Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.930
Filter
1.
Bull Math Biol ; 86(9): 116, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107447

ABSTRACT

Bladder cancer poses a significant global health burden with high incidence and recurrence rates. This study addresses the therapeutic challenges in advanced bladder cancer, focusing on the competitive mechanisms of ligand or drug binding to receptors. We developed a refined mathematical model that integrates the dynamics of tumor cells and immune responses, particularly targeting fibroblast growth factor receptor 3 (FGFR3) and immune checkpoint inhibitors (ICIs). This study contributes to understanding combination therapies by elucidating the competitive binding dynamics and quantifying the synergistic effects. The findings highlight the importance of personalized immunotherapeutic strategies, considering factors such as drug dosage, dosing schedules, and patient-specific parameters. Our model further reveals that ligand-independent activated-state receptors are the most essential drivers of tumor proliferation. Moreover, we found that PD-L1 expression rate was more important than PD-1 in driving the dynamic evolution of tumor and immune cells. The proposed mathematical model provides a comprehensive framework for unraveling the complexities of combination therapies in advanced bladder cancer. As research progresses, this multidisciplinary approach contributes valuable insights toward optimizing therapeutic strategies and advancing cancer treatment paradigms.


Subject(s)
Immune Checkpoint Inhibitors , Mathematical Concepts , Programmed Cell Death 1 Receptor , Receptor, Fibroblast Growth Factor, Type 3 , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , B7-H1 Antigen/immunology , B7-H1 Antigen/antagonists & inhibitors , Models, Biological , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Models, Immunological , Immunotherapy/methods , Computer Simulation
2.
BMC Cancer ; 24(1): 971, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118085

ABSTRACT

BACKGROUND: Urinary bladder cancer, is the 10th most common global cancer, diagnosed in over 600,000 people causing 200,000 deaths annually. Artemisinin and its derivatives are safe compounds that have recently been proven to possess potent anti-tumor effects in vivo, through inhibition of cancer cell growth. The aim of this study is to assess the efficiency of artemisinin as a cancer treatment alone and as a pre-treatment fore cisplatin therapy for high grade urothelial carcinoma. METHODS: Sixty male albino mice were divided into six groups, and BBN was used to induce urinary bladder cancer. Blood samples were tested for renal functions and complete blood counts, kidney and urinary bladder tissues were harvested for histopathological examination. Total RNAs from urinary bladder tissues was collected, and gene expression of FGFR3, HRAS, P53, and KDM6A was quantified using qRT-PCR. RESULTS: Compared to the induced cancer group, the results revealed that FGFR3 expression levels were down-regulated in the induced cancer group treated by artemisinin only and the induced cancer group pre-treated with artemisinin prior to cisplatin by ~ 0.86-fold and 0.4-folds, respectively, aligning with HRAS down-regulation by ~ 9.54-fold and 9.05-fold, respectively. Whereas, P53 expression levels were up-regulated by ~ 0.68-fold and 0.84-fold, respectively, in parallel with KDM6A expression, which is up-regulated by ~ 0.95-folds and 5.27-folds, respectively. Also, serum creatinine and urea levels decreased significantly in the induced cancer group treated by artemisinin alone and the induced cancer group pre-treated with artemisinin prior to cisplatin, whereas the induced cancer group treated by cisplatin their levels increased significantly. Moreover, Hb, PLT, RBC, and WBC counts improved in both cancer groups treated by artemisinin alone and pre-treated with artemisinin prior to cisplatin. Histologically, in kidney tissues, artemisinin pre-treatment significantly reduced renal injury caused by cisplatin. While Artemisinin treatment for cancer in bladder tissues reverted invasive urothelial carcinoma to moderate urothelial dysplasia. CONCLUSIONS: This study indicates that artemisinin demonstrated a significant effect in reversal of the multi-step carcinogenesis process of high grade urothelial carcinoma and could enhance the effect of cisplatin therapy using artemisinin pre-treatment.


Subject(s)
Artemisinins , Cisplatin , Gene Expression Regulation, Neoplastic , Histone Demethylases , Receptor, Fibroblast Growth Factor, Type 3 , Tumor Suppressor Protein p53 , Urinary Bladder Neoplasms , Animals , Cisplatin/pharmacology , Cisplatin/therapeutic use , Male , Artemisinins/pharmacology , Artemisinins/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Mice , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/metabolism , Histone Demethylases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Disease Models, Animal , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Exp Mol Med ; 56(7): 1631-1642, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951140

ABSTRACT

The amyloid cascade hypothesis suggests that amyloid beta (Aß) contributes to initiating subsequent tau pathology in Alzheimer's disease (AD). However, the underlying mechanisms through which Aß contributes to tau uptake and propagation remain poorly understood. Here, we show that preexisting amyloid pathology accelerates the uptake of extracellular tau into neurons. Using quantitative proteomic analysis of endocytic vesicles, we reveal that Aß induces the internalization of fibroblast growth factor receptor 3 (FGFR3). Extracellular tau binds to the extracellular domain of FGFR3 and is internalized by the FGFR3 ligand, fibroblast growth factor 2 (FGF2). Aß accelerates FGF2 secretion from neurons, thereby inducing the internalization of tau-attached FGFR3. Knockdown of FGFR3 in the hippocampus reduces tau aggregation by decreasing tau uptake and improving memory function in AD model mice. These data suggest FGFR3 in neurons as a novel tau receptor and a key mediator of Aß-induced tau uptake in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Neurons , Receptor, Fibroblast Growth Factor, Type 3 , tau Proteins , tau Proteins/metabolism , Animals , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Amyloid beta-Peptides/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/etiology , Humans , Neurons/metabolism , Hippocampus/metabolism , Fibroblast Growth Factor 2/metabolism , Disease Models, Animal , Protein Binding
4.
Drug Dev Res ; 85(5): e22228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952003

ABSTRACT

Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 µM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.


Subject(s)
Antineoplastic Agents , Chromones , ErbB Receptors , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 3 , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Mice , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/therapeutic use , Drug Design , Apoptosis/drug effects , Cell Proliferation/drug effects
5.
Cancer Res ; 84(13): 2169-2180, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39082679

ABSTRACT

The receptor tyrosine kinase FGFR3 is frequently mutated in bladder cancer and is a validated therapeutic target. Although pan-FGFR tyrosine kinase inhibitors (TKI) have shown clinical efficacy, toxicity and acquired resistance limit the benefit of these agents. While antibody-based therapeutics can offer superior selectivity than TKIs, conventional ligand-blocking antibodies are usually ineffective inhibitors of constitutively active receptor tyrosine kinases. Furthermore, the existence of multiple oncogenic variants of FGFR3 presents an additional challenge for antibody-mediated blockade. Here, we developed a tetravalent FGFR3×FGFR3 bispecific antibody that inhibited FGFR3 point mutants and fusion proteins more effectively than any of the conventional FGFR3 antibodies that we produced. Each arm of the bispecific antibody contacted two distinct epitopes of FGFR3 through a cis mode of binding. The antibody blocked dimerization of the most common FGFR3 oncogenic variant (S249C extracellular domain mutation) and inhibited the function of FGFR3 variants that are resistant to pan-FGFR TKIs. The antibody was highly effective in suppressing growth of FGFR3-driven tumor models, providing efficacy comparable to that of the FDA-approved TKI erdafitinib. Thus, this bispecific antibody may provide an effective approach for broad and highly selective inhibition of oncogenic FGFR3 variants. Significance: Development of a bispecific antibody that broadly inhibits gain-of-function FGFR3 variants provides a therapeutic strategy to target tumors with oncogenic FGFR3 point mutations and fusions, a particularly difficult case for antibody blockade.


Subject(s)
Antibodies, Bispecific , Receptor, Fibroblast Growth Factor, Type 3 , Urinary Bladder Neoplasms , Antibodies, Bispecific/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/immunology , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Humans , Animals , Mice , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Point Mutation
6.
Nat Commun ; 15(1): 4820, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844479

ABSTRACT

Chondrocyte differentiation controls skeleton development and stature. Here we provide a comprehensive map of chondrocyte-specific enhancers and show that they provide a mechanistic framework through which non-coding genetic variants can influence skeletal development and human stature. Working with fetal chondrocytes isolated from mice bearing a Col2a1 fluorescent regulatory sensor, we identify 780 genes and 2'704 putative enhancers specifically active in chondrocytes using a combination of RNA-seq, ATAC-seq and H3K27ac ChIP-seq. Most of these enhancers (74%) show pan-chondrogenic activity, with smaller populations being restricted to limb (18%) or trunk (8%) chondrocytes only. Notably, genetic variations overlapping these enhancers better explain height differences than those overlapping non-chondrogenic enhancers. Finally, targeted deletions of identified enhancers at the Fgfr3, Col2a1, Hhip and, Nkx3-2 loci confirm their role in regulating cognate genes. This enhancer map provides a framework for understanding how genes and non-coding variations influence bone development and diseases.


Subject(s)
Chondrocytes , Chondrogenesis , Enhancer Elements, Genetic , Receptor, Fibroblast Growth Factor, Type 3 , Animals , Enhancer Elements, Genetic/genetics , Humans , Chondrocytes/metabolism , Chondrocytes/cytology , Mice , Chondrogenesis/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression Regulation, Developmental , Bone Development/genetics , Extremities/embryology , Male , Cell Differentiation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Female
7.
Cell Rep Med ; 5(6): 101608, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38866015

ABSTRACT

While mutational signatures provide a plethora of prognostic and therapeutic insights, their application in clinical-setting, targeted gene panels is extremely limited. We develop a mutational representation model (which learns and embeds specific mutation signature connections) that enables prediction of dominant signatures with only a few mutations. We predict the dominant signatures across more than 60,000 tumors with gene panels, delineating their landscape across different cancers. Dominant signature predictions in gene panels are of clinical importance. These included UV, tobacco, and apolipoprotein B mRNA editing enzyme, catalytic polypeptide (APOBEC) signatures that are associated with better survival, independently from mutational burden. Further analyses reveal gene and mutation associations with signatures, such as SBS5 with TP53 and APOBEC with FGFR3S249C. In a clinical use case, APOBEC signature is a robust and specific predictor for resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Our model provides an easy-to-use way to detect signatures in clinical setting assays with many possible clinical implications for an unprecedented number of cancer patients.


Subject(s)
Mutation , Neoplasms , Humans , Mutation/genetics , Neoplasms/genetics , ErbB Receptors/genetics , Protein Kinase Inhibitors/pharmacology , Tumor Suppressor Protein p53/genetics , Neural Networks, Computer , Receptor, Fibroblast Growth Factor, Type 3/genetics
8.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821585

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
9.
Nat Med ; 30(6): 1645-1654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710951

ABSTRACT

Fibroblast growth factor receptor (FGFR) alterations drive oncogenesis in multiple tumor types. Here we studied pemigatinib, a selective, potent, oral FGFR1-FGFR3 inhibitor, in the phase 2 FIGHT-207 basket study of FGFR-altered advanced solid tumors. Primary end points were objective response rate (ORR) in cohorts A (fusions/rearrangements, n = 49) and B (activating non-kinase domain mutations, n = 32). Secondary end points were progression-free survival, duration of response and overall survival in cohorts A and B, and safety. Exploratory end points included ORR of cohort C (kinase domain mutations, potentially pathogenic variants of unknown significance, n = 26) and analysis of co-alterations associated with resistance and response. ORRs for cohorts A, B and C were 26.5% (13/49), 9.4% (3/32) and 3.8% (1/26), respectively. Tumors with no approved FGFR inhibitors or those with alterations not previously confirmed to be sensitive to FGFR inhibition had objective responses. In cohorts A and B, the median progression-free survival was 4.5 and 3.7 months, median duration of response was 7.8 and 6.9 months and median overall survival was 17.5 and 11.4 months, respectively. Safety was consistent with previous reports. The most common any-grade treatment-emergent adverse events were hyperphosphatemia (84%) and stomatitis (53%). TP53 co-mutations were associated with lack of response and BAP1 alterations with higher response rates. FGFR1-FGFR3 gatekeeper and molecular brake mutations led to acquired resistance. New therapeutic areas for FGFR inhibition and drug failure mechanisms were identified across tumor types. ClinicalTrials.gov identifier: NCT03822117 .


Subject(s)
Neoplasms , Pyrimidines , Receptor, Fibroblast Growth Factor, Type 1 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Female , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , Male , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Middle Aged , Adult , Aged , Mutation , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Progression-Free Survival , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Morpholines , Pyrroles
10.
J Clin Neuromuscul Dis ; 25(4): 171-177, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38771226

ABSTRACT

OBJECTIVES: Small fiber neuropathy presents a significant diagnostic and therapeutic challenge. To solve this challenge, efforts have been made to identify autoantibodies associated with this condition. Previous literature has often considered tri-sulfated heparin disaccharide (TS-HDS) and fibroblast growth factor receptor 3 (FGFR3) as a singular seropositive group and/or focused primarily on symptomatic associations. METHODS: One hundred seventy-two small fiber neuropathy patients with a Washington University Sensory Neuropathy panel were selected for TS-HDS seropositivity, FGFR-3 seropositivity, and seronegative controls. Data were collected to on the demographic, symptomatic, and laboratory profiles of each subgroup. RESULTS: Percent female (P = 0.0043), frequency of neuropathic pain symptoms (P = 0.0074), and erythrocyte sedimentation rate (P = 0.0293), vitamin D (P < 0.0001), and vitamin B12 (P = 0.0033) differed between the groups. Skin biopsy was more frequently normal within both the FGFR-3 and the TS-HDS cohort (P = 0.0253). CONCLUSIONS: TS-HDS and FGFR-3 display a distinct phenotype from both controls and one another. Immunoglobulin M (IgM) against FGFR-3 and IgM against TS-HDS may be individually valuable markers for the development of distinct clinical phenotypes.


Subject(s)
Autoantibodies , Neural Conduction , Receptor, Fibroblast Growth Factor, Type 3 , Small Fiber Neuropathy , Humans , Female , Small Fiber Neuropathy/diagnosis , Middle Aged , Male , Neural Conduction/physiology , Aged , Adult , Autoantibodies/blood , Heparin/analogs & derivatives , Immunoglobulin M/blood , Heparitin Sulfate/blood , Nerve Conduction Studies , Disaccharides
11.
Am J Med Genet A ; 194(9): e63646, 2024 09.
Article in English | MEDLINE | ID: mdl-38702915

ABSTRACT

Molecular genetics enables more precise diagnoses of skeletal dysplasia and other skeletal disorders (SDs). We investigated the clinical utility of multigene panel testing for 5011 unrelated individuals with SD in the United States (December 2019-April 2022). Median (range) age was 8 (0-90) years, 70.5% had short stature and/or disproportionate growth, 27.4% had a positive molecular diagnosis (MDx), and 30 individuals received two MDx. Genes most commonly contributing to MDx were FGFR3 (16.9%), ALPL (13.0%), and COL1A1 (10.3%). Most of the 112 genes associated with ≥1 MDx were primarily involved in signal transduction (n = 35), metabolism (n = 23), or extracellular matrix organization (n = 17). There were implications associated with specific care/treatment options for 84.4% (1158/1372) of MDx-positive individuals; >50% were linked to conditions with targeted therapy approved or in clinical development, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and mucopolysaccharidosis. Forty individuals with initially inconclusive results became MDx-positive following family testing. Follow-up mucopolysaccharidosis enzyme activity testing was positive in 14 individuals (10 of these were not MDx-positive). Our findings showed that inclusion of metabolic genes associated with SD increased the clinical utility of a gene panel and confirmed that integrated use of comprehensive gene panel testing with orthogonal testing reduced the burden of inconclusive results.


Subject(s)
Genetic Testing , Humans , Child , Child, Preschool , Adolescent , Male , Female , Infant , Adult , Infant, Newborn , Genetic Testing/methods , Middle Aged , Young Adult , Aged , Aged, 80 and over , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/diagnosis , Receptor, Fibroblast Growth Factor, Type 3/genetics , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/pathology , Cohort Studies
12.
Endocr J ; 71(7): 643-650, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38569854

ABSTRACT

Achondroplasia (ACH) is a representative skeletal disorder characterized by rhizomelic shortened limbs and short stature. ACH is classified as belonging to the fibroblast growth factor receptor 3 (FGFR3) group. The downstream signal transduction of FGFR3 consists of STAT1 and RAS/RAF/MEK/ERK pathways. The mutant FGFR3 found in ACH is continuously phosphorylated and activates downstream signals, resulting in abnormal proliferation and differentiation of chondrocytes in the growth plate and cranial base synchondrosis. A patient registry has been developed and has contributed to revealing the natural history of ACH patients. Concerning the short stature, the adult height of ACH patients ranges between 126.7-135.2 cm for men and 119.9-125.5 cm for women in many countries. Along with severe short stature, foramen magnum stenosis and spinal canal stenosis are major complications: the former leads to sleep apnea, breathing disorders, myelopathy, hydrocephalus, and sudden death, and the latter causes pain in the extremities, numbness, muscle weakness, movement disorders, intermittent claudication, and bladder-rectal disorders. Growth hormone treatment is available for ACH only in Japan. However, the effect of the treatment on adult height is not satisfactory. Recently, the neutral endopeptidase-resistant CNP analogue vosoritide has been approved as a new drug for ACH. Additionally in development are a tyrosine kinase inhibitor, a soluble FGFR3, an antibody against FGFR3, meclizine, and the FGF2-aptamer. New drugs will bring a brighter future for patients with ACH.


Subject(s)
Achondroplasia , Receptor, Fibroblast Growth Factor, Type 3 , Achondroplasia/drug therapy , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Drug Development , Natriuretic Peptide, C-Type/analogs & derivatives
14.
J Urol ; 211(6): 784-793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573872

ABSTRACT

PURPOSE: We initiated a biomarker-informed preoperative study of infigratinib, a fibroblast growth factor receptor (FGFR) inhibitor, in patients with localized upper tract urothelial carcinoma (UTUC), a population with high unmet needs and tumor with a high frequency of FGFR3 alterations. MATERIALS AND METHODS: Patients with localized UTUC undergoing ureteroscopy or nephroureterectomy/ureterectomy were enrolled on a phase 1b trial (NCT04228042). Once-daily infigratinib 125 mg by mouth × 21 days (28-day cycle) was given for 2 cycles. Tolerability was monitored by Bayesian design and predefined stopping boundaries. The primary endpoint was tolerability, and the secondary endpoint was objective response based on tumor mapping, done after endoscopic biopsy and post-trial surgery. Total planned enrollment: 20 patients. Targeted sequencing performed using a NovaSeq 6000 solid tumor panel. RESULTS: From May 2021 to November 2022, 14 patients were enrolled, at which point the trial was closed due to termination of all infigratinib oncology trials. Two patients (14.3%) had treatment-terminating toxicities, well below the stopping threshold. Responses occurred in 6 (66.7%) of 9 patients with FGFR3 alterations. Responders had median tumor size reduction of 67%, with 3 of 5 patients initially planned for nephroureterectomy/ureterectomy converted to ureteroscopy. Median follow-up in responders was 24.7 months (14.9-28.9). CONCLUSIONS: In this first trial of targeted therapy for localized UTUC, FGFR inhibition was well tolerated and had significant activity in FGFR3 altered tumors. Renal preservation was enabled in a substantial proportion of participants. These data support the design of a biomarker-driven phase 2 trial of FGFR3 inhibition in this population with significant unmet clinical needs.


Subject(s)
Carcinoma, Transitional Cell , Ureteral Neoplasms , Humans , Male , Female , Aged , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/surgery , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/genetics , Middle Aged , Ureteral Neoplasms/drug therapy , Ureteral Neoplasms/surgery , Ureteral Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Ureteroscopy/adverse effects , Nephroureterectomy , Aged, 80 and over , Treatment Outcome , Phenylurea Compounds , Pyrimidines
15.
J Bone Miner Res ; 39(6): 765-774, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38590263

ABSTRACT

Achondroplasia (ACH), the most common form of disproportionate short stature, is caused by gain-of-function point mutations in fibroblast growth factor receptor 3 (FGFR3). Abnormally elevated activation of FGFR3 modulates chondrocyte proliferation and differentiation via multiple signaling pathways, such as the MAPK pathway. Using a mouse model mimicking ACH (Fgfr3Y367C/+), we have previously shown that daily treatment with infigratinib (BGJ398), a selective and orally bioavailable FGFR1-3 inhibitor, at a dose of 2 mg/kg, significantly increased bone growth. In this study, we investigated the activity of infigratinib administered at substantially lower doses (0.2 and 0.5 mg/kg, given once daily) and using an intermittent dosing regimen (1 mg/kg every 3 days). Following a 15-day treatment period, these low dosages were sufficient to observe significant improvement of clinical hallmarks of ACH such as growth of the axial and appendicular skeleton and skull development. Immunohistological labeling demonstrated the positive impact of infigratinib on chondrocyte differentiation in the cartilage growth plate and the cartilage end plate of the vertebrae. Macroscopic and microcomputed analyses showed enlargement of the foramen magnum area at the skull base, thus improving foramen magnum stenosis, a well-recognized complication in ACH. No changes in FGF23 or phosphorus levels were observed, indicating that the treatment did not modify phosphate homeostasis. This proof-of-concept study demonstrates that infigratinib administered at low doses has the potential to be a safe and effective therapeutic option for children with ACH.


Subject(s)
Achondroplasia , Disease Models, Animal , Growth Plate , Pyrimidines , Animals , Achondroplasia/drug therapy , Achondroplasia/pathology , Growth Plate/drug effects , Growth Plate/pathology , Growth Plate/metabolism , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Mice , Phenylurea Compounds/pharmacology , Phenylurea Compounds/administration & dosage , Bone Development/drug effects , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Dose-Response Relationship, Drug , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/metabolism
16.
Anticancer Res ; 44(5): 1947-1954, 2024 May.
Article in English | MEDLINE | ID: mdl-38677755

ABSTRACT

BACKGROUND/AIM: Recent studies have reported conflicting findings regarding the significance of hydronephrosis (HN) in muscle-invasive bladder cancer (MIBC). The molecular characteristics of MIBC with HN are unclear, therefore, we aimed to address the gaps in previous research and elucidate HN's molecular significance in patients with MIBC. MATERIALS AND METHODS: Clinical, genetic, and imaging information on bladder cancer patients enrolled in The Cancer Genome Atlas were obtained from public databases to analyze the association between the presence of hydronephrosis and genetic alterations and molecular subtyping. A total of 108 patients who underwent total cystectomy for MIBC at the Hiroshima University Hospital were enrolled in the study to verify the association between HN and renal function with patient prognosis. RESULTS: We observed a statistically significant difference in the distribution of molecular subtypes (p=0.0146). The proportion of patients with the luminal papillary subtype was approximately twice as high in patients with HN (48.8%) than in those without HN (25.0%). The mutation frequency of fibroblast growth factor receptor (FGFR) 3 was approximately three-fold higher in patients with HN (20.9%) than in those without HN (7.1%). Multivariate analysis, which considered HN and estimated glomerular filtration rate as confounding factors in our MIBC cohort, revealed that reduced renal function, but not HN, was an independent predictor for overall survival. CONCLUSION: MIBC presenting HN exhibits a high frequency of mutations in the FGFR3 gene. In addition, not HN itself, but reduced renal function due to HN may worsen the prognosis for MIBC.


Subject(s)
Hydronephrosis , Receptor, Fibroblast Growth Factor, Type 3 , Urinary Bladder Neoplasms , Female , Humans , Male , Cystectomy , Hydronephrosis/genetics , Hydronephrosis/etiology , Mutation , Neoplasm Invasiveness , Prognosis , Receptor, Fibroblast Growth Factor, Type 3/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
17.
Cancer Res Commun ; 4(4): 1165-1173, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38602417

ABSTRACT

PURPOSE: Despite efficacy of approved FGFR inhibitors, emergence of polyclonal secondary mutations in the FGFR kinase domain leads to acquired resistance. KIN-3248 is a selective, irreversible, orally bioavailable, small-molecule inhibitor of FGFR1-4 that blocks both primary oncogenic and secondary kinase domain resistance FGFR alterations. EXPERIMENTAL DESIGN: A first-in-human, phase I study of KIN-3248 was conducted in patients with advanced solid tumors harboring FGFR2 and/or FGFR3 gene alterations (NCT05242822). The primary objective was determination of MTD/recommended phase II dose (RP2D). Secondary and exploratory objectives included antitumor activity, pharmacokinetics, pharmacodynamics, and molecular response by circulating tumor DNA (ctDNA) clearance. RESULTS: Fifty-four patients received doses ranging from 5 to 50 mg orally daily across six cohorts. Intrahepatic cholangiocarcinoma (48.1%), gastric (9.3%), and urothelial (7.4%) were the most common tumors. Tumors harbored FGFR2 (68.5%) or FGFR3 (31.5%) alterations-23 (42.6%) received prior FGFR inhibitors. One dose-limiting toxicity (hypersensitivity) occurred in cohort 1 (5 mg). Treatment-related, adverse events included hyperphosphatemia, diarrhea, and stomatitis. The MTD/RP2D was not established. Exposure was dose proportional and concordant with hyperphosphatemia. Five partial responses were observed; 4 in FGFR inhibitor naïve and 1 in FGFR pretreated patients. Pretreatment ctDNA profiling confirmed FGFR2/3 alterations in 63.3% of cases and clearance at cycle 2 associated with radiographic response. CONCLUSION: The trial was terminated early for commercial considerations; therefore, RP2D was not established. Preliminary clinical data suggest that KIN-3248 is a safe, oral FGFR1-4 inhibitor with favorable pharmacokinetic parameters, though further dose escalation was required to nominate the MTD/RP2D. SIGNIFICANCE: KIN-3248 was a rationally designed, next generation selective FGFR inhibitor, that was effective in interfering with both FGFR wild-type and mutant signaling. Clinical data indicate that KIN-3248 is safe with a signal of antitumor activity. Translational science support the mechanism of action in that serum phosphate was proportional with exposure, paired biopsies suggested phospho-ERK inhibition (a downstream target of FGFR2/3), and ctDNA clearance may act as a RECIST response surrogate.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Female , Male , Middle Aged , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Aged , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Maximum Tolerated Dose , Mutation , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics
18.
Exp Mol Med ; 56(4): 975-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38609519

ABSTRACT

We explored the genomic events underlying central neurocytoma (CN), a rare neoplasm of the central nervous system, via multiomics approaches, including whole-exome sequencing, bulk and single-nuclei RNA sequencing, and methylation sequencing. We identified FGFR3 hypomethylation leading to FGFR3 overexpression as a major event in the ontogeny of CN that affects crucial downstream events, such as aberrant PI3K-AKT activity and neuronal development pathways. Furthermore, we found similarities between CN and radial glial cells based on analyses of gene markers and CN tumor cells and postulate that CN tumorigenesis is due to dysregulation of radial glial cell differentiation into neurons. Our data demonstrate the potential role of FGFR3 as one of the leading drivers of tumorigenesis in CN.


Subject(s)
DNA Methylation , Ependymoglial Cells , Neurocytoma , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Neurocytoma/genetics , Neurocytoma/pathology , Neurocytoma/metabolism , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Gene Expression Regulation, Neoplastic
19.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38627238

ABSTRACT

BACKGROUND: This Phase 1b/2 study assessed the efficacy in terms of objective response rate (ORR) of the FGFR1/2/3 kinase inhibitor derazantinib as monotherapy or in combination with atezolizumab in patients with metastatic urothelial cancer (mUC) and FGFR1-3 genetic aberrations (FGFR1-3GA). METHODS: This multicenter, open-label study comprised 5 substudies. In Substudies 1 and 5, patients with mUC with FGFR1-3GA received derazantinib monotherapy (300 mg QD in Substudy 1, 200 mg BID in Substudy 5). In Substudy 2, patients with any solid tumor received atezolizumab 1200 mg every 3 weeks plus derazantinib 200 or 300 mg QD. In Substudy 3, patients with mUC harboring FGFR1-3GA received derazantinib 200 mg BID plus atezolizumab 1200 mg every 3 weeks. In Substudy 4, patients with FGFR inhibitor-resistant mUC harboring FGFR1-3GA received derazantinib 300 mg QD monotherapy or derazantinib 300 mg QD plus atezolizumab 1200 mg every 3 weeks. RESULTS: The ORR for Substudies 1 and 5 combined was 4/49 (8.2%, 95% confidence interval = 2.3% to 19.6%), which was based on 4 partial responses. The ORR in Substudy 4 was 1/7 (14.3%, 95% confidence interval = 0.4% to 57.9%; 1 partial response for derazantinib 300 mg monotherapy, zero for derazantinib 300 mg plus atezolizumab 1200 mg). In Substudy 2, derazantinib 300 mg plus atezolizumab 1200 mg was identified as a recommended dose for Phase 2. Only 2 patients entered Substudy 3. CONCLUSIONS: Derazantinib as monotherapy or in combination with atezolizumab was well-tolerated but did not show sufficient efficacy to warrant further development in mUC. Clinicaltrials.gov NCT04045613, EudraCT 2019-000359-15.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Female , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Aged, 80 and over , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology , Urologic Neoplasms/genetics , Adult , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/secondary
20.
Clin Cancer Res ; 30(10): 2181-2192, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38437671

ABSTRACT

PURPOSE: FGFR2 and FGFR3 show oncogenic activation in many cancer types, often through chromosomal fusion or extracellular domain mutation. FGFR2 and FGFR3 alterations are most prevalent in intrahepatic cholangiocarcinoma (ICC) and bladder cancers, respectively, and multiple selective reversible and covalent pan-FGFR tyrosine kinase inhibitors (TKI) have been approved in these contexts. However, resistance, often due to acquired secondary mutations in the FGFR2/3 kinase domain, limits efficacy. Resistance is typically polyclonal, involving a spectrum of different mutations that most frequently affect the molecular brake and gatekeeper residues (N550 and V565 in FGFR2). EXPERIMENTAL DESIGN: Here, we characterize the activity of the next-generation covalent FGFR inhibitor, KIN-3248, in preclinical models of FGFR2 fusion+ ICC harboring a series of secondary kinase domain mutations, in vitro and in vivo. We also test select FGFR3 alleles in bladder cancer models. RESULTS: KIN-3248 exhibits potent selectivity for FGFR1-3 and retains activity against various FGFR2 kinase domain mutations, in addition to being effective against FGFR3 V555M and N540K mutations. Notably, KIN-3248 activity extends to the FGFR2 V565F gatekeeper mutation, which causes profound resistance to currently approved FGFR inhibitors. Combination treatment with EGFR or MEK inhibitors potentiates KIN-3248 efficacy in vivo, including in models harboring FGFR2 kinase domain mutations. CONCLUSIONS: Thus, KIN-3248 is a novel FGFR1-4 inhibitor whose distinct activity profile against FGFR kinase domain mutations highlights its potential for the treatment of ICC and other FGFR-driven cancers.


Subject(s)
Mutation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Urinary Bladder Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL