Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 553
1.
Int J Biol Macromol ; 269(Pt 2): 132025, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704076

The intestine defends against pathogenic microbial invasion via the secretion of host defense peptides (HDPs). Nutritional immunomodulation can stimulate the expression of endogenous HDPs and enhance the body's immune defense, representing a novel non-antibiotic strategy for disease prevention. The project aims to explore the regulatory mechanism of protegrin-1 (PG-1) expression using sodium phenylbutyrate (PBA) by omics sequencing technology and further investigate the role of key regulatory genes on intestinal health. The results showed that PBA promoted PG-1 expression in intestinal epithelial cells based on cell density through epidermal growth factor receptor (EGFR) and G protein-coupled receptor (GPR43). Transcriptome sequencing and microRNA sequencing revealed that C-X-C motif chemokine receptor 2 (CXCR2) exhibited interactions with PG-1. Pre-treatment cells with a CXCR2 inhibitor (SB225002) effectively suppressed the induction of PG-1 by PBA. Furthermore, SB225002 significantly suppressed the gene expression of HDPs in the jejunum of mice without influencing on the morphology, number of goblet cells, and proliferation of the intestine. CXCR2 inhibition significantly reduced the expression of HDPs during E. coli infection, and resulted in the edema of jejunal epithelial cells. The 16S rDNA analysis of cecal contents showed that the E. coli and SB225002 treatments changed gut microbiota diversity and composition at different taxonomic levels. Correlation analysis suggested a potential regulatory relationship between gut microbiota and HDPs. To that end, a gene involved in the HDP expression, CXCR2, has been identified in the study, which contributes to improving intestinal immune function. PBA may be used as a functional additive to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.


Homeostasis , Intestinal Mucosa , Receptors, Interleukin-8B , Animals , Humans , Male , Mice , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Escherichia coli Infections/genetics , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Receptors, G-Protein-Coupled , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
2.
PLoS One ; 19(4): e0298418, 2024.
Article En | MEDLINE | ID: mdl-38625857

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Interleukin-8 , Receptors, Interleukin-8B , Humans , Receptors, Interleukin-8B/genetics , Ligands , Interleukin-8/metabolism , Chemokines/metabolism , Chemokine CXCL1 , Chemotactic Factors/metabolism , Chemotaxis
3.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649200

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Acupuncture Therapy , Arthritis, Experimental , Chemokine CXCL1 , Receptors, Interleukin-8B , Somatosensory Cortex , Animals , Humans , Male , Mice , Rats , Acupuncture Points , Arthritis, Experimental/therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/genetics , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Inflammation/therapy , Inflammation/metabolism , Inflammation/genetics , Mice, Inbred BALB C , Pain/metabolism , Pain/genetics , Pain Management , Rats, Wistar , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Signal Transduction , Somatosensory Cortex/metabolism
4.
Cancer Lett ; 590: 216866, 2024 May 28.
Article En | MEDLINE | ID: mdl-38589005

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Bone Neoplasms , Cell Movement , Chemokine CXCL5 , Melanoma , Osteocytes , Receptors, Interleukin-8B , Osteocytes/metabolism , Osteocytes/pathology , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Animals , Melanoma/metabolism , Melanoma/pathology , Melanoma/secondary , Melanoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Mice , Cell Line, Tumor , Humans , Signal Transduction , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL
5.
Biomolecules ; 14(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38672477

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
6.
Cancer Lett ; 592: 216903, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38670307

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.


Acetyl Coenzyme A , Carcinoma, Hepatocellular , Chemokine CXCL1 , Liver Neoplasms , Neutrophils , Tumor Microenvironment , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Traps/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mice, Nude , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Adult , Middle Aged , Aged , Mice, Inbred BALB C
7.
J Med Microbiol ; 73(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38567642

Introduction. Staphylococcus aureus is the leading cause of acute medical implant infections, representing a significant modern medical concern. The success of S. aureus as a pathogen in these cases resides in its arsenal of virulence factors, resistance to multiple antimicrobials, mechanisms of immune modulation, and ability to rapidly form biofilms associated with implant surfaces. S. aureus device-associated, biofilm-mediated infections are often persistent and notoriously difficult to treat, skewing innate immune responses to promote chronic reoccurring infections. While relatively little is known of the role neutrophils play in response to acute S. aureus biofilm infections, these effector cells must be efficiently recruited to sites of infection via directed chemotaxis. Here we investigate the effects of modulating CXC chemokine receptor 2 (CXCR2) activity, predominantly expressed on neutrophils, during S. aureus implant-associated infection.Hypothesis. We hypothesize that modulation of CXCR2 expression and/or signalling activities during S. aureus infection, and thus neutrophil recruitment, extravasation and antimicrobial activity, will affect infection control and bacterial burdens in a mouse model of implant-associated infection.Aim. This investigation aims to elucidate the impact of altered CXCR2 activity during S. aureus biofilm-mediated infection that may help develop a framework for an effective novel strategy to prevent morbidity and mortality associated with implant infections.Methodology. To examine the role of CXCR2 during S. aureus implant infection, we employed a mouse model of indwelling subcutaneous catheter infection using a community-associated methicillin-resistant S. aureus (MRSA) strain. To assess the role of CXCR2 induction or inhibition during infection, treatment groups received daily intraperitoneal doses of either Lipocalin-2 (Lcn2) or AZD5069, respectively. At the end of the study, catheters and surrounding soft tissues were analysed for bacterial burdens and dissemination, and Cxcr2 transcription within the implant-associated tissues was quantified.Results. Mice treated with Lcn2 developed higher bacterial burdens within the soft tissue surrounding the implant site, which was associated with increased Cxcr2 expression. AZD5069 treatment also resulted in increased implant- and tissues-associated bacterial titres, as well as enhanced Cxcr2 expression.Conclusion. Our results demonstrate that CXCR2 plays an essential role in regulating the severity of S. aureus implant-associated infections. Interestingly, however, perturbation of CXCR2 expression or signalling both resulted in enhanced Cxcr2 transcription and elevated implant-associated bacterial burdens. Thus, CXCR2 appears finely tuned to efficiently recruit effector cells and mediate control of S. aureus biofilm-mediated infection.


Methicillin-Resistant Staphylococcus aureus , Pyrimidines , Staphylococcal Infections , Sulfonamides , Mice , Animals , Staphylococcus aureus/physiology , Methicillin-Resistant Staphylococcus aureus/physiology , Receptors, Interleukin-8B/genetics , Staphylococcal Infections/microbiology , Biofilms
8.
Int Immunopharmacol ; 133: 112044, 2024 May 30.
Article En | MEDLINE | ID: mdl-38648716

BACKGROUND: The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS: By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS: A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION: The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.


Computational Biology , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Receptors, Interleukin-8B , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Gene Regulatory Networks/drug effects
9.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528533

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Diabetic Nephropathies , NF-kappa B , Receptors, Interleukin-8B , Animals , Humans , Mice , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelium/metabolism , Glucose , Glycocalyx/metabolism , Inflammation/metabolism , Mice, Knockout , NF-kappa B/metabolism , Receptors, Chemokine/therapeutic use , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Diabetes Complications/genetics , Diabetes Complications/metabolism
10.
J Leukoc Biol ; 115(6): 1177-1182, 2024 May 29.
Article En | MEDLINE | ID: mdl-38298146

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.


Chemokines, CXC , Lipopolysaccharides , Mice, Knockout , Neutrophils , Receptors, Interleukin-8B , Animals , Mice , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Lipopolysaccharides/pharmacology , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Neutrophil Infiltration , Mice, Inbred C57BL , Inflammation/immunology , Inflammation/pathology , Inflammation/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Monocytes/immunology , Monocytes/metabolism
12.
Expert Rev Clin Immunol ; 20(5): 559-569, 2024 May.
Article En | MEDLINE | ID: mdl-38224014

OBJECTIVE: This study aimed to check the expression profile of the C-X-C motif chemokine ligands (CXCLs)-C-X-C motif chemokine receptor 2 (CXCR2) axis in cervical cancer and to explore the cross-talk between cervical cancer cells and neutrophils via CXCLs-CXCR2 axis. METHODS: Available RNA-sequencing data based on bulk tissues and single-cell/nucleus RNA-sequencing data were used for bioinformatic analysis. Cervical cancer cell lines Hela and SiHa cells were utilized for in vitro and in vivo studies. RESULTS: Except for neutrophils, CXCR2 mRNA expression is limited in other types of cells in the cervical tumor microenvironment. CXCLs bind to CXCR2 and are mainly expressed by tumor cells. CXCL1, 2, 3, 5, 6, and 8, which are consistently associated with neutrophil infiltration, are also linked to poor prognosis. SB225002 (a CXCR2 inhibitor) treatment significantly impairs SiHa cell-induced neutrophil migration. CXCL1, CXCL2, CXCL5, or CXCL8 neutralized conditioned medium from SiHa cells have weaker recruiting effects. The conditioned medium of neutrophils from healthy donors can slow cancer cell proliferation. Conditioned medium of tumor-associated neutrophils (TANs) can drastically enhance cervical cancer cell growth in vitro and in vivo. CONCLUSIONS: The CXCLs-CXCR2 axis is critical in neutrophil recruitment and tumor cell proliferation in the cervical cancer microenvironment.


Neutrophils , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Culture Media, Conditioned/metabolism , RNA/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Tumor Microenvironment
13.
Trends Mol Med ; 30(1): 37-55, 2024 Jan.
Article En | MEDLINE | ID: mdl-37872025

Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.


Neoplasms , Receptors, Interleukin-8B , Mice , Animals , Humans , Receptors, Interleukin-8B/genetics , Inflammation/metabolism , Neutrophils , Neoplasms/genetics , Neoplasms/metabolism , Mice, Knockout
14.
Clin Exp Pharmacol Physiol ; 50(12): 944-953, 2023 12.
Article En | MEDLINE | ID: mdl-37688444

Myocardial fibrosis (MF) is involved in hypertension, myocardial infarction and heart failure. It has been reported that circular RNA (circRNA) is a key regulatory factor of MF progression. In this study, we revealed that circ_0002295 and CXCR2 were elevated, and miR-1287 was reduced in MF patients. Knockdown of circ_0002295 effectively suppressed the proliferation, migration and MF progression. Circ_0002295 was the molecular sponge of miR-12878, and miR-1287 inhibitor reversed the biological functions of circ_0002295 on the myocardial fibrosis. CXCR2 was a target gene of miR-1287, and CXCR2 silencing relieved the impacts of miR-1287 inhibitor on cardiac myofibroblasts. Circ_0002295 promoted MF progression by regulating the miR-1287/CXCR2 axis, providing a possible circRNA-targeted therapy for MF.


Heart Failure , MicroRNAs , Myocardial Infarction , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Heart , MicroRNAs/genetics , Receptors, Interleukin-8B/genetics , RNA, Circular/genetics
15.
Nat Commun ; 14(1): 4107, 2023 07 11.
Article En | MEDLINE | ID: mdl-37433790

Neutrophil granulocytes play key roles in innate immunity and shaping adaptive immune responses. They are attracted by chemokines to sites of infection and tissue damage, where they kill and phagocytose bacteria. The chemokine CXCL8 (also known as interleukin-8, abbreviated IL-8) and its G-protein-coupled receptors CXCR1 and CXCR2 are crucial elements in this process, and also the development of many cancers. These GPCRs have therefore been the target of many drug development campaigns and structural studies. Here, we solve the structure of CXCR1 complexed with CXCL8 and cognate G-proteins using cryo-EM, showing the detailed interactions between the receptor, the chemokine and Gαi protein. Unlike the closely related CXCR2, CXCR1 strongly prefers to bind CXCL8 in its monomeric form. The model shows that steric clashes would form between dimeric CXCL8 and extracellular loop 2 (ECL2) of CXCR1. Consistently, transplanting ECL2 of CXCR2 onto CXCR1 abolishes the selectivity for the monomeric chemokine. Our model and functional analysis of various CXCR1 mutants will assist efforts in structure-based drug design targeting specific CXC chemokine receptor subtypes.


Phagocytosis , Receptors, Interleukin-8A , Ligands , Receptors, Interleukin-8A/genetics , Immunity, Innate , Drug Design , Receptors, Interleukin-8B/genetics
16.
Mol Cancer ; 22(1): 92, 2023 06 03.
Article En | MEDLINE | ID: mdl-37270599

BACKGROUND: Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS: To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS: Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS: Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.


Melanoma , Proto-Oncogene Proteins B-raf , Receptors, Interleukin-8B , Animals , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/genetics , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Tumor Microenvironment
17.
Sci Rep ; 12(1): 21375, 2022 12 09.
Article En | MEDLINE | ID: mdl-36494512

Activation of the nuclear factor kappa-B (NF-κB) stimulates the production of pro-inflammatory molecules involved in the formation of intracranial aneurysms (IA). The study aimed to assess the NF-κB p65 subunit and the GRO-α chemokine and its receptor CXCR2 concentrations in unruptured intracranial aneurysm patients (UIA, n = 25) compared to individuals without vascular changes in the brain (n = 10). It was also analyzed whether tested proteins are related to the size and number of aneurysms. Cerebrospinal fluid (CSF) and serum protein levels were measured using the ELISA method. Median CSF and serum NF-κB p65 concentrations were significantly lower, while median CSF GRO-α and CXCR2 concentrations were significantly higher in UIA patients compared to the control group. CSF and serum NF-κB p65 concentrations negatively correlated with the number of aneurysms. In UIA patients the median GRO-α concentration was two-fold and CXCR2 almost four-fold higher in CSF compared to the serum value. CSF GRO-α concentration positively correlated with the size of aneurysms.Significantly decreased CSF NF-κB p65 and significantly increased CSF GRO-α and its CXCR2 receptor concentrations in UIA patients compared to the control group may altogether suggest that the canonical NF-κB signaling pathway is activated and its target pro-inflammatory genes are highly expressed in UIA patients. However, to unequivocally assess the involvement of the classical NF-κB pathway with the participation of the NF-κB p65 subunit and the GRO-α/CXCR2 axis in the formation of IA, further in vivo model studies are needed.


Intracranial Aneurysm , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Intracranial Aneurysm/genetics , Signal Transduction/genetics , Chemokines, CXC/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
J Cell Mol Med ; 26(23): 5858-5871, 2022 12.
Article En | MEDLINE | ID: mdl-36349481

As the main loading-bearing tissue of eye, sclera exerts an important role in the pathophysiology of glaucoma. Intraocular pressure (IOP) generates mechanical strain on sclera. Recent studies have demonstrated that sclera, especially the peripapillary sclera, undergoes complicated remodelling under the mechanical strain. However, the mechanisms of the hypertensive scleral remodelling in human eyes remained uncertain. In this study, peripapillary human scleral fibroblasts (ppHSFs) were applied cyclic mechanical strain by Flexcell-5000™ tension system. We found that CXC- ligands and CXCR2 were differentially expressed after strain. Increased cell proliferation and inhibited cell motility were observed when CXCR2 was upregulated under the strain, whereas cell proliferation and motility did not have a significant change when CXCR2 was knocked down. CXCR2 could facilitate cell proliferation ability, modulate the mRNA and protein expressions of type I collagen and matrix metalloproteinase 2 via JAK1/2-STAT3 signalling pathway. In addition, CXCR2 might inhibit cell migration via FAK/MLC2 pathway. Taken together, CXCR2 regulated protein production and affected cell behaviours of ppHSFs. It might be a potential therapeutic target for the hypertensive scleral remodelling.


Fibroblasts , Glaucoma , Receptors, Interleukin-8B , Sclera , Humans , Extracellular Matrix , Fibroblasts/metabolism , Glaucoma/metabolism , Matrix Metalloproteinase 2/metabolism , Sclera/cytology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Cell Movement , Stress, Mechanical , Cells, Cultured
19.
J Biomed Sci ; 29(1): 99, 2022 Nov 21.
Article En | MEDLINE | ID: mdl-36411463

BACKGROUND: Sorafenib (SOR) is the first line treatment for advanced hepatocellular carcinoma (HCC), but resistance develops frequently. Tumor-associated macrophages (TAMs) have been reported to affect the progression of HCC. We therefore aimed to study the role of TAMs in promoting SOR resistance. METHODS: Immunofluorescence staining for the M2 marker CD204 and the cancer stem cell (CSC) markers CD44 and CD133 was performed in paired HCC and adjacent noncancerous tissues and HCC tissues stratified by response of SOR treatment. HCC/U937 coculture system and cytokines were used to induce M2 polarization for studying the effects of M2 TAMs on CSC properties and apoptotic death of HCC cells after SOR treatment. RESULTS: Higher expression of CD204, CD44, and CD133 was observed in patients with SOR nonresponse (SNR) than in those with SOR response (SR), suggesting that SNR is positively correlated to levels of CSCs and M2 TAMs. After coculture, M2 TAMs could increase the level of CSCs but decrease SOR-induced apoptosis. Incubation of HCC cells with coculture conditioned medium increased the formation of spheres that were resistant to SOR. Furthermore, CXCL1 and CXCL2 were found to be the potential paracrine factors released by M2 TAMs to upregulate SOR resistance in HCC cells. Treatment with CXCL1 and CXCL2 could increase HCC CSC activity but decrease SOR-induced apoptosis by affecting BCL-2 family gene expression. Using pharmacological inhibitors, CXCR2/ERK signaling was found to be critical to CXCL1- and CXCL2-mediated SOR resistance. CONCLUSION: This study identified CXCL1, CXCL2, and their downstream CXCR2/ERK signaling as potential therapeutic targets to overcome SOR resistance in HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Sorafenib/pharmacology , Tumor-Associated Macrophages , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Receptors, Interleukin-8B/genetics
20.
Front Immunol ; 13: 1005551, 2022.
Article En | MEDLINE | ID: mdl-36311783

Neutrophils play a major role in the protection from infections but also in inflammation related to tumor microenvironment. However, cell-extrinsic and -intrinsic cues driving their function at steady state is still fragmentary. Using Cxcr2 knock-out mice, we have evaluated the function of the chemokine receptor Cxcr2 in neutrophil physiology. We show here that Cxcr2 deficiency decreases the percentage of mature neutrophils in the spleen, but not in the bone marrow (BM). There is also an increase of aged CD62Llo CXCR4hi neutrophils in the spleen of KO animals. Spleen Cxcr2-/- neutrophils display a reduced phagocytic ability, whereas BM neutrophils show an enhanced phagocytic ability compared to WT neutrophils. Spleen Cxcr2-/- neutrophils show reduced reactive oxygen species production, F-actin and α-tubulin levels. Moreover, spleen Cxcr2-/- neutrophils display an altered signaling with reduced phosphorylation of ERK1/2 and p38 MAPK, impaired PI3K-AKT, NF-κB, TGFß and IFNγ pathways. Altogether, these results suggest that Cxcr2 is essential for neutrophil physiology.


Neutrophils , Phosphatidylinositol 3-Kinases , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
...