Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.276
Filter
1.
Neurotoxicol Teratol ; 105: 107374, 2024.
Article in English | MEDLINE | ID: mdl-39097242

ABSTRACT

Social behavior is sexually dimorphic, which is regulated by gonadal hormones in the brain. Our recent study found that exposure to low doses of bisphenol-A (BPA) during adolescence, permanently alters social behavior in adult male mice, but the underlying mechanisms remain unclear. Using adolescent gonadectomy (GDX) male mice with testosterone propionate (TP, 0.5 mg/kg) supplement (TP-GDX), this study showed that BPA antagonized promoting effects of TP on social interaction, sexual behavior, and aggression in GDX mice. BPA eliminated the reversal effects of TP on GDX-induced decrease in the number of immunoreactive to arginine vasopressin (AVP-ir) neurons in the medial amygdala (MeA) and the levels of AVP receptor 1a (V1aR) in the MeA and the nucleus accumbens (NAc). In addition, BPA removed down-regulation in the levels of dopamine (DA) transporter (DAT) and DA receptor 1 (DR1) in the NAc of TP-GDX mice. BPA exposure reduced testosterone (T) levels in the brain and serum and the expression of androgen receptor (AR) protein in the amygdala and striatum of sham-operated and TP-GDX males. These results suggest that adolescent exposure to BPA inhibits regulation of androgen in AVP and DA systems of the brain regions associated with social behavior, and thus alters social behaviors of adult male mice.


Subject(s)
Benzhydryl Compounds , Phenols , Receptors, Androgen , Social Behavior , Animals , Male , Phenols/toxicity , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/pharmacology , Mice , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Testosterone/blood , Testosterone/metabolism , Receptors, Dopamine D1/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Aggression/drug effects , Sexual Behavior, Animal/drug effects , Androgens/pharmacology , Testosterone Propionate/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Arginine Vasopressin/metabolism , Amygdala/drug effects , Amygdala/metabolism , Brain/drug effects , Brain/metabolism
2.
Gynecol Endocrinol ; 40(1): 2368845, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39058911

ABSTRACT

Objectives: This study aimed to explore the effect and mechanism of Yunkang oral liquid (YK) on polycystic ovary syndrome (PCOS). Methods: PCOS model rats were prepared by injecting exogenous androgen dehydroepiandrosterone, and YK was administered simultaneously for 28 days during modeling. The morphology of ovaries and uterus was observed using H&E staining, and serum levels of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were determined by radioimmunoassay. Additionally, serum lipids (TG, HDL-c), blood glucose (GLU), and aminotransferase (AST, ALT) levels were detected. The expression of androgen receptor (AR) protein was determined by Western blotting. Results: YK treatment resulted in reduced serum levels of T, LH and FSH, ameliorated ovarian polycystic-like pathological changes and uterine morphology in PCOS rats, and decreased serum TG, GLU, AST and ALT levels, elevated serum HDL-c levels, and improved abnormalities of glycolipid metabolism accompanying PCOS. Moreover, YK decreased the expression of ovarian AR in PCOS rats. Conclusions: This study indicates that YK may protect the ovaries by inhibiting the expression of AR, which could be a potential treatment for PCOS.


Subject(s)
Drugs, Chinese Herbal , Polycystic Ovary Syndrome , Receptors, Androgen , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/drug therapy , Female , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Rats, Sprague-Dawley , Testosterone/blood , Luteinizing Hormone/blood , Follicle Stimulating Hormone/blood , Disease Models, Animal
3.
Toxicol Appl Pharmacol ; 490: 117029, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997069

ABSTRACT

Glioblastoma multiforme (GBM) ranks among the prevalent neoplastic diseases globally, presenting challenges in therapeutic management. Traditional modalities have yielded suboptimal response rates due to its intrinsic pathological resistance. This underscores the imperative for identifying novel molecular targets to enhance therapeutic efficacy. Literature indicates a notable correlation between androgen receptor (AR) signaling and GBM pathogenesis. To mitigate the adverse effects associated with androgenic modulation of AR, scientists have pivoted towards the synthesis of non-steroidal anabolic agents, selective androgen receptor modulators (SARMs). Among these, S4, used as a supplement by the bodybuilders to efficiently grow muscle mass with favourable oral bioavailability has emerged as a candidate of interest. This investigation substantiates the anti-oncogenic potential of S4 in temozolomide-responsive and -resistant GBM cells through cellular and molecular evaluations. We observed restriction in GBM cell growth, and motility, coupled with an induction of apoptosis, reactive oxygen species (ROS) generation, and cellular senescence. S4 exposure precipitated the upregulation of genes associated with apoptosis, cell-cycle arrest, DNA damage response, and senescence, while concurrently downregulating those involved in cellular proliferation. Future research endeavours are warranted to delineate the mechanisms underpinning S4's actions, assess its antineoplastic effects in-vivo, and its ability to penetrate the blood-brain barrier.


Subject(s)
Apoptosis , Brain Neoplasms , Cell Proliferation , Glioblastoma , Receptors, Androgen , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Humans , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Cell Line, Tumor , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Cell Movement/drug effects , Cellular Senescence/drug effects , DNA Damage/drug effects , Signal Transduction/drug effects , Temozolomide/pharmacology , Temozolomide/therapeutic use
4.
Toxicol In Vitro ; 98: 105838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710238

ABSTRACT

Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Molecular Docking Simulation , Phenols , Receptors, Androgen , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Humans , Computer Simulation , Sulfones/toxicity , Sulfones/chemistry , Androgens/chemistry
5.
Psychoneuroendocrinology ; 165: 107046, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626557

ABSTRACT

Previous research has shown a decrease in serum testosterone levels in male patients with depression. In recent years, the results of testosterone replacement therapy (TRT) to improve depression have been mixed. Using the classic CUMS model, we induced depressive-like behaviors in rats and observed a decrease in their serum testosterone levels along with an increase in androgen receptor expression in the hippocampus. We then performed castration and sham surgery on male rats and found that testosterone deprivation led to the manifestation of depressive-like behavior that could be ameliorated by TRT. Through a repeated measures experiment consisting of five blocks over a period of 25 days, we discovered that the reduction in depressive-like behavior in testosterone-deprived rats began 22 days after drug administration (0.5 and 0.25 mg/rat). Furthermore, rats in 0.5mgT group showed the most significant improvements. Subsequently, this dose was used in CUMS rats and reduced the occurrence of depressive-like behaviors. Our study has demonstrated the complex interplay between depression and testosterone, as well as the intricate dose-response relationship between TRT and reduction in depression. Our research supports the use of TRT to alleviate depression, but dosage and duration of treatment are critical factors in determining efficacy.


Subject(s)
Behavior, Animal , Depression , Orchiectomy , Testosterone , Animals , Male , Testosterone/pharmacology , Testosterone/administration & dosage , Testosterone/metabolism , Rats , Depression/drug therapy , Depression/metabolism , Behavior, Animal/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Disease Models, Animal , Rats, Sprague-Dawley , Dose-Response Relationship, Drug , Hormone Replacement Therapy/methods , Receptors, Androgen/metabolism , Receptors, Androgen/drug effects
7.
Ecotoxicol Environ Saf ; 274: 116227, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493703

ABSTRACT

In current study, Fusarium mycotoxin, beauvericin (BEA), has endocrine disrupting potential through suppressing the exogenous androgen receptor (AR)-mediated transcriptional activation. BEA was classified as an AR antagonist, with IC30 and IC50 values indicating that it suppressed AR dimerization in the cytosol. BEA suppress the translocation of cytosolic activated ARs to the nucleus via exogenous androgens. Furthermore, we investigated the impact of environmental conditions for BEA production on rice cereal using response surface methodology. The environmental factors affecting the production of BEA, namely temperature, initial moisture content, and growth time were optimized at 20.28 °C, 42.79 % (w/w), and 17.31 days, respectively. To the best of our knowledge, this is the first report showing that BEA has endocrine disrupting potential through suppressing translocation of cytosolic ARs to nucleus, and temperature, initial moisture content, and growth time are important influencing environmental factors for its biosynthesis in Fusarium strains on cereal.


Subject(s)
Depsipeptides , Fusarium , Mycotoxins , Oryza , Receptors, Androgen , Humans , Depsipeptides/toxicity , Edible Grain/chemistry , Fusarium/metabolism , Mycotoxins/toxicity , Oryza/chemistry , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Endocrine Disruptors/chemistry , Endocrine Disruptors/toxicity
8.
Cell Rep ; 42(10): 113221, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815914

ABSTRACT

Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Androgens/metabolism , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Signal Transduction
9.
J Appl Toxicol ; 43(3): 387-401, 2023 03.
Article in English | MEDLINE | ID: mdl-36063371

ABSTRACT

Exposure to selective serotonin reuptake inhibitors can affect hormone-dependent processes, such as the brain sexual differentiation. Because the use of these antidepressants cause concern during lactation, we evaluated the possible effects of venlafaxine on lactational exposure and its late repercussions on reproductive parameters in male rats. Lactating rats were exposed to venlafaxine (3.85, 7.7, or 15.4 mg/kg/body weight; gavage), from lactational day 1 to 20. Venlafaxine and O-desmethylvenlafaxine residues were found in all milk samples of dams treated, demonstrating the lactational transfer of this antidepressant to the offspring. Although the maternal behavior was normal, the dams presented an increase in urea and uric acid levels in the groups treated with 7.7 and 15.4, respectively, as well as a spleen weight increased in the 3.85 and 15.4 groups. The male offspring showed a decrease in play behavior parameters in the intermediate dose group. Sperm analysis indicated a reduction in sperm motility in all treated groups. The androgen receptor expression in the hypothalamus was decreased in the highest dose group, although the sexual behavior had not been affected. In conclusion, venlafaxine was transferred through breast milk and promoted changes in play behavior, sperm quality, and hypothalamic androgen receptor (AR) content, which may indicate an incomplete masculinization of the brain of male offspring.


Subject(s)
Lactation , Prenatal Exposure Delayed Effects , Venlafaxine Hydrochloride , Animals , Female , Male , Rats , Lactation/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Receptors, Androgen/drug effects , Semen , Sperm Motility/drug effects , Venlafaxine Hydrochloride/toxicity
10.
Small Methods ; 7(1): e2201293, 2023 01.
Article in English | MEDLINE | ID: mdl-36538748

ABSTRACT

Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a youth-oriented tendency, but it lacks effective treatment. The binding of androgen receptor (AR) and androgen plays an essential role in the occurrence and progression of AGA. Herein, novel proteolysis targeting chimera degrader of AR (AR-PROTAC) is synthesized and integrated with dissolving microneedles (PROTAC-MNs) to achieve AR destruction in hair follicles for AGA treatment. The PROTAC-MNs possess adequate mechanical capabilities for precise AR-PROTAC delivery into the hair follicle-residing regions for AR degradation. After applying only once topically, the PROTAC-MNs achieve an accelerated onset of hair regeneration as compared to the daily application of the first-line topical drug minoxidil. Intriguingly, PROTAC-MNs via single administration still realize superior hair regeneration in AGA recrudescence, which is the major drawback of minoxidil in clinical practice. With the degradation of AR, the PROTAC-MNs successfully regulate the signaling cascade related to hair growth and activate hair follicle stem cells. Furthermore, the PROTAC-MNs do not cause systemic toxicity or androgen deficiency-related chaos in vivo. Collectively, these AR-degrading dissolving microneedles with long-lasting efficacy, one-step administration, and high biocompatibility provide a great therapeutic potential for AGA treatment.


Subject(s)
Alopecia , Proteolysis Targeting Chimera , Receptors, Androgen , Adolescent , Humans , Administration, Topical , Alopecia/drug therapy , Alopecia/metabolism , Androgens/metabolism , Androgens/therapeutic use , Minoxidil/therapeutic use , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Proteolysis Targeting Chimera/chemistry , Proteolysis Targeting Chimera/therapeutic use
11.
Cells ; 11(17)2022 08 30.
Article in English | MEDLINE | ID: mdl-36078112

ABSTRACT

Prostate cancer (PCa) relies in part on AR-signaling for disease development and progression. Earlier, we developed drug candidate galeterone, which advanced through phase 2-clinical trials in treating castration-resistant PCa (CRPC). Subsequently, we designed, synthesized, and evaluated next-generation galeterone-analogs including VNPP433-3ß which is potently efficacious against pre-clinical models of PCa. This study describes the mechanism of action of VNPP433-3ß that promotes degradation of full-length AR (fAR) and its splice variant AR-V7 besides depleting MNK1/2 in in vitro and in vivo CRPC models that stably overexpresses fAR. VNPP433-3ß directly engages AR within the cell and promotes proteasomal degradation of fAR and its splice variant AR-V7 by enhancing the interaction of AR with E3 ligases MDM2/CHIP but disrupting AR-HSP90 binding. Next, VNPP433-3ß decreases phosphorylation of 4EBP1 and abates binding of eIF4E and eIF4G to 5' cap of mRNA by depleting MNK1/2 with consequent depletion of phosphorylated eIF4E. Finally, RNA-seq demonstrates modulation of multiple pathways that synergistically contribute to PCa inhibition. Therefore, VNPP433-3ß exerts its antitumor effect by imposing 1) transcriptional regulation of AR and AR-responsive oncogenes 2) translational regulation by disrupting mRNA-5'cap-dependent translation initiation, 3) reducing AR half-life through enhanced proteasomal degradation in vitro and AR-overexpressing tumor xenografts in vivo.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Eukaryotic Initiation Factor-4E/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/drug effects , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , RNA, Messenger/therapeutic use
12.
Cell Rep ; 39(1): 110595, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385726

ABSTRACT

Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Benzamides , Carcinoma, Neuroendocrine , Cell Line, Tumor , Cell Plasticity/drug effects , Cell Plasticity/physiology , Drug Resistance, Neoplasm , Humans , Male , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Nitriles , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
13.
Arch Toxicol ; 96(3): 899-918, 2022 03.
Article in English | MEDLINE | ID: mdl-35089383

ABSTRACT

Tri-(2-ethylhexyl) trimellitate (TEHTM) is a plasticizer for polyvinyl chloride (PVC) material used in medical devices. It is an alternative to di-(2-ethylhexyl) phthalate (DEHP), a well-known reprotoxic and endocrine disruptor. As plasticizers are known to easily migrate when in contact with fatty biological fluids, patient exposure to TEHTM is highly probable. However, there is currently no data on the potential endocrine-disrupting effects of its human metabolites. To evaluate the effects of TEHTM metabolites on endocrine activity, they were first synthesized and their effects on estrogen, androgen and thyroid receptors, as well as steroid synthesis, were investigated by combining in vitro and in silico approaches. Among the primary metabolites, only 4-MEHTM (4-mono-(2-ethylhexyl) trimellitate) showed agonist activities on ERs and TRs, while three diesters were TR antagonists at non-cytotoxic concentrations. These results were completed by docking experiments which specified the ER and TR isoforms involved. A mixture of 2/1-MEHTM significantly increased the estradiol level and reduced the testosterone level in H295R cell culture supernatants. The oxidized secondary metabolites of TEHTM had no effect on ER, AR, TR receptors or on steroid hormone synthesis. Among the fourteen metabolites, these data showed that two of them (4-MEHTM and 2/1-MEHTM) induced effect on hormonal activities in vitro. However, by comparing the concentrations of the primary metabolites found in human urine with the active concentrations determined in bioassays, it can be suggested that the metabolites will not be active with regard to estrogen, androgen, thyroid receptors and steroidogenesis-mediated effects.


Subject(s)
Benzoates/toxicity , Endocrine Disruptors/toxicity , Plasticizers/toxicity , Benzoates/metabolism , Cell Line, Tumor , Computer Simulation , Endocrine Disruptors/metabolism , Estradiol/metabolism , Humans , Molecular Docking Simulation , Plasticizers/metabolism , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism , Receptors, Thyroid Hormone/drug effects , Receptors, Thyroid Hormone/metabolism , Testosterone/metabolism
14.
Anal Bioanal Chem ; 414(2): 1151-1162, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34734312

ABSTRACT

LGD-4033 (ligandrol) is a selective androgen receptor modulator (SARM), which is prohibited in sports by the World Anti-Doping Agency (WADA) and led to 62 adverse analytical findings (AAFs) in 2019. But not only deliberate doping with LGD-4033 constitutes a problem. In the past years, some AAFs that concerned SARMs can be attributed to contaminated dietary supplements (DS). Thus, the urgency to develop methods to differentiate between inadvertent doping and abuse of SARMs to benefit from the performance-enhancing effect of the compound in sports is growing. To gain a better understanding of the metabolism and excretion patterns of LGD-4033, human micro-dose excretion studies at 1, 10, and 50 µg LGD-4033 were conducted. Collected urine samples were prepared for analysis using enzymatic hydrolysis followed by solid-phase extraction and analyzed via LC-HRMS/MS. Including isomers, a total of 15 phase I metabolites were detected in the urine samples. The LC-HRMS/MS method was validated for qualitative detection of LGD-4033, allowing for a limit of detection (LOD) of 8 pg/mL. The metabolite M1, representing the epimer of LGD-4033, was synthesized and the structure elucidated by NMR spectroscopy. As the M1/LGD-4033 ratio changes over time, the ratio and the approximate LGD-4033 concentration can contribute to estimating the time point of drug intake and dose of LGD-4033 in doping control urine samples, which is particularly relevant in anti-doping result management.


Subject(s)
Doping in Sports/prevention & control , Nitriles/pharmacology , Pyrrolidines/pharmacology , Receptors, Androgen/drug effects , Chromatography, Liquid/methods , Humans , Limit of Detection , Tandem Mass Spectrometry/methods
15.
Oncol Rep ; 47(1)2022 01.
Article in English | MEDLINE | ID: mdl-34738630

ABSTRACT

Androgen deprivation therapy (ADT) is used to treat prostate cancer (PCa). However, ADT may increase the expression of androgen receptor (AR) through the amplification of chromosome X. The gene oligophrenin 1 (OPHN1) is located in the same region as the AR gene, which could be amplified by ADT. Thus, the role of OPHN1 in PCa pathology was investigated. The expression status of OPHN1 in PCa was searched in The Cancer Genome Atlas (TCGA) database. Androgen­sensitive cells LNCaP and 22RV1 were cultured under ADT conditions, and then the expression of OPHN1 was evaluated by northern blotting. The expression of OPHN1 was enhanced or knocked down in LNCaP and 22RV1 cells by transfection. Subsequently, the LNCaP and 22RV1 cells were cultured under ADT, and the viability rate, apoptosis, and migration of cells were assessed by MTT, flow cytometry, and Transwell assay respectively. The expression of OPHN1 was also enhanced or knocked down in androgen­insensitive PC3 cells, and then the effects of OPHN1 on the viability, apoptosis, and migration of PC3 cells were assessed. A mouse xenograft model was created by injecting LNCaP cells with OPHN1 overexpression subcutaneously, and the tumor growth rates were monitored. In TCGA database, amplification of the OPHN1 gene was observed in the PCa tumors. ADT increased the expression of OPHN1 in LNCaP and 22RV1 cells (P<0.05). OPHN1 could promote resistance of LNCaP and 22RV1 cells to ADT by promoting cell survival and preventing their apoptosis (P<0.05). In addition, OPHN1 contributed to cell viability (P<0.05) and enhanced the migration ability in LNCaP, 22RV1 and PC3 cells (P<0.05). In the mouse model, the PCa xenograft with OPHN1 overexpression had a higher growth rate and was more resistant to the ADT condition (P<0.05). In summary, ADT induced the overexpression of OPHN1 in PCa, which facilitated PCa cell survival and promoted PCa progression.


Subject(s)
Anilides/pharmacology , Cytoskeletal Proteins/genetics , GTPase-Activating Proteins/genetics , Nitriles/pharmacology , Nuclear Proteins/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Tosyl Compounds/pharmacology , Androgen Antagonists/pharmacology , Animals , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/drug effects
16.
PLoS One ; 16(9): e0257984, 2021.
Article in English | MEDLINE | ID: mdl-34570813

ABSTRACT

Prostate cancer is the second leading cause of cancer related death in American men. Several therapies have been developed to treat advanced prostate cancer, but these therapies often have severe side effects. To improve the outcome with fewer side effects we focused on the furanocoumarin bergamottin, a natural product found in grapefruit juice and a potent CYP3A inhibitor. Our recent studies have shown that CYP3A5 inhibition can block androgen receptor (AR) signaling, critical for prostate cancer growth. We observed that bergamottin reduces prostate cancer (PC) cell growth by decreasing both total and nuclear AR (AR activation) reducing downstream AR signaling. Bergamottin's role in reducing AR activation was confirmed by confocal microscopy studies and reduction in prostate specific antigen (PSA) levels, which is a marker for prostate cancer. Further studies revealed that bergamottin promotes cell cycle block and accumulates G0/G1 cells. The cell cycle block was accompanied with reduction in cyclin D, cyclin B, CDK4, P-cdc2 (Y15) and P-wee1 (S642). We also observed that bergamottin triggers apoptosis in prostate cancer cell lines as evident by TUNEL staining and PARP cleavage. Our data suggests that bergamottin may suppress prostate cancer growth, especially in African American (AA) patients carrying wild type CYP3A5 often presenting aggressive disease.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cytochrome P-450 CYP3A Inhibitors/therapeutic use , Furocoumarins/therapeutic use , G1 Phase/drug effects , Prostatic Neoplasms/drug therapy , Resting Phase, Cell Cycle/drug effects , Blotting, Western , Cell Fractionation , Cell Line, Tumor , Citrus paradisi/chemistry , Down-Regulation , Fruit and Vegetable Juices/analysis , Humans , Male , Microscopy, Confocal , Receptors, Androgen/drug effects
17.
Toxicol Ind Health ; 37(10): 585-593, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34486460

ABSTRACT

As a typical environmental endocrine disruptor (EED), bisphenol A (BPA) can induce pathological hyperplasia of the prostatic epithelium and stroma. This study concentrates mainly on the effect and underlying mechanisms of BPA on prostatic hyperplasia, which is based on the culture of primary human prostate epithelial cells (HPEpiC) and human prostate fibroblasts (HPrF). In an effect to screen the optimal pro-survival BPA levels, HPEpiC and HPrF were, respectively, exposed to concentration gradients of BPA (10-12 M-10-4 M) solution diluted with two corresponding medium and incubated for 72 h at 37°C. CCK-8 assay showed that 10-9 M-10-5 M BPA could facilitate the proliferation of HPEpiC, while similar proliferative effect of HPrF only needed 10-11 M-10-7 M BPA. HPrF were more sensitive to BPA than HPEpiC. The qualification of PCNA gene expression measured using quantitative real-time polymerase chain reaction (qRT-PCR) also mirrored the BPA-induced cell proliferation. Additionally, our results considered that androgen receptor (AR), estrogen receptor (ERα, ERß), and NFKB1 gene expressions exhibited up-regulation in HPEpiC treated with 10-9 M BPA for 72 h. However, in HPrF, the identical BPA treatment could activate ERα, ERß, and NFKB1 gene expressions and down-regulated the expression of AR levels. It is further confirmed that low-dose BPA can indeed promote the proliferation of human prostate cells in vitro, and the mechanisms of BPA for prostatic epithelial and stromal hyperplasia may not be consistent.


Subject(s)
Benzhydryl Compounds/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gene Expression/drug effects , Phenols/pharmacology , Prostatic Hyperplasia/chemically induced , Receptors, Androgen/genetics , Endocrine Disruptors/pharmacology , Epithelium , Estrogen Receptor alpha/drug effects , Estrogen Receptor beta/drug effects , Humans , In Vitro Techniques , Male , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Androgen/drug effects , Stromal Cells
18.
Cancer Lett ; 520: 172-183, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34265399

ABSTRACT

The UHRF1 and CDC6, oncogenes play critical roles in therapeutic resistance. In the present study, we found that UHRF1 mediates androgen receptor (AR)-regulated CDC6 transcription in prostate cancer cells. In prostate cancer tissues and cell lines, levels of UHRF1 and CDC6 were simultaneously upregulated, and this was associated with worse survival. UHRF1 silencing significantly promoted the cytotoxicity and anti-prostate cancer efficacy of bicalutamide in mouse xenografts by inhibiting CDC6 gene expression. UHRF1 promoted AR-regulated CDC6 transcription by binding to the CCAAT motif near the androgen response element (ARE) in the CDC6 promoter. We further found that UHRF1 promoted androgen-dependent chromatin occupancy of AR protein by recruiting the H3K9me2/3-specific demethyltransferase KDM4C and modifying the intense heterochromatin status. Altogether, we found for the first time that UHRF1 promotes AR-regulated CDC6 transcription through a novel chromatin modification mechanism and contributes to anti-AR drug resistance in prostate cancer. Targeting AR and UHRF1 simultaneously may be a novel and promising therapeutic modality for prostate cancer.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Nuclear Proteins/genetics , Prostatic Hyperplasia/drug therapy , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics , Ubiquitin-Protein Ligases/genetics , Androgen Antagonists/pharmacology , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor , Chromatin Assembly and Disassembly/drug effects , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Middle Aged , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/drug effects
19.
Endocrinology ; 162(8)2021 08 01.
Article in English | MEDLINE | ID: mdl-34089595

ABSTRACT

Coronavirus disease 2019 (COVID-19) is characterized by a gender disparity in severity, with men exhibiting higher hospitalization and mortality rates than women. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, infects cells following recognition and attachment of the viral spike glycoprotein to the angiotensin-converting enzyme 2 transmembrane protein, followed by spike protein cleavage and activation by cell surface transmembrane protease serine 2 (TMPRSS2). In prostate cancer cells, androgen acting on the androgen receptor increases TMPRSS2 expression, which has led to the hypothesis that androgen-dependent expression of TMPRSS2 in the lung may increase men's susceptibility to severe COVID-19 and that, accordingly, suppressing androgen production or action may mitigate COVID-19 severity by reducing SARS-CoV-2 amplification. Several ongoing clinical trials are testing the ability of androgen deprivation therapies or anti-androgens to mitigate COVID-19. This perspective discusses clinical and molecular advances on the rapidly evolving field of androgen receptor (AR) action on cell surface transmembrane protease serine 2 (TMPRSS2) expression and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of anti-androgens on coronavirus disease 2019 (COVID-19) severity in male patients. It discusses limitations of current studies and offers insight for future directions.


Subject(s)
Androgen Antagonists/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Gene Expression/drug effects , Humans , Lung/metabolism , Lung/virology , Male , Mice , Prostatic Neoplasms/drug therapy , Receptors, Androgen/drug effects , Receptors, Androgen/physiology , SARS-CoV-2/physiology , Serine Endopeptidases/drug effects , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology , Sex Factors
20.
Reprod Biol Endocrinol ; 19(1): 77, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34053455

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) causes anovulation and is associated with a reduced clinical pregnancy rate. Metformin, which is widely used for treating PCOS, can lead to successful pregnancy by restoring the ovulation cycle and possibly improving endometrial abnormality during the implantation period. However, the mechanism by which metformin improves endometrial abnormality remains unknown. Women with PCOS have an aberrant expression of steroid hormone receptors and homeobox A10 (HOXA10), which is essential for embryo implantation in the endometrium. METHODS: In this study, we examined whether metformin affects androgen receptor (AR) and HOXA10 expression in PCOS endometrium in vivo and in human endometrial cell lines in vitro. Expression of AR and HOXA10 was evaluated by immunohistochemistry, fluorescent immunocytochemistry, and western blot analysis. RESULTS: AR expression was localized in both epithelial and stromal cells; however, HOXA10 expression was limited to only stromal cells in this study. In women with PCOS, 3 months after metformin treatment, the expression of AR was reduced in epithelial and stromal cells in comparison to their levels before treatment. In contrast, HOXA10 expression in the stromal cells with metformin treatment increased in comparison to its level before treatment. Further, we showed that metformin counteracted the testosterone-induced AR expression in both Ishikawa cells and human endometrial stromal cells (HESCs); whereas, metformin partly restored the testosterone-reduced HOXA10 expression in HESCs in vitro. CONCLUSIONS: Our results suggest that metformin may have a direct effect on the abnormal endometrial environment of androgen excess in women with PCOS. TRIAL REGISTRATION: The study was approved by the Ethical Committee of Fukushima Medical University (approval no. 504, approval date. July 6, 2006), and written informed consent was obtained from all patients. https://www.fmu.ac.jp/univ/sangaku/rinri.html.


Subject(s)
Endometrium/drug effects , Homeobox A10 Proteins/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Polycystic Ovary Syndrome/drug therapy , Receptors, Androgen/drug effects , Adult , Cell Line , Embryo Implantation , Endometrium/cytology , Female , Homeobox A10 Proteins/metabolism , Humans , Hypoglycemic Agents/therapeutic use , In Vitro Techniques , Metformin/therapeutic use , Receptors, Androgen/metabolism , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL