismatches in homologous partners are rare, suggesting that RecA should rapidly reject mismatched recombination products; however, this is not the case. Decades of work have shown that long lasting recombination products can include many mismatches. In this work, we show that in vitro RecA forms readily observable recombination products when 16% of the bases in the product are mismatched. We also consider various theoretical models of mismatch-tolerant homology testing. The models test homology by comparing the sequences of Ltest bases in two single-stranded DNAs (ssDNA) from the same genome. If the two sequences pass the homology test, the pairing between the two ssDNA becomes permanent. Stringency is the fraction of permanent pairings that join ssDNA from the same positions in the genome. We applied the models to both randomly generated genomes and bacterial genomes. For both randomly generated genomes and bacterial genomes, the models show that if no mismatches are accepted stringency is ∼ 99% when Ltest = 14 bp. For randomly generated genomes, stringency decreases with increasing mismatch tolerance, and stringency improves with increasing Ltest. In contrast, in bacterial genomes when Ltest ∼ 75 bp, stringency is ∼ 99% for both mismatch-intolerant and mismatch-tolerant homology testing. Furthermore, increasing Ltest does not improve stringency because most incorrect pairings join different copies of repeats. In sum, for bacterial genomes highly mismatch tolerant homology testing of 75 bp provides the same stringency as homology testing that rejects all mismatches and testing more than ∼75 base pairs is not useful. Interestingly, in vivo commitment to recombination typically requires homology testing of ∼ 75 bp, consistent with highly mismatch intolerant testing.


Subject(s)
DNA , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Base Pairing , DNA, Single-Stranded/genetics , Recombination, Genetic
14.
J Integr Plant Biol ; 65(9): 2107-2121, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37293848

ABSTRACT

Meiotic crossover (CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2 (BRCA2) and AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filaments. Our results revealed that ZmBRCA2 is not only involved in the repair of DNA double-stranded breaks (DSBs), but also regulates CO formation in a dosage-dependent manner. In addition, ZmFIGL1 interacts with RAD51 and DMC1, and Zmfigl1 mutants had a significantly reduced number of RAD51/DMC1 foci and COs. Further, simultaneous loss of ZmFIGL1 and ZmBRCA2 abolished RAD51/DMC1 foci and exacerbated meiotic defects compared with the single mutant Zmbrca2 or Zmfigl1. Together, our data demonstrate that ZmBRCA2 and ZmFIGL1 act coordinately to regulate the dynamics of RAD51/DMC1-dependent DSB repair to promote CO formation in maize. This conclusion is surprisingly different from the antagonistic roles of BRCA2 and FIGL1 in Arabidopsis, implying that, although key factors that control CO formation are evolutionarily conserved, specific characteristics have been adopted in diverse plant species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Zea mays/genetics , Zea mays/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , DNA Repair , Arabidopsis/genetics , Arabidopsis/metabolism , DNA/metabolism , Meiosis/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Microtubule-Associated Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
15.
Molecules ; 28(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110596

ABSTRACT

RecA family recombinases are the core enzymes in the process of homologous recombination, and their normal operation ensures the stability of the genome and the healthy development of organisms. The UvsX protein from bacteriophage T4 is a member of the RecA family recombinases and plays a central role in T4 phage DNA repair and replication, which provides an important model for the biochemistry and genetics of DNA metabolism. UvsX shares a high degree of structural similarity and function with RecA, which is the most deeply studied member of the RecA family. However, the detailed molecular mechanism of UvsX has not been resolved. In this study, a comprehensive all-atom molecular dynamics simulation of the UvsX protein dimer complex was carried out in order to investigate the conformational and binding properties of UvsX in combination with ATP and DNA, and the simulation of RecA was synchronized with the property comparison learning for UvsX. This study confirmed the highly conserved molecular structure characteristics and catalytic centers of RecA and UvsX, and also discovered differences in regional conformation, volatility and the ability to bind DNA between the two proteins at different temperatures, which would be helpful for the subsequent understanding and application of related recombinases.


Subject(s)
Recombinases , Viral Proteins , Recombinases/genetics , Recombinases/metabolism , Viral Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Rec A Recombinases/genetics , Bacteriophage T4/chemistry , DNA, Single-Stranded
16.
J Biochem ; 174(3): 227-237, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37115499

ABSTRACT

Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Staphylococcus aureus/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Homologous Recombination , DNA , Adenosine Triphosphate/metabolism , DNA, Single-Stranded
17.
Nucleic Acids Res ; 51(5): 2270-2283, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36807462

ABSTRACT

The recombinase RecA/Rad51 ATPase family proteins catalyze paramount DNA strand exchange reactions that are critically involved in maintaining genome integrity. However, it remains unclear how DNA strand exchange proceeds when encountering RecA-free defects in recombinase nucleoprotein filaments. Herein, by designing a series of unique substrates (e.g. truncated or conjugated incoming single-stranded DNA, and extended donor double-stranded DNA) and developing a two-color alternating excitation-modified single-molecule real-time fluorescence imaging assay, we resolve the two key steps (donor strand separation and new base-pair formation) that are usually inseparable during the reaction, revealing a novel long-range flanking strand separation activity of synaptic RecA nucleoprotein filaments. We further evaluate the kinetics and free energetics of strand exchange reactions mediated by various substrates, and elucidate the mechanism of flanking strand separation. Based on these findings, we propose a potential fundamental molecular model involved in flanking strand separation, which provides new insights into strand exchange mechanism and homologous recombination.


Subject(s)
Nucleoproteins , Recombination, Genetic , Nucleoproteins/genetics , Adenosine Triphosphate/metabolism , DNA/genetics , DNA/chemistry , DNA, Single-Stranded/genetics , Rec A Recombinases/genetics , Rad51 Recombinase/metabolism
18.
Proc Natl Acad Sci U S A ; 120(8): e2213867120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36795748

ABSTRACT

Homologous recombination (HR) is a crucial mechanism of DNA strand exchange that promotes genetic repair and diversity in all kingdoms of life. Bacterial HR is driven by the universal recombinase RecA, assisted in the early steps by dedicated mediators that promote its polymerization on single-stranded DNA (ssDNA). In bacteria, natural transformation is a prominent HR-driven mechanism of horizontal gene transfer specifically dependent on the conserved DprA recombination mediator. Transformation involves internalization of exogenous DNA as ssDNA, followed by its integration into the chromosome by RecA-directed HR. How DprA-mediated RecA filamentation on transforming ssDNA is spatiotemporally coordinated with other cellular processes remains unknown. Here, we tracked the localization of fluorescent fusions to DprA and RecA in Streptococcus pneumoniae and revealed that both accumulate in an interdependent manner with internalized ssDNA at replication forks. In addition, dynamic RecA filaments were observed emanating from replication forks, even with heterologous transforming DNA, which probably represent chromosomal homology search. In conclusion, this unveiled interaction between HR transformation and replication machineries highlights an unprecedented role for replisomes as landing pads for chromosomal access of tDNA, which would define a pivotal early HR step for its chromosomal integration.


Subject(s)
Rec A Recombinases , Streptococcus pneumoniae , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosomes/metabolism , DNA/metabolism , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism
19.
Plant Reprod ; 36(1): 17-41, 2023 03.
Article in English | MEDLINE | ID: mdl-35641832

ABSTRACT

Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.


Subject(s)
DNA Breaks, Double-Stranded , Rec A Recombinases , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Eukaryota/metabolism , DNA Repair , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Recombinases/genetics , Nucleoproteins/genetics , Meiosis
20.
Infect Genet Evol ; 107: 105396, 2023 01.
Article in English | MEDLINE | ID: mdl-36549419

ABSTRACT

Vibrio parahaemolyticus is a gram-negative bacterium capable of causing diseases in humans and aquatic animals. The global relationships among V. parahaemolyticus genomes have been studied using multilocus sequence typing (MLST). Recently, the MLST gene recA has shown difficulties in amplification and/or a larger PCR fragment for some V. parahaemolyticus genomes due to genetic recombination. We aimed to investigate these recombination events of recA gene by analyzing 500 publicly available whole genomes from the NCBI database. The genomes with untypable recA genes were separated using BIGSdb and CGEMLST 2.0 servers, followed by annotation with RAST and NCBI pipelines. Moreover, the variable nature of V. parahaemolyticus was investigated by wgMLST analysis. The hypothetical proteins in recombinant regions were analyzed with VCIMPred tool. In the results, 3 genomes were detected with recA gene recombination, in which 2 were associated with phages and 1 to an AHPND causing strain. All 3 recombinant regions had a G + C content of 39%-40% with 15-30 ORFs, including a newly incorporated recA gene. These acquired recA genes were closely related to 3 different genera namely Aliivibrio, Photobacterium, and Vibrio. The wgMLST analysis indicated genetic recombination events occur independently among V. parahaemolyticus on a global scale. The in silico analysis revealed 4 hypothetical proteins associated with virulence factors in recombinant regions. The present study confirms, recombination events of V. parahaemolyticus recA gene, are diverse and may have an impact on the evolutionary process. Moreover, understanding these genetic recombination events of the recA gene is necessary to determine their STs and, therefore assessing epidemiological relationships.


Subject(s)
Rec A Recombinases , Recombination, Genetic , Vibrio Infections , Vibrio parahaemolyticus , Animals , Humans , Multilocus Sequence Typing , Phylogeny , Rec A Recombinases/genetics , Vibrio Infections/microbiology , Vibrio parahaemolyticus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...