Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029963

ABSTRACT

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Subject(s)
Receptors, Guanylate Cyclase-Coupled , Animals , Child , Humans , Mice , Diarrhea , Enterotoxins , Guanylate Cyclase/metabolism , Ligands , Receptors, Enterotoxin/genetics , Receptors, Guanylate Cyclase-Coupled/antagonists & inhibitors , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology
2.
Elife ; 122023 08 03.
Article in English | MEDLINE | ID: mdl-37535399

ABSTRACT

Membrane receptor guanylyl cyclases play a role in many important facets of human physiology, from regulating blood pressure to intestinal fluid secretion. The structural mechanisms which influence these important physiological processes have yet to be explored. We present the 3.9 Å resolution cryo-EM structure of the human membrane receptor guanylyl cyclase GC-C in complex with Hsp90 and its co-chaperone Cdc37, providing insight into the mechanism of Cdc37 mediated binding of GC-C to the Hsp90 regulatory complex. As a membrane protein and non-kinase client of Hsp90-Cdc37, this work shows the remarkable plasticity of Cdc37 to interact with a broad array of clients with significant sequence variation. Furthermore, this work shows how membrane receptor guanylyl cyclases hijack the regulatory mechanisms used for active kinases to facilitate their regulation. Given the known druggability of Hsp90, these insights can guide the further development of membrane receptor guanylyl cyclase-targeted therapeutics and lead to new avenues to treat hypertension, inflammatory bowel disease, and other membrane receptor guanylyl cyclase-related conditions.


Subject(s)
Cell Cycle Proteins , Chaperonins , HSP90 Heat-Shock Proteins , Receptors, Guanylate Cyclase-Coupled , Humans , Cell Cycle Proteins/metabolism , Chaperonins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Binding , Receptors, Guanylate Cyclase-Coupled/metabolism
3.
Appl Immunohistochem Mol Morphol ; 31(3): 154-162, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36735491

ABSTRACT

The present study examined staining of guanylate cyclase C (GCC/GUCY2C) in the small and large intestines of children younger than age 7 years. Normal intestinal tissue from children aged 0 to 7 years was stained using GCC, uroguanylin, and villin antibodies and scored for staining intensity. A subset underwent quantitative real-time polymerase chain reaction. Data were analyzed using t test of independent means, descriptive statistics, and logistic regression. Four hundred sixty-four specimens underwent immunohistochemistry; 291 specimens underwent real-time polymerase chain reaction. GCC, villin, and uroguanylin were detected across age groups and anatomic sites. No significant differences were identifiable across age groups. GUCY2C and uroguanylin mRNA was detected in all samples, with no variability of statistical significance of either target-to-villin normalization between any age cohorts. A gradient of expression of GCC across age groups does not seem to exist.


Subject(s)
Intestines , Receptors, Guanylate Cyclase-Coupled , Receptors, Peptide , Child , Child, Preschool , Humans , Immunohistochemistry , Microvilli/chemistry , Microvilli/metabolism , Receptors, Enterotoxin , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Infant, Newborn , Infant
4.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36548082

ABSTRACT

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.


Subject(s)
Enteroendocrine Cells , Receptors, Enterotoxin , Visceral Pain , Animals , Humans , Mice , Cyclic GMP/metabolism , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/physiology , Intestines/metabolism , Intestines/physiology , Receptors, Enterotoxin/metabolism , Receptors, Guanylate Cyclase-Coupled/metabolism , Signal Transduction/physiology , Visceral Pain/genetics , Visceral Pain/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 911459, 2022.
Article in English | MEDLINE | ID: mdl-35846281

ABSTRACT

Receptor Guanylyl Cyclase C (GC-C) was initially characterized as an important regulator of intestinal fluid and ion homeostasis. Recent findings demonstrate that GC-C is also causally linked to intestinal inflammation, dysbiosis, and tumorigenesis. These advances have been fueled in part by identifying mutations or changes in gene expression in GC-C or its ligands, that disrupt the delicate balance of intracellular cGMP levels and are associated with a wide range of clinical phenotypes. In this review, we highlight aspects of the current knowledge of the GC-C signaling pathway in homeostasis and disease, emphasizing recent advances in the field. The review summarizes extra gastrointestinal functions for GC-C signaling, such as appetite control, energy expenditure, visceral nociception, and behavioral processes. Recent research has expanded the homeostatic role of GC-C and implicated it in regulating the ion-microbiome-immune axis, which acts as a mechanistic driver in inflammatory bowel disease. The development of transgenic and knockout mouse models allowed for in-depth studies of GC-C and its relationship to whole-animal physiology. A deeper understanding of the various aspects of GC-C biology and their relationships with pathologies such as inflammatory bowel disease, colorectal cancer, and obesity can be leveraged to devise novel therapeutics.


Subject(s)
Cyclic GMP , Inflammatory Bowel Diseases , Animals , Cyclic GMP/metabolism , Inflammatory Bowel Diseases/therapy , Mice , Receptors, Enterotoxin/metabolism , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Signal Transduction
6.
Sci Rep ; 11(1): 17213, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446776

ABSTRACT

Colorectal cancer is the third most frequently diagnosed cancer malignancy and the second leading cause of cancer-related deaths worldwide. Therefore, it is of utmost importance to provide new therapeutic options that can improve survival. Sphingomyelin nanosystems (SNs) are a promising type of nanocarriers with potential for association of different types of drugs and, thus, for the development of combination treatments. In this work we propose the chemical modification of uroguanylin, a natural ligand for the Guanylyl Cyclase (GCC) receptor, expressed in metastatic colorectal cancer tumors, to favour its anchoring to SNs (UroGm-SNs). The anti-cancer drug etoposide (Etp) was additionally encapsulated for the development of a combination strategy (UroGm-Etp-SNs). Results from in vitro studies showed that UroGm-Etp-SNs can interact with colorectal cancer cells that express the GCC receptor and mediate an antiproliferative response, which is more remarkable for the drugs in combination. The potential of UroGm-Etp-SNs to treat metastatic colorectal cancer cells was complemented with an in vivo experiment in a xenograft mice model.


Subject(s)
Colorectal Neoplasms/drug therapy , Drug Delivery Systems/methods , Etoposide/administration & dosage , Nanoparticles/chemistry , Natriuretic Peptides/chemistry , Sphingomyelins/chemistry , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Etoposide/chemistry , Etoposide/pharmacology , Female , Humans , Mice, Inbred Strains , Mice, Nude , Microscopy, Electron, Scanning , Nanoparticles/ultrastructure , Natriuretic Peptides/metabolism , Neoplasm Metastasis , Particle Size , Receptors, Guanylate Cyclase-Coupled/metabolism , Tumor Burden/drug effects
7.
Nat Rev Cardiol ; 17(11): 698-717, 2020 11.
Article in English | MEDLINE | ID: mdl-32444692

ABSTRACT

Investigations into the mixed muscle-secretory phenotype of cardiomyocytes from the atrial appendages of the heart led to the discovery that these cells produce, in a regulated manner, two polypeptide hormones - the natriuretic peptides - referred to as atrial natriuretic factor or atrial natriuretic peptide (ANP) and brain or B-type natriuretic peptide (BNP), thereby demonstrating an endocrine function for the heart. Studies on the gene encoding ANP (NPPA) initiated the field of modern research into gene regulation in the cardiovascular system. Additionally, ANP and BNP were found to be the natural ligands for cell membrane-bound guanylyl cyclase receptors that mediate the effects of natriuretic peptides through the generation of intracellular cGMP, which interacts with specific enzymes and ion channels. Natriuretic peptides have many physiological actions and participate in numerous pathophysiological processes. Important clinical entities associated with natriuretic peptide research include heart failure, obesity and systemic hypertension. Plasma levels of natriuretic peptides have proven to be powerful diagnostic and prognostic biomarkers of heart disease. Development of pharmacological agents that are based on natriuretic peptides is an area of active research, with vast potential benefits for the treatment of cardiovascular disease.


Subject(s)
Atrial Natriuretic Factor/metabolism , Heart Failure/metabolism , Myocytes, Cardiac/metabolism , Natriuretic Peptide, Brain/metabolism , Receptors, Guanylate Cyclase-Coupled/metabolism , Animals , Atrial Appendage/cytology , Atrial Fibrillation/metabolism , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/physiology , Atrial Remodeling , Biomarkers/metabolism , Cyclic GMP/metabolism , Diabetes Mellitus/metabolism , Fibrosis , Gene Expression Regulation, Developmental , Heart Atria/cytology , Humans , Hypertension/metabolism , Lipid Metabolism/physiology , Metabolic Syndrome/metabolism , Mice , Myocardium/metabolism , Myocardium/pathology , Natriuretic Peptide, Brain/genetics , Natriuretic Peptide, Brain/physiology , Obesity/metabolism , Peptide Fragments/metabolism , Prognosis , Protein Processing, Post-Translational , Pulmonary Arterial Hypertension/metabolism , Secretory Vesicles/metabolism , Ventricular Remodeling , Water-Electrolyte Balance/physiology
8.
Sci Rep ; 9(1): 14652, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601940

ABSTRACT

The receptor guanylate cyclases (rGCs) in animals serve as sensitive chemoreceptors to detect both chemical and environmental cues. In reproduction, rGCs were shown to be expressed on sperm and serve as receptors for egg-derived sperm-activating and sperm-attracting factors in some echinoderms and mammals. However, sperm-associated rGCs have only been identified in some deuterostomes thus far, and it remains unclear how widely rGCs are utilized in metazoan reproduction. To address this issue, this study investigated the existence and expression of rGCs, particularly asking if rGCs are involved in the reproduction of a basal metazoan, phylum Cnidaria, using the stony coral Euphyllia ancora. Six paralogous rGCs were identified from a transcriptome database of E. ancora, and one of the rGCs, GC-A, was shown to be specifically expressed in the testis. Immunohistochemical analyses demonstrated that E. ancora GC-A protein was expressed in the spermatocytes and spermatids and eventually congregated on the sperm flagella during spermatogenesis. These findings suggest that GC-A may be involved in the regulation of sperm activity and/or functions (e.g., fertilization) in corals. This study is the first to perform molecular characterization of rGCs in cnidarians and provides evidence for the possible involvement of rGCs in the reproduction of basal metazoans.


Subject(s)
Anthozoa/growth & development , Receptors, Guanylate Cyclase-Coupled/metabolism , Sperm Tail/enzymology , Animals , Anthozoa/enzymology , Anthozoa/genetics , Cloning, Molecular , Gene Expression Profiling , Male , Phylogeny , Real-Time Polymerase Chain Reaction , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/isolation & purification , Spermatogenesis
9.
Am J Med ; 132(5): 572-575, 2019 05.
Article in English | MEDLINE | ID: mdl-30550753

ABSTRACT

Chronic idiopathic constipation and irritable bowel syndrome with constipation are commonly encountered in ambulatory patients, but limited options exist for patients with persistent or severe symptoms following treatment with nonprescription products. Plecanatide (Trulance, Synergy Pharmaceuticals, New York, NY) is a 16-amino acid peptide analog of uroguanylin that stimulates guanylate cyclase-C receptors to increase chloride and bicarbonate secretion into the intestine and prevents the absorption of sodium ions, thereby increasing the secretion of water into the lumen. The influx of additional fluid accelerates intestinal transit, softens the stool, and facilitates easier defecation. Plecanatide is the second guanylate cyclase-C receptor agonist to be approved by the US Food and Drug Administration for chronic idiopathic constipation and irritable bowel syndrome, but plecanatide is unique because its effects are limited to the proximal small bowel.


Subject(s)
Constipation , Irritable Bowel Syndrome/drug therapy , Natriuretic Peptides/pharmacology , Constipation/drug therapy , Constipation/etiology , Gastrointestinal Agents/pharmacology , Humans , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/physiopathology , Receptors, Guanylate Cyclase-Coupled/metabolism , Treatment Outcome
10.
Infect Immun ; 86(5)2018 05.
Article in English | MEDLINE | ID: mdl-29463616

ABSTRACT

Nontyphoidal Salmonella disease contributes toward significant morbidity and mortality across the world. Host factors, including gamma interferon, tumor necrosis factor alpha, and gut microbiota, significantly influence the outcome of Salmonella pathogenesis. However, the entire repertoire of host protective mechanisms contributing to Salmonella pathogenicity is not completely appreciated. Here, we investigated the roles of receptor guanylyl cyclase C (GC-C), which is predominantly expressed in the intestine and regulates intestinal cell proliferation and fluid-ion homeostasis. Mice deficient in GC-C (Gucy2c-/-) displayed accelerated mortality compared with that for wild-type mice following infection via the oral route, even though both groups possessed comparable systemic Salmonella infection burdens. Survival following intraperitoneal infection remained similar in both groups, indicating that GC-C offered protection via a gut-mediated response. The serum cortisol level was higher in Gucy2c-/- mice than wild-type (Gucy2c+/+) mice, and an increase in infection-induced thymic atrophy with a loss of immature CD4+ CD8+ double-positive thymocytes was observed. Accelerated and enhanced damage in the ileum, including submucosal edema, epithelial cell damage, focal tufting, and distortion of the villus architecture, was seen in Gucy2c-/- mice concomitantly with a larger number of ileal tissue-associated bacteria. Transcription of key mediators of Salmonella-induced inflammation (interleukin-22/Reg3ß) was altered in Gucy2c-/- mice in comparison to that in Gucy2c+/+ mice. A reduction in fecal lactobacilli, which are protective against Salmonella infection, was observed in Gucy2c-/- mice. Gucy2c-/- mice cohoused with wild-type mice continued to show reduced amounts of lactobacilli and increased susceptibility to infection. Our study, therefore, suggests that the receptor GC-C confers a survival advantage during gut-mediated Salmonella enterica serovar Typhimurium pathogenesis, presumably by regulating Salmonella effector mechanisms and maintaining a beneficial microbiome.


Subject(s)
Cytokines/immunology , Guanylate Cyclase/immunology , Receptors, Guanylate Cyclase-Coupled/immunology , Salmonella Infections, Animal/immunology , Salmonella enterica/genetics , Salmonella enterica/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Animals , Cytokines/metabolism , Guanylate Cyclase/metabolism , Ileum/immunology , Ileum/microbiology , Mice , Models, Animal , Receptors, Guanylate Cyclase-Coupled/metabolism , Salmonella Infections, Animal/microbiology , Serogroup , Signal Transduction/physiology
11.
Toxins (Basel) ; 9(9)2017 09 12.
Article in English | MEDLINE | ID: mdl-28895923

ABSTRACT

There is a geographic inequality in the incidence of colorectal cancer, lowest in developing countries, and greatest in developed countries. This disparity suggests an environmental contribution to cancer resistance in endemic populations. Enterotoxigenic bacteria associated with diarrheal disease are prevalent in developing countries, including enterotoxigenic E. coli (ETEC) producing heat-stable enterotoxins (STs). STs are peptides that are structurally homologous to paracrine hormones that regulate the intestinal guanylyl cyclase C (GUCY2C) receptor. Beyond secretion, GUCY2C is a tumor suppressor universally silenced by loss of expression of its paracrine hormone during carcinogenesis. Thus, the geographic imbalance in colorectal cancer, in part, may reflect chronic exposure to ST-producing organisms that restore GUCY2C signaling silenced by hormone loss during transformation. Here, mice colonized for 18 weeks with control E. coli or those engineered to secrete ST exhibited normal growth, with comparable weight gain and normal stool water content, without evidence of secretory diarrhea. Enterotoxin-producing, but not control, E. coli, generated ST that activated colonic GUCY2C signaling, cyclic guanosine monophosphate (cGMP) production, and cGMP-dependent protein phosphorylation in colonized mice. Moreover, mice colonized with ST-producing E. coli exhibited a 50% reduction in carcinogen-induced colorectal tumor burden. Thus, chronic colonization with ETEC producing ST could contribute to endemic cancer resistance in developing countries, reinforcing a novel paradigm of colorectal cancer chemoprevention with oral GUCY2C-targeted agents.


Subject(s)
Colorectal Neoplasms , Enterotoxins , Escherichia coli/metabolism , Animals , Cancer Vaccines , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/prevention & control , Developing Countries , Humans , Mice , Receptors, Enterotoxin/metabolism , Receptors, Guanylate Cyclase-Coupled/metabolism
12.
Cancer Res ; 77(18): 5095-5106, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28916678

ABSTRACT

High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR.


Subject(s)
Gamma Rays/adverse effects , Gastrointestinal Tract/radiation effects , Irritable Bowel Syndrome/prevention & control , Radiation Injuries, Experimental/prevention & control , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism , Animals , Apoptosis/radiation effects , Cell Proliferation/radiation effects , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Colonic Neoplasms/radiotherapy , Female , Gastrointestinal Hormones/metabolism , Humans , Irritable Bowel Syndrome/enzymology , Irritable Bowel Syndrome/etiology , Lymphoma/enzymology , Lymphoma/pathology , Lymphoma/radiotherapy , Male , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Melanoma, Experimental/radiotherapy , Mice , Mice, Inbred C57BL , Natriuretic Peptides/metabolism , Paracrine Communication/radiation effects , Radiation Injuries, Experimental/enzymology , Radiation Injuries, Experimental/etiology , Receptors, Enterotoxin , Signal Transduction/radiation effects , Tumor Cells, Cultured
13.
Physiol Rep ; 5(11)2017 Jun.
Article in English | MEDLINE | ID: mdl-28592587

ABSTRACT

The transmembrane receptor guanylyl cyclase-C (GC-C), expressed on enterocytes along the intestine, is the molecular target of the GC-C agonist peptide linaclotide, an FDA-approved drug for treatment of adult patients with Irritable Bowel Syndrome with Constipation and Chronic Idiopathic Constipation. Polarized human colonic intestinal cells (T84, CaCo-2BBe) rat and human intestinal tissues were employed to examine cellular signaling and cystic fibrosis transmembrane conductance regulator (CFTR)-trafficking pathways activated by linaclotide using confocal microscopy, in vivo surface biotinylation, and protein kinase-II (PKG-II) activity assays. Expression and activity of GC-C/cGMP pathway components were determined by PCR, western blot, and cGMP assays. Fluid secretion as a marker of CFTR cell surface translocation was determined using in vivo rat intestinal loops. Linaclotide treatment (30 min) induced robust fluid secretion and translocation of CFTR from subapical compartments to the cell surface in rat intestinal loops. Similarly, linaclotide treatment (30 min) of T84 and CaCo-2BBe cells increased cell surface CFTR levels. Linaclotide-induced activation of the GC-C/cGMP/PKGII signaling pathway resulted in elevated intracellular cGMP and pVASPser239 phosphorylation. Inhibition or silencing of PKGII significantly attenuated linaclotide-induced CFTR trafficking to the apical membrane. Inhibition of protein kinase-A (PKA) also attenuated linaclotide-induced CFTR cell surface trafficking, implying cGMP-dependent cross-activation of PKA pathway. Together, these findings support linaclotide-induced activation of the GC-C/cGMP/PKG-II/CFTR pathway as the major pathway of linaclotide-mediated intestinal fluid secretion, and that linaclotide-dependent CFTR activation and recruitment/trafficking of CFTR from subapical vesicles to the cell surface is an important step in this process.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Guanylyl Cyclase C Agonists/pharmacology , Intestinal Mucosa/metabolism , Peptides/pharmacology , Signal Transduction , Animals , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Humans , Intestinal Mucosa/drug effects , Male , Protein Transport , Rats , Rats, Sprague-Dawley , Receptors, Guanylate Cyclase-Coupled/metabolism
14.
Circ J ; 81(7): 913-919, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28552863

ABSTRACT

With the discovery of atrial natriuretic peptide (ANP), the heart as an endocrine organ was established. Basic science revealed that ANP, through the particulate guanylyl cyclase A receptor and cGMP, plays a fundamental role in cardiorenal biology. This work has led to the development of ANP as a therapeutic, especially in heart failure (HF). Human genomics has strengthened our understanding of ANP, revealing specific ANP gene variants that may be associated with biological dysfunction, but also may mediate protective properties, including in metabolic syndrome. Advances in understanding the processing and degradation of ANP molecular forms have resulted in therapeutic breakthroughs, especially inhibition of ANP degradation by neprilysin inhibitors. Although ANP is administered intravenously for acute HF, a novel therapeutic strategy is its chronic delivery by subcutaneous injection. An innovative therapeutic development is engineering to develop ANP-based peptides for chronic use. These interconnected topics of ANP biology and therapeutics will be reviewed in detail.


Subject(s)
Atrial Natriuretic Factor , Genetic Variation , Heart Failure , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/therapeutic use , Drug Design , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Humans , Neprilysin/antagonists & inhibitors , Neprilysin/genetics , Neprilysin/metabolism , Protease Inhibitors/therapeutic use , Protein Engineering/methods , Proteolysis/drug effects , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism
15.
Cell Tissue Res ; 369(3): 567-578, 2017 09.
Article in English | MEDLINE | ID: mdl-28451751

ABSTRACT

The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues.


Subject(s)
Guanylate Cyclase/metabolism , MAP Kinase Signaling System/drug effects , Natriuretic Peptide, C-Type/pharmacology , Somatotrophs/metabolism , Animals , Cell Line , Cyclic GMP/metabolism , Humans , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation/drug effects , Promoter Regions, Genetic/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Somatotrophs/drug effects
16.
J Immunol ; 198(9): 3507-3514, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28341670

ABSTRACT

Heterologous prime-boost immunization with plasmid DNA and viral vector vaccines is an emerging approach to elicit CD8+ T cell-mediated immunity targeting pathogens and tumor Ags that is superior to either monotherapy. Yet, the mechanisms underlying the synergy of prime-boost strategies remain incompletely defined. In this study, we examine a DNA and adenovirus (Ad5) combination regimen targeting guanylyl cyclase C (GUCY2C), a receptor expressed by intestinal mucosa and universally expressed by metastatic colorectal cancer. DNA immunization efficacy was optimized by i.m. delivery via electroporation, yet it remained modest compared with Ad5. Sequential immunization with DNA and Ad5 produced superior antitumor efficacy associated with increased TCR avidity, whereas targeted disruption of TCR avidity enhancement eliminated GUCY2C-specific antitumor efficacy, without affecting responding T cell number or cytokine profile. Indeed, functional TCR avidity of responding GUCY2C-specific CD8+ T cells induced by various prime or prime-boost regimens correlated with antitumor efficacy, whereas T cell number and cytokine profile were not. Importantly, although sequential immunization with DNA and Ad5 maximized antitumor efficacy through TCR avidity enhancement, it produced no autoimmunity, reflecting sequestration of GUCY2C to intestinal apical membranes and segregation of mucosal and systemic immunity. Together, TCR avidity enhancement may be leveraged by prime-boost immunization to improve GUCY2C-targeted colorectal cancer immunotherapeutic efficacy and patient outcomes without concomitant autoimmune toxicity.


Subject(s)
Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/physiology , Colorectal Neoplasms/therapy , Immunotherapy, Adoptive/methods , Intestinal Mucosa/physiology , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism , Vaccines, DNA/immunology , Adenoviridae/genetics , Animals , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/transplantation , Cells, Cultured , Colorectal Neoplasms/immunology , Cytotoxicity, Immunologic , Immunity, Mucosal , Immunization, Secondary , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Receptors, Antigen, T-Cell/metabolism , Receptors, Enterotoxin , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Peptide/genetics , Tumor Burden
17.
Sci Rep ; 7: 38734, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28139692

ABSTRACT

Monitoring of neuronal activity within circuits facilitates integrated responses and rapid changes in behavior. We have identified a system in Caenorhabditis elegans where neuropeptide expression is dependent on the ability of the BAG neurons to sense carbon dioxide. In C. elegans, CO2 sensing is predominantly coordinated by the BAG-expressed receptor-type guanylate cyclase GCY-9. GCY-9 binding to CO2 causes accumulation of cyclic GMP and opening of the cGMP-gated TAX-2/TAX-4 cation channels; provoking an integrated downstream cascade that enables C. elegans to avoid high CO2. Here we show that cGMP regulation by GCY-9 and the PDE-1 phosphodiesterase controls BAG expression of a FMRFamide-related neuropeptide FLP-19 reporter (flp-19::GFP). This regulation is specific for CO2-sensing function of the BAG neurons, as loss of oxygen sensing function does not affect flp-19::GFP expression. We also found that expression of flp-19::GFP is controlled in parallel to GCY-9 by the activity-dependent transcription factor CREB (CRH-1) and the cAMP-dependent protein kinase (KIN-2) signaling pathway. We therefore show that two parallel pathways regulate neuropeptide gene expression in the BAG sensory neurons: the ability to sense changes in carbon dioxide and CREB transcription factor. Such regulation may be required in particular environmental conditions to enable sophisticated behavioral decisions to be performed.


Subject(s)
Caenorhabditis elegans/physiology , Carbon Dioxide/metabolism , Gene Expression Regulation , Neuropeptides/biosynthesis , Sensory Receptor Cells/physiology , Animals , Caenorhabditis elegans Proteins/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Receptors, Guanylate Cyclase-Coupled/metabolism
18.
Expert Rev Clin Pharmacol ; 10(5): 549-557, 2017 May.
Article in English | MEDLINE | ID: mdl-28162021

ABSTRACT

INTRODUCTION: Colorectal cancer remains the second leading cause of cancer death in the United States, and new strategies to prevent, detect, and treat the disease are needed. The receptor, guanylate cyclase C (GUCY2C), a tumor suppressor expressed by the intestinal epithelium, has emerged as a promising target. Areas covered: This review outlines the role of GUCY2C in tumorigenesis, and steps to translate GUCY2C-targeting schemes to the clinic. Endogenous GUCY2C-activating ligands disappear early in tumorigenesis, silencing its signaling axis and enabling transformation. Pre-clinical models support GUCY2C ligand supplementation as a novel disease prevention paradigm. With the recent FDA approval of the GUCY2C ligand, linaclotide, and two more synthetic ligands in the pipeline, this strategy can be tested in human trials. In addition to primary tumor prevention, we also review immunotherapies targeting GUCY2C expressed by metastatic lesions, and platforms using GUCY2C as a biomarker for detection and patient staging. Expert commentary: Results of the first GUCY2C targeting schemes in patients will become available in the coming years. The identification of GUCY2C ligand loss as a requirement for colorectal tumorigenesis has the potential to change the treatment paradigm from an irreversible disease of genetic mutation, to a treatable disease of ligand insufficiency.


Subject(s)
Colorectal Neoplasms/drug therapy , Molecular Targeted Therapy , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism , Animals , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Drug Design , Humans , Immunotherapy/methods , Ligands , Neoplasm Staging , Receptors, Enterotoxin
19.
World J Gastroenterol ; 22(36): 8070-7, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27688649

ABSTRACT

Colorectal cancer (CRC) is a major cause of cancer-related mortality and morbidity worldwide. While improved treatments have enhanced overall patient outcome, disease burden encompassing quality of life, cost of care, and patient survival has seen little benefit. Consequently, additional advances in CRC treatments remain important, with an emphasis on preventative measures. Guanylyl cyclase C (GUCY2C), a transmembrane receptor expressed on intestinal epithelial cells, plays an important role in orchestrating intestinal homeostatic mechanisms. These effects are mediated by the endogenous hormones guanylin (GUCA2A) and uroguanylin (GUCA2B), which bind and activate GUCY2C to regulate proliferation, metabolism and barrier function in intestine. Recent studies have demonstrated a link between GUCY2C silencing and intestinal dysfunction, including tumorigenesis. Indeed, GUCY2C silencing by the near universal loss of its paracrine hormone ligands increases colon cancer susceptibility in animals and humans. GUCY2C's role as a tumor suppressor has opened the door to a new paradigm for CRC prevention by hormone replacement therapy using synthetic hormone analogs, such as the FDA-approved oral GUCY2C ligand linaclotide (Linzess™). Here we review the known contributions of the GUCY2C signaling axis to CRC, and relate them to a novel clinical strategy targeting tumor chemoprevention.


Subject(s)
Colonic Neoplasms/metabolism , Colonic Neoplasms/prevention & control , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism , Signal Transduction , Animals , Carcinogenesis , Cell Cycle , Cyclic GMP/chemistry , Enterotoxins/chemistry , Gastrointestinal Hormones/metabolism , Genomics , Homeostasis , Hormones/metabolism , Humans , Inflammation , Ligands , Mutation , Natriuretic Peptides/metabolism , Paracrine Communication , Receptors, Enterotoxin , Treatment Outcome
20.
Infect Immun ; 84(10): 3083-91, 2016 10.
Article in English | MEDLINE | ID: mdl-27481254

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) causes ∼20% of the acute infectious diarrhea (AID) episodes worldwide, often by producing heat-stable enterotoxins (STs), which are peptides structurally homologous to paracrine hormones of the intestinal guanylate cyclase C (GUCY2C) receptor. While molecular mechanisms mediating ST-induced intestinal secretion have been defined, advancements in therapeutics have been hampered for decades by the paucity of disease models that integrate molecular and functional endpoints amenable to high-throughput screening. Here, we reveal that mouse and human intestinal enteroids in three-dimensional ex vivo cultures express the components of the GUCY2C secretory signaling axis. ST and its structural analog, linaclotide, an FDA-approved oral secretagog, induced fluid accumulation quantified simultaneously in scores of enteroid lumens, recapitulating ETEC-induced intestinal secretion. Enteroid secretion depended on canonical molecular signaling events responsible for ETEC-induced diarrhea, including cyclic GMP (cGMP) produced by GUCY2C, activation of cGMP-dependent protein kinase (PKG), and opening of the cystic fibrosis transmembrane conductance regulator (CFTR). Importantly, pharmacological inhibition of CFTR abrogated enteroid fluid secretion, providing proof of concept for the utility of this model to screen antidiarrheal agents. Intestinal enteroids offer a unique model, integrating the GUCY2C signaling axis and luminal fluid secretion, to explore the pathophysiology of, and develop platforms for, high-throughput drug screening to identify novel compounds to prevent and treat ETEC diarrheal disease.


Subject(s)
Bacterial Toxins/metabolism , Enterotoxigenic Escherichia coli/physiology , Enterotoxins/physiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/metabolism , Receptors, Guanylate Cyclase-Coupled/metabolism , Receptors, Peptide/metabolism , Analysis of Variance , Animals , Cyclic GMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diarrhea/metabolism , Disease Models, Animal , Enterotoxigenic Escherichia coli/metabolism , Enterotoxins/metabolism , Enzyme-Linked Immunosorbent Assay , Escherichia coli Infections/physiopathology , Escherichia coli Proteins/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Enterotoxin , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL