Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 245
1.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747292

Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.


Cerebral Small Vessel Diseases , Collagen Type IV , Receptor, Notch3 , Humans , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/physiopathology , Cerebral Small Vessel Diseases/pathology , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Animals
2.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705997

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Melanoma , Neuropeptides , STAT3 Transcription Factor , Signal Transduction , Humans , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Protein Binding , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
3.
Genes (Basel) ; 15(5)2024 04 23.
Article En | MEDLINE | ID: mdl-38790158

The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.


CADASIL , Neurodegenerative Diseases , Polymorphism, Single Nucleotide , Receptors, Notch , Humans , CADASIL/genetics , CADASIL/metabolism , CADASIL/pathology , Receptors, Notch/metabolism , Receptors, Notch/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Mutation , Signal Transduction , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
4.
Cancer Res Commun ; 4(5): 1268-1281, 2024 May 14.
Article En | MEDLINE | ID: mdl-38619287

The MUC1-C protein is aberrantly expressed in adenocarcinomas of epithelial barrier tissues and contributes to their progression. Less is known about involvement of MUC1-C in the pathogenesis of squamous cell carcinomas (SCC). Here, we report that the MUC1 gene is upregulated in advanced head and neck SCCs (HNSCC). Studies of HNSCC cell lines demonstrate that the MUC1-C subunit regulates expression of (i) RIG-I and MDA5 pattern recognition receptors, (ii) STAT1 and IFN regulatory factors, and (iii) downstream IFN-stimulated genes. MUC1-C integrates chronic activation of the STAT1 inflammatory pathway with induction of the ∆Np63 and SOX2 genes that are aberrantly expressed in HNSCCs. In extending those dependencies, we demonstrate that MUC1-C is necessary for NOTCH3 expression, self-renewal capacity, and tumorigenicity. The findings that MUC1 associates with ∆Np63, SOX2 and NOTCH3 expression by single-cell RNA sequencing analysis further indicate that MUC1-C drives the HNSCC stem cell state and is a target for suppressing HNSCC progression. SIGNIFICANCE: This work reports a previously unrecognized role for MUC1-C in driving STAT1-mediated chronic inflammation with the progression of HNSCC and identifies MUC1-C as a druggable target for advanced HNSCC treatment.


Disease Progression , Head and Neck Neoplasms , Mucin-1 , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Mucin-1/genetics , Mucin-1/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Mice , Animals , Gene Expression Regulation, Neoplastic , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
5.
Biochem Pharmacol ; 224: 116200, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604258

Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenic kidney disease. Emerging research indicates that the Notch signaling pathway plays an indispensable role in the pathogenesis of numerous kidney diseases, including ADPKD. Herein, we identified that Notch3 but not other Notch receptors was overexpressed in renal tissues from mice with ADPKD and ADPKD patients. Inhibiting Notch3 with γ-secretase inhibitors, which block a proteolytic cleavage required for Notch3 activation, or shRNA knockdown of Notch3 significantly delayed renal cyst growth in vitro and in vivo. Subsequent mechanistic study elucidated that the cleaved intracellular domain of Notch3 (N3ICD) and Hes1 could bind to the PTEN promoter, leading to transcriptional inhibition of PTEN. This further activated the downstream PI3K-AKT-mTOR pathway and promoted renal epithelial cell proliferation. Overall, Notch3 was identified as a novel contributor to renal epithelial cell proliferation and cystogenesis in ADPKD. We envision that Notch3 represents a promising target for ADPKD treatment.


Cell Proliferation , Polycystic Kidney, Autosomal Dominant , Receptor, Notch3 , Animals , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Cell Proliferation/drug effects , Cell Proliferation/physiology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/genetics , Mice , Humans , Mice, Inbred C57BL , Male , Kidney/metabolism , Kidney/pathology , Kidney/drug effects
6.
Cancer Lett ; 593: 216841, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38614385

Aerobic glycolysis accelerates tumor proliferation and progression, and inhibitors or drugs targeting abnormal cancer metabolism have been developing. Cancer stem-like cells (CSCs) significantly contribute to tumor initiation, metastasis, therapy resistance, and recurrence. Formyl peptide receptor 3 (FPR3), a member of FPR family, involves in inflammation, tissue repair, and angiogenesis. However, studies in exploring the regulatory mechanisms of aerobic glycolysis and CSCs by FPR3 in gastric cancer (GC) remain unknown. Here, we demonstrated that overexpressed FPR3 suppressed glycolytic capacity and stemness of tumor cells, then inhibited GC cells proliferation. Mechanistically, FPR3 impeded cytoplasmic calcium ion flux and hindered nuclear factor of activated T cells 1 (NFATc1) nuclear translocation, leading to the transcriptional inactivation of NFATc1-binding neurogenic locus notch homolog protein 3 (NOTCH3) promoter, subsequently obstructing NOTCH3 expression and the AKT/mTORC1 signaling pathway, and ultimately downregulating glycolysis. Additionally, NFATc1 directly binds to the sex determining region Y-box 2 (SOX2) promoter and modifies stemness in GC. In conclusion, our work illustrated that FPR3 played a negative role in GC progression by modulating NFATc1-mediated glycolysis and stemness in a calcium-dependent manner, providing potential insights into cancer therapy.


Calcium , Cell Proliferation , Glycolysis , NFATC Transcription Factors , Neoplastic Stem Cells , Signal Transduction , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Calcium/metabolism , Animals , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Gene Expression Regulation, Neoplastic , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Mice , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Male
7.
Histochem Cell Biol ; 161(6): 461-476, 2024 Jun.
Article En | MEDLINE | ID: mdl-38597939

Emerging evidence indicates the presence of vascular abnormalities and ischemia in biliary atresia (BA), although specific mechanisms remain undefined. This study examined both human and experimental BA. Structural and hemodynamic features of hepatic arteries were investigated by Doppler ultrasound, indocyanine green angiography, microscopic histology, and invasive arterial pressure measurement. Opal multiplex immunohistochemistry, western blot, and RT-PCR were applied to assess Notch3 expression and the phenotype of hepatic arterial smooth muscle cells (HASMCs). We established animal models of Notch3 inhibition, overexpression, and knockout to evaluate the differences in overall survival, hepatic artery morphology, peribiliary hypoxia, and HASMC phenotype. Hypertrophic hepatic arteriopathy was evidenced by an increased wall-to-lumen ratio and clinically manifested as hepatic arterial hypertension, decreased hepatic artery perfusion, and formation of hepatic subcapsular vascular plexuses (HSVPs). We observed a correlation between overactivation of Notch3 and phenotypic disruption of HASMCs with the exacerbation of peribiliary hypoxia. Notch3 signaling mediated the phenotype alteration of HASMCs, resulting in arterial wall thickening and impaired oxygen supply in the portal microenvironment. Inhibition of Notch3/Hey1 ameliorates portal hypoxia by restoring the balance of contractile/synthetic HASMCs, thereby preventing hypertrophic arteriopathy in BA.


Biliary Atresia , Receptor, Notch3 , Receptor, Notch3/metabolism , Receptor, Notch3/antagonists & inhibitors , Animals , Biliary Atresia/pathology , Biliary Atresia/metabolism , Mice , Humans , Male , Hypoxia/metabolism , Female , Hepatic Artery/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Mice, Inbred C57BL , Mice, Knockout
8.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article En | MEDLINE | ID: mdl-38537630

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
9.
Cancer Res ; 84(9): 1410-1425, 2024 May 02.
Article En | MEDLINE | ID: mdl-38335304

Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE: NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.


Adenocarcinoma of Lung , Cancer-Associated Fibroblasts , Lung Neoplasms , Neoplasm Invasiveness , Receptor, Notch3 , Single-Cell Analysis , Stromal Cells , Tumor Microenvironment , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Communication , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Signal Transduction , Stromal Cells/metabolism , Stromal Cells/pathology
10.
J Biochem ; 175(5): 539-549, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38167713

Mural cell adhesion is important for the localization of basement membrane components during angiogenesis, and cell-cell interactions are thought to be critical for basement membrane formation. Type IV collagen, a component of the basement membrane, and non-triple helical type IV collagen α1 chain (NTH α1(IV)) co-localize in the basement membrane of neovascular vessels. However, it remains unclear how type IV collagen and NTH α1(IV) are produced around the basement membrane. In the present study, we developed a de novo angiogenesis model using human umbilical vein endothelial cell spheroids and TIG-1 fibroblast cells and demonstrated that NTH α1(IV), probably with α1(IV) chain before forming triple helix molecule, was localized in the fibroblasts in contact with vascular endothelial cells. This localization was disrupted by DAPT, a Notch signaling inhibitor. DAPT treatment also reduced type IV collagen and NTH α1(IV) secretion in TIG-1 fibroblasts, along with diminished COL4A1 and COL4A2 gene expression. Downregulation of Notch3 in TIG-1 fibroblasts decreased the secretion of type IV collagen and NTH α1(IV). Taken together, these findings suggest that heterogeneous and homogeneous intercellular Notch signaling via Notch3 induces type IV collagen and NTH α1(IV) expression in fibroblasts and contributes to basement membrane formation in neovascular vessels.


Collagen Type IV , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Receptors, Notch , Signal Transduction , Collagen Type IV/metabolism , Humans , Receptors, Notch/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Fibroblasts/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Basement Membrane/metabolism , Angiogenesis
11.
Arterioscler Thromb Vasc Biol ; 43(12): 2301-2311, 2023 12.
Article En | MEDLINE | ID: mdl-37855127

BACKGROUND: The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS: Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS: Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS: Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.


Aorta, Abdominal , Elastic Tissue , Animals , Mice , Aorta, Abdominal/metabolism , Macaca fascicularis/metabolism , Elastic Tissue/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Elastin/metabolism , Collagen/metabolism , Fructose
12.
Development ; 150(22)2023 Nov 15.
Article En | MEDLINE | ID: mdl-37905445

Failures in growth and differentiation of the early human placenta are associated with severe pregnancy disorders such as pre-eclampsia and fetal growth restriction. However, regulatory mechanisms controlling development of placental epithelial cells, the trophoblasts, remain poorly elucidated. Using trophoblast stem cells (TSCs), trophoblast organoids (TB-ORGs) and primary cytotrophoblasts (CTBs) of early pregnancy, we herein show that autocrine NOTCH3 signalling controls human placental expansion and differentiation. The NOTCH3 receptor was specifically expressed in proliferative CTB progenitors and its active form, the nuclear NOTCH3 intracellular domain (NOTCH3-ICD), interacted with the transcriptional co-activator mastermind-like 1 (MAML1). Doxycycline-inducible expression of dominant-negative MAML1 in TSC lines provoked cell fusion and upregulation of genes specific for multinucleated syncytiotrophoblasts, which are the differentiated hormone-producing cells of the placenta. However, progenitor expansion and markers of trophoblast stemness and proliferation were suppressed. Accordingly, inhibition of NOTCH3 signalling diminished growth of TB-ORGs, whereas overexpression of NOTCH3-ICD in primary CTBs and TSCs showed opposite effects. In conclusion, the data suggest that canonical NOTCH3 signalling plays a key role in human placental development by promoting self-renewal of CTB progenitors.


Placenta , Trophoblasts , Humans , Pregnancy , Female , Placenta/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Stem Cells , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism
13.
Cell Death Dis ; 14(8): 513, 2023 08 10.
Article En | MEDLINE | ID: mdl-37563118

Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.


Drug Resistance, Neoplasm , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Regulatory Sequences, Nucleic Acid , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
14.
JCI Insight ; 8(14)2023 07 24.
Article En | MEDLINE | ID: mdl-37318881

The RNA-binding protein LIN28B is overexpressed in over 30% of patients with colorectal cancer (CRC) and is associated with poor prognosis. In the present study, we unraveled a potentially novel mechanism by which LIN28B regulates colonic epithelial cell-cell junctions and CRC metastasis. Using human CRC cells (DLD-1, Caco-2, and LoVo) with either knockdown or overexpression of LIN28B, we identified claudin 1 (CLDN1) tight junction protein as a direct downstream target and effector of LIN28B. RNA immunoprecipitation revealed that LIN28B directly binds to and posttranscriptionally regulates CLDN1 mRNA. Furthermore, using in vitro assays and a potentially novel murine model of metastatic CRC, we show that LIN28B-mediated CLDN1 expression enhances collective invasion, cell migration, and metastatic liver tumor formation. Bulk RNA sequencing of the metastatic liver tumors identified NOTCH3 as a downstream effector of the LIN28B/CLDN1 axis. Additionally, genetic and pharmacologic manipulation of NOTCH3 signaling revealed that NOTCH3 was necessary for invasion and metastatic liver tumor formation. In summary, our results suggest that LIN28B promotes invasion and liver metastasis of CRC by posttranscriptionally regulating CLDN1 and activating NOTCH3 signaling. This discovery offers a promising new therapeutic option for metastatic CRC to the liver, an area where therapeutic advancements have been relatively scarce.


Colonic Neoplasms , Colorectal Neoplasms , Liver Neoplasms , Humans , Animals , Mice , Colorectal Neoplasms/pathology , Claudin-1/genetics , Claudin-1/metabolism , Caco-2 Cells , Liver Neoplasms/genetics , Receptor, Notch3/metabolism , RNA-Binding Proteins/genetics
15.
J Neurovirol ; 29(4): 479-491, 2023 08.
Article En | MEDLINE | ID: mdl-37358698

NOTCH receptors are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of NOTCH receptors in HIV-associated neurocognitive disorder (HAND) remain largely unclear. Transactivator of transcription (Tat) induces oxidative stress and inflammatory response in astrocytes, thereby leading to neuronal apoptosis in the central nervous system. We determined that NOTCH3 expression was upregulated during subtype B or C Tat expression in HEB astroglial cells. Moreover, bioinformatics analysis of the Gene Expression Omnibus (GEO) dataset revealed that NOTCH3 mRNA expression in the frontal cortex tissues of HIV encephalitis patients was higher than that of HIV control patients. Of note, subtype B Tat, rather than subtype C Tat, interacted with the extracellular domain of the NOTCH3 receptor, thus activating NOTCH3 signaling. Downregulation of NOTCH3 attenuated subtype B Tat-induced oxidative stress and reactive oxygen species generation. In addition, we demonstrated that NOTCH3 signaling facilitated subtype B Tat-activated NF-κB signaling pathway, thereby mediating pro-inflammatory cytokines IL-6 and TNF-α production. Furthermore, downregulation of NOTCH3 in HEB astroglial cells protected SH-SY5Y neuronal cells from astrocyte-mediated subtype B Tat neurotoxicity. Taken together, our study clarifies the potential role of NOTCH3 in subtype B Tat-induced oxidative stress and inflammatory response in astrocytes, which could be a novel therapeutic target for the relief of HAND.


HIV Infections , HIV-1 , Neuroblastoma , Humans , Astrocytes/metabolism , HIV-1/genetics , HIV-1/metabolism , Trans-Activators/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Neuroblastoma/metabolism , Signal Transduction , NF-kappa B/genetics , NF-kappa B/metabolism , HIV Infections/genetics , HIV Infections/metabolism , Oxidative Stress , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism
16.
Genet Res (Camb) ; 2023: 8779758, 2023.
Article En | MEDLINE | ID: mdl-37153858

The key event of liver regeneration initiation (LRI) is the switch of hepatocytes from the G0 phase to the G1 phase. This study aimed to use the data from large-scale quantitatively detecting and analyzing (LQDA) to reveal the regulation of hepatocytes in the G0 or G1 phase by competing endogenous RNAs (ceRNAs) during LRI. The hepatocytes of the rat liver right lobe were isolated 0, 6, and 24 h after partial hepatectomy. Their ceRNA expression level was measured using LQDA, and the correlation among their expression, interaction, and role was revealed by ceRNA comprehensive analysis. The expression of neurogenic loci notch homologous protein 3 (NOTCH3) mRNA was upregulated in 0 h, but the expression of miR-369-3p and rno-Rmdn2_0006 of hepatocytes did not change significantly. Meanwhile, the expression of the G0 phase-related gene CDKN1c was promoted by NOTCH3 upregulation, and the expression of the G1 phase-related gene PSEN2 was inhibited by NOTCH3 downregulation. On the contrary, the expression of NOTCH3 mRNA and rno-Rmdn2_0006 was upregulated at 6 h, but the expression of miR-136-3p was downregulated. The expression of the G1 phase-related genes CHUK, DDX24, HES1, NET1, and STAT3 was promoted by NOTCH3 upregulation, and the expression of the G0 phase-related gene CDKN1a was inhibited by NOTCH3 downregulation. These results suggested that the ceRNAs and the NOTCH3-regulated G0 phase- and G1 phase-related genes showed a correlation in expression, interaction, and role. They together regulated the hepatocytes in the G0 phase at 0 h and in the G1 phase at 6 h. These findings might help understand the mechanism by which ceRNA together regulated the hepatocytes in the G0 or G1 phase.


Liver Regeneration , MicroRNAs , Rats , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Liver Regeneration/genetics , Hepatocytes/metabolism , G1 Phase , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
17.
Hypertension ; 80(8): 1683-1696, 2023 08.
Article En | MEDLINE | ID: mdl-37254738

BACKGROUND: Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS: Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS: Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS: Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH.


Hypertension, Pulmonary , Hypertension , Pulmonary Arterial Hypertension , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidation-Reduction , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/metabolism , Reactive Oxygen Species/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Repressor Proteins/metabolism , Humans
18.
Biomed Pharmacother ; 163: 114800, 2023 Jul.
Article En | MEDLINE | ID: mdl-37141739

Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer characterized by drug resistance and distant metastasis. Cancer stem cells (CSCs) are considered a major contributor to TNBC's drug resistance. Thus targeting and eliminating CSCs have been vigorously researched. However, the precise targetable molecular networks responsible for CSC genesis remain unclear; this conundrum is mainly due to the high heterogeneity of the TNBC tumor microenvironment (TME). The cancer-associated fibroblasts (CAFs) are one of the most abundant cellular components of the TME. Emerging studies indicate that CAFs facilitate TNBC's progression by establishing a pro-tumor TME. Hence, identifying the molecular networks involved in CAF transformation and CAF-associated oncogenesis are essential areas to be explored. Through a bioinformatics approach, we identified INFG/STAT1/NOTCH3 as a molecular link between CSCs and CAF. DOX-resistant TNBC cell lines showed increased expression of INFG/STAT1/NOTCH3 and CD44 and were associated with increased self-renewal ability and CAF-transformative ability. Downregulation of STAT1 significantly reduced the tumorigenic properties of MDA-MB-231 and -468 cells and their CAF-transforming potential. Our molecular docking analysis suggested that gamma mangostin (gMG), a xanthone, formed complexes with INFG/STAT1/NOTCH3 better than celecoxib. We then demonstrated that gMG treatment reduced the tumorigenic properties similarly observed in STAT1-knocked down conditions. Finally, we utilized a DOX-resistant TNBC tumoroid-bearing mouse model to demonstrate that gMG treatment significantly delayed tumor growth, reduced CAF generation, and improved DOX sensitivity. Further investigations are warranted for clinical translation.


Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Molecular Docking Simulation , Doxorubicin/therapeutic use , Cell Line, Tumor , Tumor Microenvironment , STAT1 Transcription Factor/metabolism , Receptor, Notch3/genetics , Receptor, Notch3/metabolism
19.
Technol Cancer Res Treat ; 22: 15330338221118984, 2023.
Article En | MEDLINE | ID: mdl-36740988

Background: Notch signaling played a critical role in promoting breast tumorigenesis and progression. However, the role and prognostic value of Notch3 combined with DLL4 expression in breast carcinoma had not been explored. Methods: The retrospective study enrolled 90 breast cancer tissues and 60 noncancerous tissues from (conceal). The expression and prognostic value of Notch3 and DLL4 in patients with breast carcinoma were investigated using Oncomine and UALCAN database. Notch3 and DLL4 expression levels were detected by quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. We analyzed the correlation between both proteins expression and clinicopathological parameters and survival data, respectively. Results: The expressions of Notch3 and DLL4 were increased, and Notch3 expression was significantly positively associated with DLL4 in breast carcinoma. The 2 proteins dramatically correlated with advanced stage, high grade and negative Her2 status. The overexpressing of single or both Notch3 and DLL4 resulted in shortened survival of breast cancer patients. And Notch3 overexpression was one of independent risk predictors to poor prognosis. Conclusion: The interaction of Notch3 receptor and DLL4 ligand accelerates oncogenesis, progression, and poor prognosis of breast cancer patients. Notch3 protein may serve as one of biomarker to independently predict prognosis of patients.


Adaptor Proteins, Signal Transducing , Breast Neoplasms , Calcium-Binding Proteins , Receptor, Notch3 , Female , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/pathology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Prognosis , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Retrospective Studies , Signal Transduction
20.
J Ethnopharmacol ; 305: 116133, 2023 Apr 06.
Article En | MEDLINE | ID: mdl-36603788

ETHNOPHARMACOLOGICAL RELEVANCE: Breast cancer has been the most commonly-diagnosed cancer worldwide, and the treatment and prognosis of which are often limited by breast cancer stem cells (BCSCs). Litchi seeds have shown good anti-cancer activity in various cancers including prostate cancer, lung cancer and breast cancer. However, the activity and underlying mechanism of Litchi seeds against BCSCs remain unknown. AIM OF THE STUDY: To investigate the activity and mechanism of total flavonoids of litchi seed (TFLS) against BCSCs in vitro and in vivo. MATERIALS AND METHODS: Two orthotopic xenograft mouse models were established using HCC1806 cells pretreated or untreated with TFLS to determine whether TFLS could target BCSCs in vivo. Mammosphere formation and flow cytometry assays were employed to evaluate the effect of TFLS on BCSCs in vitro. The underlying mechanism was investigated using RT-qPCR, Western blot, immunohistochemistry and immunofluorescence experiments. RESULTS: TFLS could significantly inhibit the viability of HCC1806, MCF-7 and HCC1937 cells in vitro and suppress the growth of HCC1806 cells in vivo. TFLS attenuated stem cell-like properties of breast cancer through reducing the percentage of CD44+CD24-/low cells, inhibiting the mammospheres formation and down-regulating the mRNA and protein levels of cancer stem cells related markers (Oct4, Nanog, Sox2) in MCF-7 and HCC1806 cells. Meanwhile, TFLS suppressed the tumor-initiating ability of BCSCs via reducing the percentage of CD44+CD24-/low cells in tumor and lowering tumor incidence rate in orthotopic xenograft mice. In addition, TFLS treatments restricted the expression and nuclear translocation of Notch3, subsequently down-regulated Hes1 and Runx2 expressions. CONCLUSIONS: TFLS could suppress the growth of breast cancer and eliminate breast cancer stem cells by inhibiting the Notch3 signaling pathway.


Breast Neoplasms , Litchi , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/metabolism , Neoplastic Stem Cells , Receptor, Notch3/metabolism , Signal Transduction , Seeds
...