Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
FEBS Open Bio ; 10(3): 427-433, 2020 03.
Article in English | MEDLINE | ID: mdl-31977161

ABSTRACT

Renal anemia in chronic kidney disease is treated with recombinant human erythropoietin (rhEPO). However, some patients with anemia do not respond well to rhEPO, emphasizing the need for a more biocompatible EPO. Differentiation protocols for hepatic lineages have been modified to enable production from human induced pluripotent stem cell (hiPSC)-derived EPO-producing cells (EPO cells). However, markers for hiPSC-EPO cells are lacking, making it difficult to purify hiPSC-EPO cells and therefore to optimize EPO production and cell counts for transplantation. To address these issues, we investigated whether CD140b and CD73 could be used as markers for hiPSC-EPO cells. We measured the expression of EPO, CD140b, and CD73 in hiPSC-EPO cells and the EPO concentration in the cell supernatant by immunohistochemistry and enzyme-linked immunosorbent assays on culture day 13, revealing that expression levels of CD140b and CD73 are correlated with the level of EPO. In addition, rates of CD140b+ CD73+ cells were observed to be correlated with the concentration of EPO. Thus, our results suggest that CD140b and CD73 may be markers for hiPSC-EPO cells.


Subject(s)
5'-Nucleotidase/immunology , Erythroid Precursor Cells/metabolism , Receptor, Platelet-Derived Growth Factor beta/immunology , 5'-Nucleotidase/metabolism , Anemia/blood , Anemia/metabolism , Biomarkers , Cell Differentiation/drug effects , Erythroid Precursor Cells/immunology , Erythropoietin/metabolism , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/metabolism
2.
Mol Pharm ; 16(5): 1950-1957, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30986347

ABSTRACT

Platelet-derived growth factor receptor ß (PDGFRß) is overexpressed in a variety of malignant cancers, plays a critical role in tumor angiogenesis, and has been proven as a valuable target for cancer treatment. In this pilot study, a dimeric affibody molecule, ZPDGFRß, was prepared and radiolabeled with positron emission radionuclide zirconium-89 for PET imaging of colorectal tumors by targeting PDGFRß expression in vivo. The PDGFRß-binding capability of dimeric affibody was evaluated by flow cytometry, immunofluorescent staining, and whole-body optical imaging. Then, ZPDGFRß was conjugated with DFO-Bn-NCS and radiolabeled with 89Zr. Targeted binding capability of 89Zr-DFO-ZPDGFRß to PDGFRß expressing cells was investigated by cellular assay in vitro and microPET/CT imaging in vivo. Dimeric ZPDGFRß affibody had specifically higher binding capability with PDGFRß expressing pericytes rather than LS-174T cancer cells, and well colocalized with tumor neovasculature by flow cytometry and immunofluorescent assay. ZPDGFRß was successfully labeled with 89Zr by DFO chelating with yield of 94.1 ± 3.53%. 89Zr-DFO-ZPDGFRß indicated preserved specific binding ability with PDGFRß expressing cells and effective inhibiting capability to PDGF-ß ligands ( P < 0.05) in vitro. Biodistribution indicated that tumor uptake of 89Zr-DFO-ZPDGFRß reached the peak of 6.93 ± 0.64%ID/g, and the tumor-to-blood ratio was 5.5 ± 0.6 at 2 h post-injection. LS-174T xenografts were clearly visualized by microPET/CT imaging through 1 to 4 h post-injection of 89Zr-DFO-ZPDGFRß affibody conjugate. In conclusion, the 89Zr-DFO-ZPDGFRß conjugate demonstrated specific and high binding ability with colorectal tumor, which indicated its use as a potential radiopharmaceutical for diagnostic imaging of tumor associate vasculatures with PET/CT.


Subject(s)
Antibodies, Monoclonal/chemistry , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Radioisotopes/chemistry , Receptor, Platelet-Derived Growth Factor beta/metabolism , Xenograft Model Antitumor Assays/methods , Zirconium/chemistry , Animals , Antibodies, Monoclonal/metabolism , BALB 3T3 Cells , Cell Line, Tumor , Deferoxamine/analogs & derivatives , Deferoxamine/chemistry , Humans , Mice , Mice, Nude , Pericytes/metabolism , Pilot Projects , Radioisotopes/metabolism , Receptor, Platelet-Derived Growth Factor beta/immunology , Tissue Distribution , Zirconium/metabolism
3.
Medicina (Kaunas) ; 55(2)2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30781716

ABSTRACT

In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences. The telocyte diversity extends beyond their morphology and functions, as they have a potential role in the etiopathogenesis of different diseases. The most commonly described telocyte-associated diseases (which may be best termed "telocytopathies" in the future) are summarized in this critical review. It is difficult to imagine that a single cell population could be involved in the pathogenesis of such a wide spectrum of pathological conditions as extragastrointestinal stromal tumors ("telocytomas"), liver fibrosis, preeclampsia during pregnancy, tubal infertility, heart failure and psoriasis. In any case, future functional studies of telocytes in vivo will help to understand the mechanism by which telocytes contribute to tissue homeostasis in health and disease.


Subject(s)
Homeostasis/physiology , Interstitial Cells of Cajal/pathology , Telocytes/pathology , Antigens, CD34/immunology , Humans , Immunophenotyping , Interstitial Cells of Cajal/immunology , Neovascularization, Physiologic , Receptor, Platelet-Derived Growth Factor alpha/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Regeneration , Signal Transduction , Telocytes/immunology
4.
Methods ; 154: 125-135, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30292795

ABSTRACT

Antibody selection for antibody-drug conjugates (ADCs) has traditionally depended on its internalization into the target cell, although ADC efficacy also relies on recycling of the receptor-ADC complex, endo-lysosomal trafficking, and subsequent linker/antibody proteolysis. In this study, we observed that a bispecific anti-murine platelet-derived growth factor receptor beta (mPDGFRß) x cotinine single-chain variable fragment (scFv)-kappa constant region (Cκ)-scFv fusion protein and cotinine-duocarmycin can form an ADC-like complex to induce cytotoxicity against mPDGFRß expressing cells. Multiple anti-mPDGFRß antibody candidates can be produced in this bispecific scFv-Cκ-scFv fusion protein format and tested for their ability to deliver cotinine-conjugated cytotoxic drugs, thus providing an improved approach for antibody selection in ADC development.


Subject(s)
Antibodies, Bispecific/therapeutic use , Immunoconjugates/therapeutic use , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Bispecific/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cotinine , Humans , Immunoconjugates/pharmacology , Mice , Receptor, Platelet-Derived Growth Factor beta/immunology
5.
Front Immunol ; 9: 2196, 2018.
Article in English | MEDLINE | ID: mdl-30333825

ABSTRACT

The spatiotemporal regulation of immune responses in the lymph node (LN) depends on its sophisticated tissue architecture, consisting of several subcompartments supported by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal structures and associated FSC subsets are not fully understood. Using several gene reporter mice, we sought to discover unrecognized stromal structures and FSCs in the LN. The four previously identified FSC subsets in the cortex are clearly distinguished by the expression pattern of reporters including PDGFRß, CCL21-ser, and CXCL12. Herein, we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep cortex periphery (DCP) that is characterized by preferential B cell localization. This subset was clearly different from CXCL12highLepRhigh FSCs in the medullary cord, which harbors plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and, to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well as medulla requires B cells. Together, our findings suggest the presence of a unique microenvironment in the cortex-medulla boundary and offer an advanced view of the multi-layered stromal framework constructed by distinct FSC subsets in the LN.


Subject(s)
B-Lymphocytes/immunology , Chemokine CCL21/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Animals , Chemokine CCL21/genetics , Fibroblasts/cytology , Lymph Nodes/cytology , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, Transgenic , Receptor, Platelet-Derived Growth Factor beta/genetics , Stromal Cells/cytology , Stromal Cells/immunology
6.
Immunol Lett ; 195: 83-87, 2018 03.
Article in English | MEDLINE | ID: mdl-29032187

ABSTRACT

Systemic sclerosis (SSc) is characterized by microangiopathy, excessive fibrosis, and the presence of circulating autoantibodies to several cellular and extracellular components. The role of autoimmunity in generating the clinical and pathologic phenotypes in SSc has been long debated and is still matter of controversy. Distinct specificities of antinuclear antibodies (ANAs) are selectively detected in SSc patients and are associated with unique disease manifestations, but do not have a proven pathogenic role. A new group of autoantibodies reactive with cell surface receptors have been identified in SSc patients. They have been shown to directly activate pathways that may contribute to tissue and vascular damage. As such, they are proposed to have a role as agonistic autoantibodies in SSc. According to Koch's third postulate, the autoantibodies in question should cause disease when introduced into a healthy subject. Therefore, our review will focus on those autoantibodies for which agonistic activity has already been demonstrated not only in vitro, but, at least partly, also in vivo. These include the antibodies anti-endothelial cells (AECA), anti-Platelet-Derived Growth Factor Receptor (PDGFR), anti-Angiotensin II type 1 receptor (AT1R) and anti-endothelin-1 type A receptor (ETaR). In this review, we will discuss also a class of antagonistic autoantibodies, the anti-muscarinic-3 receptor (M3R) antibodies, since they seem to fulfill the aforementioned requirements.


Subject(s)
Autoantibodies/metabolism , Blood Vessels/pathology , Lung/pathology , Receptor, Muscarinic M3/immunology , Scleroderma, Systemic/immunology , Animals , Fibrosis , Humans , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Signal Transduction
7.
PLoS One ; 12(4): e0175986, 2017.
Article in English | MEDLINE | ID: mdl-28419140

ABSTRACT

OBJECTIVE: Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). MATERIALS AND METHODS: The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. RESULTS: Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. CONCLUSION: Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function.


Subject(s)
Bone Marrow Cells/cytology , Cell Movement , Cytokines/immunology , Endometrium/cytology , Fibroblasts/cytology , Stem Cells/cytology , Adolescent , Adult , Bone Marrow Cells/immunology , CD146 Antigen/analysis , CD146 Antigen/immunology , Cell Proliferation , Cells, Cultured , Cytokines/analysis , Endometrium/immunology , Female , Fibroblasts/immunology , Humans , Inflammation/immunology , Lipopolysaccharides/immunology , Middle Aged , Receptor, Platelet-Derived Growth Factor beta/analysis , Receptor, Platelet-Derived Growth Factor beta/immunology , Stem Cells/immunology , Young Adult
8.
J Ocul Pharmacol Ther ; 32(10): 650-658, 2016 12.
Article in English | MEDLINE | ID: mdl-27736501

ABSTRACT

PURPOSE: PF-06653157 is a bifunctional antagonist monoclonal antibody (mAb) that targets human VEGF-A ligand and PDGF-Rß. With the advent of PF-06653157 as an angiogenesis inhibitor and potential treatment for angiogenesis deregulation diseases, a relevant toxicology species is needed for toxicity and efficacy studies. Investigative studies were conducted to validate the mAb dual antagonist properties in a human system and determine its cross-reactive pharmacology in nonhuman cells. METHODS: Sequence alignment was used to determine percent sequence identity of VEGF and PDGF receptors and ligands; qualitative reverse transcription polymerase chain reaction (qRT-PCR) was used to determine the presence of PDGF-Rß on cells of interest. The functional activity of PF-06653157 antibody was assessed in human, dog, porcine, rabbit, rat, mouse, and cynomolgus monkey cells treated with VEGF and PDGF ligands through cell proliferation assays and western blot analysis of AKT and p44/p42 (ERK1/2) protein phosphorylation and enzyme-linked immunosorbent assay. RESULTS: PF-06653157 attenuated phosphorylation of AKT and p44/p42 proteins in human and cynomolgus monkey cells. The antibody did not attenuate AKT nor p44/p42 phosphorylation in any other species tested. PDGFR signaling could not be activated with human PDGF ligand in the porcine cells, so PF-06653157 activity in porcine remains inconclusive. CONCLUSION: The PF-06653157 mAb cross-reacts with cynomolgus monkey cells in a similar manner to human cells. Therefore, cynomolgus monkeys are considered the appropriate species for efficacy and regulatory toxicology studies in PF-06653157 development.


Subject(s)
Antibodies, Monoclonal/immunology , Cross Reactions/immunology , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/immunology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/immunology , Animals , Antibodies, Monoclonal/pharmacology , Dogs , Dose-Response Relationship, Drug , Haplorhini , Humans , Mice , Neovascularization, Pathologic/drug therapy , Rabbits , Rats , Receptor, Platelet-Derived Growth Factor beta/metabolism , Structure-Activity Relationship , Swine , Vascular Endothelial Growth Factor A/metabolism
9.
Proc Natl Acad Sci U S A ; 113(8): E1016-25, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26862168

ABSTRACT

Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require stromal-derived signals to survive. Although many studies have identified cell-intrinsic alterations in signaling pathways that promote T-ALL growth, the identity of endogenous stromal cells and their associated signals in the tumor microenvironment that support T-ALL remains unknown. By examining the thymic tumor microenvironments in multiple murine T-ALL models and primary patient samples, we discovered the emergence of prominent epithelial-free regions, enriched for proliferating tumor cells and dendritic cells (DCs). Systematic evaluation of the functional capacity of tumor-associated stromal cells revealed that myeloid cells, primarily DCs, are necessary and sufficient to support T-ALL survival ex vivo. DCs support T-ALL growth both in primary thymic tumors and at secondary tumor sites. To identify a molecular mechanism by which DCs support T-ALL growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) and insulin-like growth factor I receptor (Igf1r) on T-ALL cells, with concomitant expression of their ligands by tumor-associated DCs. Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and coculture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC-mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driving T-ALL growth, and implicate tumor-associated DCs and their mitogenic signals as auspicious therapeutic targets.


Subject(s)
Dendritic Cells/immunology , Neoplasm Proteins/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Receptors, Somatomedin/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Cell Survival , Dendritic Cells/pathology , Female , Humans , Male , Mice , Neoplasm Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, IGF Type 1 , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/immunology , Receptors, Somatomedin/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
10.
Eur J Haematol ; 96(4): 425-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26115424

ABSTRACT

BACKGROUND: Multipotent mesenchymal stromal cells (MSCs) are used for prophylaxis of acute graft-versus-host disease (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Not all samples of MSC are efficient for aGvHD prevention. The suitability of MSCs for aGvHD prophylaxis was studied. METHODS: MSCs were derived from the bone marrow (BM) of HCT donor and cultivated for no more than three passages. The characteristics of donor BM samples including colony-forming unit fibroblast (CFU-F) concentration, growth parameters of MSCs, and the relative expression levels (REL) of different genes were analyzed. MSCs were injected intravenously precisely at the moment of blood cell reconstitution. RESULTS: MSCs infusion induced a significant threefold decrease in aGvHD development and improved overall survival compared with the standard prophylaxis group. In ineffective MSC samples (9.4%), a significant decrease in total cell production and the REL of CSF1, FGFR1, and PDGFRB was observed. In all studied BM samples, the cumulative MSC production and CFU-F concentrations decreased with age. The expression levels of FGFR2, PPARG, and VEGF differed by age. CONCLUSIONS: A universal single indicator for the prediction of MSC eligibility for aGvHD prophylaxis was not identified. A multiparameter mathematical model for selecting MSC samples effective for the prevention of aGvHD was proposed.


Subject(s)
Graft vs Host Disease/prevention & control , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Myeloablative Agonists/therapeutic use , Transplantation Conditioning/methods , Adolescent , Adult , Female , Gene Expression , Graft vs Host Disease/diagnosis , Graft vs Host Disease/immunology , Graft vs Host Disease/mortality , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Male , Mesenchymal Stem Cells/cytology , Middle Aged , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/mortality , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/therapy , PPAR gamma/genetics , PPAR gamma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/immunology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/immunology , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/immunology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/immunology , Survival Analysis , Transplantation, Homologous
11.
Nanomedicine ; 11(6): 1321-30, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25933696

ABSTRACT

This study developed lipid nanocarriers, called squarticles, conjugated with anti-platelet-derived growth factor (PDGF)-receptor ß antibody to determine whether targeted Minoxidil (MXD) delivery to the follicles and dermal papilla cells (DPCs) could be achieved. Squalene and hexadecyl palmitate (HP) were used as the matrix of the squarticles. The PDGF-squarticles showed a mean diameter and zeta potential of 195 nm and -46 mV, respectively. Nanoparticle encapsulation enhanced MXD porcine skin deposition from 0.11 to 0.23 µg/mg. The antibody-conjugated nanoparticles ameliorated follicular uptake of MXD by 3-fold compared to that of the control solution in the in vivo mouse model. Both vertical and horizontal skin sections exhibited a wide distribution of nanoparticles in the follicles, epidermis, and deeper skin strata. The encapsulated MXD moderately elicited proliferation of DPCs and vascular endothelial growth factor (VEGF) expression. The active targeting of PDGF-squarticles may be advantageous to improving the limited success of alopecia therapy. FROM THE CLINICAL EDITOR: Topical use of minoxidil is only one of the very few treatment options for alopecia. Nonetheless, the current delivery method is far from ideal. In this article, the authors developed lipid nanocarriers with anti-platelet-derived growth factor receptor ? antibody to target dermal papilla cells, and showed enhanced uptake of minoxidil.


Subject(s)
Alopecia/therapy , Antibodies/immunology , Hair Follicle/drug effects , Minoxidil/administration & dosage , Receptor, Platelet-Derived Growth Factor beta/immunology , Skin/drug effects , Animals , Calorimetry, Differential Scanning , Mice , Mice, Nude , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Minoxidil/pharmacology , Minoxidil/therapeutic use
12.
J Immunotoxicol ; 8(2): 159-69, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21457077

ABSTRACT

Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFß-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate some of the fibrotic manifestations of asbestos exposure.


Subject(s)
Asbestos/toxicity , Autoantibodies/immunology , Carcinogens/toxicity , Fibroblasts/immunology , Immunoglobulin G/immunology , Lung/immunology , Animals , Autoantibodies/pharmacology , Cell Line , DNA Topoisomerases, Type I/immunology , Female , Fibroblasts/pathology , Humans , Immunoglobulin G/pharmacology , Lung/pathology , Mice , Occupational Exposure/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/pathology , Receptor, Platelet-Derived Growth Factor beta/immunology , STAT1 Transcription Factor/immunology , Transforming Growth Factor beta/immunology
13.
J Mol Biol ; 407(2): 298-315, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21277312

ABSTRACT

Platelet-derived growth factor receptor (PDGFR) ß is a marker of stromal pericytes and fibroblasts and represents an interesting target for both diagnosis and therapy of solid tumors. A receptor-specific imaging agent would be a useful tool for further understanding the prognostic role of this receptor in vivo. Affibody molecules constitute a class of very small binding proteins that are highly suited for in vivo imaging applications and that can be selected to specifically recognize a desired target protein. Here we describe the isolation of PDGFRß-specific Affibody molecules with subnanomolar affinity. First-generation Affibody molecules were generated from a large naive library using phage display selection. Subsequently, sequences from binders having a desired selectivity profile and competing with the natural ligand for binding were used in the design of an affinity maturation library, which was created using a single partially randomized oligonucleotide. From this second-generation library, Affibody molecules with a 10-fold improvement in affinity (K(d)=0.4-0.5 nM) for human PDGFRß and a 4-fold improvement in affinity (K(d)=6-7 nM) for murine PDGFRß were isolated and characterized. Complete reversible folding after heating to 90 °C, as demonstrated by circular dichroism analysis, supports tolerance to labeling conditions for molecular imaging. The binders were highly specific, as verified by dot blot showing staining reactivity only with human and murine PDGFRß, but not with human PDGFRα, or a panel of control proteins including 16 abundant human serum proteins. The final binder recognized the native conformation of PDGFRß expressed in murine NIH-3T3 fibroblasts and human AU565 cells, and inhibited ligand-induced receptor phosphorylation in PDGFRß-transfected porcine aortic endothelial cells. The PDGFRß-specific Affibody molecule also accumulated around tumoral blood vessels in a model of spontaneous insulinoma, confirming a potential for in vivo targeting.


Subject(s)
Antibodies/metabolism , Protein Engineering , Receptor, Platelet-Derived Growth Factor beta/immunology , Animals , Antibody Affinity/immunology , Cell Line, Tumor , Drug Delivery Systems , Drug Design , Female , Humans , Mice , NIH 3T3 Cells , Neoplasms/diagnosis , Peptide Library , Protein Binding , Swine
14.
Biochem Biophys Res Commun ; 398(3): 601-5, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20603108

ABSTRACT

The origin of vascular cells in tumors is unknown, but it is believed that tumors use cells from the host to build new vessels. To determine whether adipose tissue stem cells (ASCs) could be attracted by cancer cells, we performed migration assays in which ASCs were seeded on a transwell migration system top chamber and tumor-conditioned medium was placed in the bottom chamber. Our data showed that a significant number of ASCs migrated toward the tumor-conditioned medium (p<0.0001), and migration of human ASCs significantly (p<0.0001) increased in response to increased concentrations of recombinant PDGF-BB. In addition, neutralizing antibodies to PDGF receptor (PDGFR)-beta decreased migration of ASCs toward a breast cancer-conditioned medium to the level of serum-free control. These data suggest that tumor cell-derived PDGF-BB is an important factor in governing the microenvironment interaction between tumor cells and local tissue-resident stem cells.


Subject(s)
Adipose Tissue/pathology , Breast Neoplasms/pathology , Cell Movement , Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stem Cells/pathology , Animals , Antibodies, Neutralizing/immunology , Becaplermin , Cell Line, Tumor , Culture Media, Conditioned , Female , Humans , Mice , Platelet-Derived Growth Factor/antagonists & inhibitors , Platelet-Derived Growth Factor/immunology , Proto-Oncogene Proteins c-sis , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/immunology , Signal Transduction
15.
Proc Natl Acad Sci U S A ; 107(2): 856-61, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20080765

ABSTRACT

VEGF coordinates complex regulation of cellular regeneration and interactions between endothelial and perivascular cells; dysfunction of the VEGF signaling system leads to retinopathy. Here, we show that systemic delivery of VEGF and placental growth factor (PlGF) by protein implantation, tumors, and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells. Moreover, blockade of VEGFR1 but not VEGFR2 significantly restores pericyte saturation in mature retinal vessels. Our findings link VEGF and PlGF to cancer-associated retinopathy, reveal the molecular mechanisms of VEGFR1 ligand-mediated retinopathy, and define VEGFR1 as an important target of antiangiogenic therapy for treatment of retinopathy.


Subject(s)
Neoplasms/complications , Pericytes/pathology , Retinal Diseases/epidemiology , Vascular Endothelial Growth Factor A/physiology , Vascular Endothelial Growth Factor Receptor-1/physiology , Angiogenesis Inhibitors/therapeutic use , Animals , Antibodies, Monoclonal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Placenta Growth Factor , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Pregnancy Proteins/antagonists & inhibitors , Pregnancy Proteins/physiology , Rats , Receptor, Platelet-Derived Growth Factor beta/immunology , Retina/pathology , Retinal Diseases/drug therapy , Retinal Diseases/pathology
16.
MAbs ; 2(1): 20-34, 2010.
Article in English | MEDLINE | ID: mdl-20065654

ABSTRACT

Targeting angiogenesis is a promising approach to the treatment of solid tumors and age-related macular degeneration (AMD). Inhibition of vascularization has been validated by the successful marketing of monoclonal antibodies (mAbs) that target specific growth factors or their receptors, but there is considerable room for improvement in existing therapies. Combination of mAbs targeting both the VEGF and PDGF pathways has the potential to increase the efficacy of anti-angiogenic therapy without the accompanying toxicities of tyrosine kinase inhibitors and the inability to combine efficiently with traditional chemotherapeutics. However, development costs and regulatory issues have limited the use of combinatorial approaches for the generation of more efficacious treatments. The concept of mediating disease pathology by targeting two antigens with one therapeutic was proposed over two decades ago. While mAbs are particularly suitable candidates for a dual-targeting approach, engineering bispecificity into one molecule can be difficult due to issues with expression and stability, which play a significant role in manufacturability. Here, we address these issues upstream in the process of developing a bispecific antibody (bsAb). Single-chain antibody fragments (scFvs) targeting PDGFRbeta and VEGF-A were selected for superior stability. The scFvs were fused to both termini of human Fc to generate a bispecific, tetravalent molecule. The resulting molecule displays potent activity, binds both targets simultaneously, and is stable in serum. The assembly of a bsAb using stable monomeric units allowed development of an anti-PDGFRB/VEGF-A antibody capable of attenuating angiogenesis through two distinct pathways and represents an efficient method for rapid engineering of dual-targeting molecules.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Bispecific/pharmacology , Immunotherapy , Neoplasms, Experimental/drug therapy , Recombinant Fusion Proteins/metabolism , Single-Chain Antibodies/metabolism , Amino Acid Sequence , Angiogenesis Inhibitors/administration & dosage , Animals , Antibodies, Bispecific/administration & dosage , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Humans , Mice , Mice, SCID , Molecular Sequence Data , Neoplasms, Experimental/immunology , Neovascularization, Physiologic/drug effects , Protein Binding , Protein Engineering , Protein Stability , Receptor, Platelet-Derived Growth Factor beta/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Tumor Burden/drug effects , Vascular Endothelial Growth Factor A/immunology
17.
Neoplasia ; 11(6): 594-604, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19484148

ABSTRACT

Platelet-derived growth factor receptor beta (PDGFRbeta) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRbeta from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRbeta and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRbeta and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRbeta antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Receptor, Platelet-Derived Growth Factor beta/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Cell Line, Tumor , Drug Synergism , Drug Therapy, Combination , Female , Flow Cytometry , HCT116 Cells , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/pathology , Peptide Library , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
18.
Arthritis Rheum ; 60(4): 1145-51, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19333919

ABSTRACT

OBJECTIVE: To investigate whether agonist anti-platelet-derived growth factor receptor alpha (anti-PDGFRalpha) antibodies are present in the serum of patients with systemic sclerosis (SSc; scleroderma). METHODS: Sera were obtained from healthy subjects and scleroderma patients. An electrochemiluminescence binding assay was performed for detection of serum autoantibodies to PDGFRalpha, PDGFRbeta, epidermal growth factor receptor (EGFR), and colony-stimulating factor receptor 1 (CSFR1). Serum immunoglobulin was purified by protein A/G chromatography. To assess Ig agonist activity, PDGFRalpha-expressing cells were incubated with pure Ig and the level of receptor phosphorylation determined in an enzyme-linked immunoassay, as well as by Western blotting. Ig agonist activity was also assessed in a mitogenic assay and by MAP kinase activation in a PDGFRalpha-expressing cell line. RESULTS: Sera from 34.3% of the healthy subjects and 32.7% of the SSc patients contained detectable autoantibodies to PDGFRalpha and PDGFRbeta, but not EGFR or CSFR1. Purified Ig from these sera was shown to retain PDGFR binding activity and, at 200-1,000 microg/ml, exhibited no agonist activity in a cell-based PDGFRalpha phosphorylation assay and did not stimulate a mitogenic response or MAP kinase activation in a PDGFRalpha-expressing cell line. Two purified Ig samples that were unable to bind PDGFRalpha did exhibit binding activity to a nonglycosylated form of PDGFRalpha. CONCLUSION: Although approximately one-third of sera from scleroderma patients contained detectable autoantibodies to PDGFR, these antibodies were not specific to scleroderma, since they were also detected in a similar percentage of samples from normal subjects. PDGFRalpha agonist activity was not demonstrated when purified Ig from these sera was tested in cell-based assays.


Subject(s)
Antibody Specificity , Autoantibodies/immunology , Receptor, Platelet-Derived Growth Factor alpha/immunology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Scleroderma, Systemic/immunology , Adult , Aged , Autoantibodies/blood , Autoantibodies/pharmacology , Cell Line , Female , Humans , MAP Kinase Signaling System/immunology , Male , Middle Aged , Mitogens/immunology , Phosphorylation/immunology , Receptor, Platelet-Derived Growth Factor alpha/agonists , Receptor, Platelet-Derived Growth Factor beta/immunology
19.
Arthritis Rheum ; 60(4): 1137-44, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19333949

ABSTRACT

OBJECTIVE: Systemic sclerosis (SSc) is a severe connective tissue disease of unknown etiology, characterized by fibrosis of the skin and multiple internal organs. Recent findings suggested that the disease is driven by stimulatory autoantibodies to platelet-derived growth factor receptor (PDGFR), which stimulate the production of reactive oxygen species (ROS) and collagen by fibroblasts. These results opened novel avenues of research into the diagnosis and treatment of SSc. The present study was undertaken to confirm the presence of anti-PDGFR antibodies in patients with SSc. METHODS: Immunoglobulins from 37 patients with SSc were purified by protein A/G chromatography. PDGFR activation was tested using 4 different sensitive bioassays, i.e., cell proliferation, ROS production, signal transduction, and receptor phosphorylation; the latter was also tested in a separate population of 7 patients with SSc from a different research center. RESULTS: Purified IgG samples from patients with SSc were positive when tested for antinuclear autoantibodies, but did not specifically activate PDGFRalpha or PDGFRbeta in any of the tests. Cell stimulation with PDGF itself consistently produced a strong signal. CONCLUSION: The present results raise questions regarding the existence of agonistic autoantibodies to PDGFR in SSc.


Subject(s)
Autoantibodies/blood , Receptor, Platelet-Derived Growth Factor alpha/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Scleroderma, Systemic/immunology , Adult , Aged , Animals , Becaplermin , Biological Assay , Cell Line , Female , Humans , Immunoglobulin G/blood , Male , Mice , Middle Aged , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/pharmacology , Proto-Oncogene Proteins c-sis , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Transfection
20.
Eur J Clin Invest ; 39(4): 320-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19292888

ABSTRACT

BACKGROUND: Platelet derived growth factors (PDGFs) are mitogens for fibroblasts and smooth muscle cells. This growth factor family contains four members PDGF-A, PDGF-B, PDGF-C and PDGF-D. Biology of recently discovered PDGF-C and PDGF-D is not well-established. Here we studied the expression of PDGF-C and PDGF-D and their receptors PDGFR-alpha and PDGFR-beta in normal and atherosclerotic human arteries. MATERIALS AND METHODS: Human arterial samples from amputations and autopsies were classified according to the atherosclerotic stage and the expression of PDGF-C and PDGF-D proteins and their receptors was studied by immunohistochemistry. In situ hybridization and reverse transcriptase-PCR were used to study mRNA expression. RESULTS: Both growth factors were expressed in medial smooth muscle cells (SMCs) in normal arteries and atherosclerotic lesions. However, clear differences were found in the expression profiles in endothelium: PDGF-C was strongly expressed in endothelial cells in both normal arteries and lesions whereas PDGF-D was only weakly expressed in endothelium. PDGF-C expression was very prominent in lesion macrophages. PDGF-D was expressed throughout the artery wall in lesions. PDGFR-alpha expression was strong in endothelium and in lesion macrophage-rich areas, whereas PDGFR-beta was mostly expressed in SMCs. CONCLUSIONS: Our results suggest that PDGF-C may play an important role in endothelium in normal and atherosclerotic arteries and in macrophages in lesions. PDGF-D was expressed in all types of lesions with the same intensity and thus differs from the expression of PDGF-C.


Subject(s)
Atherosclerosis/metabolism , Platelet-Derived Growth Factor/metabolism , RNA, Messenger/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Adult , Aged , Aged, 80 and over , Arteries/metabolism , Arteries/pathology , Atherosclerosis/immunology , Atherosclerosis/pathology , Female , Humans , Immunohistochemistry/methods , Male , Middle Aged , Platelet-Derived Growth Factor/immunology , Receptor, Platelet-Derived Growth Factor alpha/immunology , Receptor, Platelet-Derived Growth Factor beta/immunology , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL