Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 909
Filter
1.
Theranostics ; 14(9): 3486-3508, 2024.
Article in English | MEDLINE | ID: mdl-38948064

ABSTRACT

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Subject(s)
Fibrosis , Methyltransferases , Monocytes , NF-kappa B , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Monocytes/metabolism , Male , Animals , NF-kappa B/metabolism , Erythrocytes/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Female , Methylation , Mice , Transforming Growth Factor beta1/metabolism , Cell-Derived Microparticles/metabolism , Leukocytes, Mononuclear/metabolism , Angiotensin II/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Ventricular Remodeling , Myocardium/metabolism , Myocardium/pathology , Nanomedicine/methods
2.
Oncoimmunology ; 13(1): 2384674, 2024.
Article in English | MEDLINE | ID: mdl-39076249

ABSTRACT

The level of tumor and circulating CXCR1/2-expressing neutrophils and CXCR1/2 ligands correlate with poor patient outcomes, inversely correlate with tumoral lymphocyte content, and predict immune checkpoint inhibitor (ICI) treatment failure. Accordingly, CXCR2-selective and CXCR1/2 dual inhibitors exhibit activity both as single agents and in combination with ICI treatment in mouse tumor models. Based on such reports, clinical trials combining CXCR1/2 axis antagonists with ICI treatment for cancer patients are underway. It has been assumed that CXCR1/2 blockade impacts tumors by blocking neutrophil chemotaxis and reducing neutrophil content in tumors. Here, we show that while CXCR2 antagonism does slow tumor growth, it does not preclude neutrophil recruitment into tumor. Instead, CXCR1/2 inhibition alters neutrophil function by blocking the polarization of transcriptional programs toward immune suppressive phenotypes and rendering neutrophils incapable of suppressing lymphocyte proliferation. This is associated with decreased release of reactive oxygen species and Arginase-1 into the extracellular milieu. Remarkably, these therapeutics do not impact the ability of neutrophils to phagocytose and kill ingested bacteria. Taken together, these results mechanistically explain why CXCR1/2 inhibition has been active in cancer but without infectious complications.


Subject(s)
Neutrophils , Receptors, Interleukin-8A , Receptors, Interleukin-8B , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8A/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Humans , Neutrophil Infiltration/drug effects , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Mice, Inbred C57BL , Female
3.
Eur Respir Rev ; 33(173)2024 Jul.
Article in English | MEDLINE | ID: mdl-39048127

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.


Subject(s)
Lung , Neutrophils , Receptors, Interleukin-8A , Receptors, Interleukin-8B , Respiratory Distress Syndrome , Signal Transduction , Humans , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/therapy , Receptors, Interleukin-8B/metabolism , Animals , Receptors, Interleukin-8A/metabolism , Neutrophils/metabolism , Neutrophils/immunology , Lung/immunology , Lung/physiopathology , Lung/metabolism , Neutrophil Activation , Neutrophil Infiltration
4.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062946

ABSTRACT

Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-ß (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-ß) signaling and TGF-ß trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-ß content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-ß or CXCL1).


Subject(s)
Janus Kinase 1 , P-Selectin , Primary Myelofibrosis , Pyrimidines , Receptors, Interleukin-8B , Transforming Growth Factor beta , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology , Transforming Growth Factor beta/metabolism , Animals , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , P-Selectin/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptors, Interleukin-8A/antagonists & inhibitors , Receptors, Interleukin-8A/metabolism , Mice , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Nitriles/therapeutic use , Nitriles/pharmacology , Disease Models, Animal , Drug Therapy, Combination , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Humans
5.
Sci Rep ; 14(1): 14142, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898176

ABSTRACT

Cancer cells recruit neutrophils from the bloodstream into the tumor tissue, where these immune cells promote the progression of numerous solid tumors. Studies in mice suggest that blocking neutrophil recruitment to tumors by inhibition of neutrophil chemokine receptor CXCR2 could be a potential immunotherapy for pancreatic cancer. Yet, the mechanisms by which neutrophils promote tumor progression in humans, as well as how CXCR2 inhibition could potentially serve as a cancer therapy, remain elusive. In this study, we developed a human cell-based microphysiological system to quantify neutrophil-tumor spheroid interactions in both "separated" and "contact" scenarios. We found that neutrophils promote the invasion of tumor spheroids through the secretion of soluble factors and direct contact with cancer cells. However, they promote the proliferation of tumor spheroids solely through direct contact. Interestingly, treatment with AZD-5069, a CXCR2 inhibitor, attenuates invasion and proliferation of tumor spheroids by blocking direct contact with neutrophils. Our findings also show that CXCR2 inhibition reduces neutrophil migration toward tumor spheroids. These results shed new light on the tumor-promoting mechanisms of human neutrophils and the tumor-suppressive mechanisms of CXCR2 inhibition in pancreatic cancer and may aid in the design and optimization of novel immunotherapeutic strategies based on neutrophils.


Subject(s)
Immunotherapy , Neutrophils , Pancreatic Neoplasms , Receptors, Interleukin-8B , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Neutrophils/metabolism , Neutrophils/immunology , Immunotherapy/methods , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Proliferation/drug effects , Disease Progression , Neutrophil Infiltration/drug effects , Microphysiological Systems , Benzamides , Cyclobutanes
6.
Vascul Pharmacol ; 156: 107396, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38897556

ABSTRACT

AIMS: Neutrophils perform various functions in a circadian-dependent manner; therefore, we investigated here whether the effect of alpha1-antitrypsin (AAT), used as augmentation therapy, is dependent on the neutrophil circadian clock. AAT is a vital regulator of neutrophil functions, and its qualitative and/or quantitative defects have significant implications for the development of respiratory diseases. METHODS: Whole blood from 12 healthy women age years, mean (SD) 29.92 (5.48) was collected twice daily, 8 h apart, and incubated for 30 min at 37 °C alone or with additions of 2 mg/ml AAT (Respreeza) and/or 5 µg/ml lipopolysaccharide (LPS) from Escherichia coli. Neutrophils were then isolated to examine gene expression, migration and phagocytosis. RESULTS: The expression of CD14, CD16, CXCR2 and SELL (encoding CD62L) genes was significantly higher while CDKN1A lower in the afternoon than in the morning neutrophils from untreated blood. Neutrophils isolated in the afternoon had higher migratory and phagocytic activity. Morning neutrophils isolated from AAT-pretreated blood showed higher expression of CXCR2 and SELL than those from untreated morning blood. Pretreatment of blood with AAT enhanced migratory properties of morning but not afternoon neutrophils. Of all genes analysed, only CXCL8 expression was strongly upregulated in morning and afternoon neutrophils isolated from LPS-pretreated blood, whereas CXCR2 expression was downregulated in afternoon neutrophils. The addition of AAT did not reverse the effects of LPS. SIGNIFICANCE: The circadian clock of myeloid cells may affect the effectiveness of various therapies, including AAT therapy used to treat patients with AAT deficiency, and needs further investigation.


Subject(s)
Circadian Rhythm , Lipopolysaccharides , Neutrophils , Phagocytosis , Receptors, Interleukin-8B , alpha 1-Antitrypsin , Humans , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/pharmacology , alpha 1-Antitrypsin/blood , Neutrophils/metabolism , Neutrophils/drug effects , Lipopolysaccharides/pharmacology , Female , Phagocytosis/drug effects , Adult , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Receptors, IgG/metabolism , Receptors, IgG/genetics , Time Factors , Healthy Volunteers , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharide Receptors/genetics , Young Adult , Gene Expression Regulation/drug effects
7.
Biochem Pharmacol ; 226: 116379, 2024 08.
Article in English | MEDLINE | ID: mdl-38908531

ABSTRACT

Sepsis is a widespread and life-threatening disease characterised by infection-triggered immune hyperactivation and cytokine storms, culminating in tissue damage and multiple organ dysfunction syndrome. BMAL1 is a pivotal transcription factor in the circadian clock that plays a crucial role in maintaining immune homeostasis. BMAL1 dysregulation has been implicated in inflammatory diseases and immunodeficiency. However, the mechanisms underlying BMAL1 disruption in sepsis-induced acute lung injury (ALI) remain poorly understood. In vitro, we used THP1 and mouse peritoneal macrophages to elucidate the potential mechanism of BMAL1 function in sepsis. In vivo, an endotoxemia model was used to investigate the effect of BMAL1 on sepsis and the therapeutic role of targeting CXCR2. We showed that BMAL1 significantly affected the regulation of innate immunity in sepsis-induced ALI. BMAL1 deficiency in the macrophages exacerbated systemic inflammation and sepsis-induced ALI. Mechanistically, BMAL1 acted as a transcriptional suppressor and regulated the expression of CXCL2. BMAL1 deficiency in macrophages upregulated CXCL2 expression, increasing the recruitment of polymorphonuclear neutrophils and the formation of neutrophil extracellular traps (NETs) by binding to the chemokine receptor CXCR2, thereby intensifying lung injury in a sepsis model. Furthermore, a selective inhibitor of CXCR2, SB225002, exerted promising therapeutic effects by markedly reducing neutrophil infiltration and NETs formation and alleviating lung injury. Importantly, CXCR2 blockade mitigated multiple organ dysfunction. Collectively, these findings suggest that BMAL1 controls the CXCL2/CXCR2 pathway, and the therapeutic efficacy of targeting CXCR2 in sepsis has been validated, presenting BMAL1 as a potential therapeutic target for lethal infections.


Subject(s)
ARNTL Transcription Factors , Acute Lung Injury , Homeostasis , Mice, Inbred C57BL , Receptors, Interleukin-8B , Sepsis , Animals , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Sepsis/immunology , Sepsis/metabolism , Sepsis/complications , Acute Lung Injury/etiology , Acute Lung Injury/immunology , Acute Lung Injury/metabolism , Mice , Humans , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Homeostasis/physiology , Male , Mice, Knockout , Chemokine CXCL2/metabolism , THP-1 Cells
8.
Cytokine ; 181: 156675, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896956

ABSTRACT

Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.


Subject(s)
Receptors, Interleukin-8B , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Receptors, Interleukin-8B/metabolism , Animals , Molecular Targeted Therapy/methods , Signal Transduction , Cell Proliferation
9.
Front Immunol ; 15: 1367230, 2024.
Article in English | MEDLINE | ID: mdl-38919617

ABSTRACT

The transitory emergence of myeloid-derived suppressor cells (MDSCs) in infants is important for the homeostasis of the immune system in early life. The composition and functional heterogeneity of MDSCs in newborns remain elusive, hampering the understanding of the importance of MDSCs in neonates. In this study, we unraveled the maturation trajectory of polymorphonuclear (PMN)-MDSCs from the peripheral blood of human newborns by performing single-cell RNA sequencing. Results indicated that neonatal PMN-MDSCs differentiated from self-renewal progenitors, antimicrobial PMN-MDSCs, and immunosuppressive PMN-MDSCs to late PMN-MDSCs with reduced antimicrobial capacity. We also established a simple framework to distinguish these distinct stages by CD177 and CXCR2. Importantly, preterm newborns displayed a reduced abundance of classical PMN-MDSCs but increased late PMN-MDSCs, consistent with their higher susceptibility to infections and inflammation. Furthermore, newborn PMN-MDSCs were distinct from those from cancer patients, which displayed minimum expression of genes about antimicrobial capacity. This study indicates that the heterogeneity of PMN-MDSCs is associated with the maturity of human newborns.


Subject(s)
Gene Expression Profiling , Myeloid-Derived Suppressor Cells , Receptors, Interleukin-8B , Single-Cell Analysis , Transcriptome , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Infant, Newborn , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Neutrophils/immunology , Neutrophils/metabolism , GPI-Linked Proteins/genetics , Cell Differentiation , Female , Male , Isoantigens , Receptors, Cell Surface
10.
Br J Cancer ; 131(1): 63-76, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750114

ABSTRACT

BACKGROUND: Chemokine signaling within the tumor microenvironment can promote tumor progression. Although CCR1 and CXCR2 on myeloid cells could be involved in tumor progression, it remains elusive what effect would be observed if both of those are blocked. METHODS: We employed two syngeneic colorectal cancer mouse models: a transplanted tumor model and a liver metastasis model. We generated double-knockout mice for CCR1 and CXCR2, and performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type, Ccr1-/-, Cxcr2-/- or Ccr1-/-Cxcr2-/- mice. RESULTS: Myeloid cells that express MMP2, MMP9 and VEGF were accumulated around both types of tumors through CCR1- and CXCR2-mediated pathways. Mice reconstituted with Ccr1-/-Cxcr2-/- BM exhibited the strongest suppression of tumor growth and liver metastasis compared with other three groups. Depletion of CCR1+CXCR2+ myeloid cells led to a higher frequency of CD8+ T cells, whereas the numbers of Ly6G+ neutrophils, FOXP3+ Treg cells and CD31+ endothelial cells were significantly decreased. Furthermore, treatment with a neutralizing anti-CCR1 mAb to mice reconstituted with Cxcr2-/- BM significantly suppressed tumor growth and liver metastasis. CONCLUSION: Dual blockade of CCR1 and CXCR2 pathways in myeloid cells could be an effective therapy against colorectal cancer.


Subject(s)
Mice, Knockout , Myeloid Cells , Receptors, CCR1 , Receptors, Interleukin-8B , Tumor Microenvironment , Animals , Receptors, CCR1/metabolism , Receptors, CCR1/genetics , Receptors, CCR1/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Mice , Myeloid Cells/metabolism , Myeloid Cells/immunology , Liver Neoplasms/secondary , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Mice, Inbred C57BL , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology
11.
Int J Biol Macromol ; 269(Pt 2): 132025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704076

ABSTRACT

The intestine defends against pathogenic microbial invasion via the secretion of host defense peptides (HDPs). Nutritional immunomodulation can stimulate the expression of endogenous HDPs and enhance the body's immune defense, representing a novel non-antibiotic strategy for disease prevention. The project aims to explore the regulatory mechanism of protegrin-1 (PG-1) expression using sodium phenylbutyrate (PBA) by omics sequencing technology and further investigate the role of key regulatory genes on intestinal health. The results showed that PBA promoted PG-1 expression in intestinal epithelial cells based on cell density through epidermal growth factor receptor (EGFR) and G protein-coupled receptor (GPR43). Transcriptome sequencing and microRNA sequencing revealed that C-X-C motif chemokine receptor 2 (CXCR2) exhibited interactions with PG-1. Pre-treatment cells with a CXCR2 inhibitor (SB225002) effectively suppressed the induction of PG-1 by PBA. Furthermore, SB225002 significantly suppressed the gene expression of HDPs in the jejunum of mice without influencing on the morphology, number of goblet cells, and proliferation of the intestine. CXCR2 inhibition significantly reduced the expression of HDPs during E. coli infection, and resulted in the edema of jejunal epithelial cells. The 16S rDNA analysis of cecal contents showed that the E. coli and SB225002 treatments changed gut microbiota diversity and composition at different taxonomic levels. Correlation analysis suggested a potential regulatory relationship between gut microbiota and HDPs. To that end, a gene involved in the HDP expression, CXCR2, has been identified in the study, which contributes to improving intestinal immune function. PBA may be used as a functional additive to regulate intestinal mucosal function, thereby enhancing the health of the intestinal and host.


Subject(s)
Homeostasis , Intestinal Mucosa , Receptors, Interleukin-8B , Animals , Humans , Male , Mice , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , ErbB Receptors/metabolism , ErbB Receptors/genetics , Escherichia coli Infections/genetics , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Receptors, G-Protein-Coupled , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
12.
Cell Mol Gastroenterol Hepatol ; 18(2): 101351, 2024.
Article in English | MEDLINE | ID: mdl-38724007

ABSTRACT

BACKGROUND & AIMS: Both nonalcoholic fatty liver disease (NAFLD) and colorectal cancer (CRC) are prevalent worldwide. The effects of concomitant NAFLD on the risk of colorectal liver metastasis (CRLM) and its mechanisms have not been definitively elucidated. METHODS: We observed the effect of concomitant NAFLD on CRLM in the mouse model and explored the underlying mechanisms of specific myeloid-derived suppressor cells (MDSCs) recruitment and then tested the therapeutic application based on the mechanisms. Finally we validated our findings in the clinical samples. RESULTS: Here we prove that in different mouse models, NAFLD induces F4/80+ Kupffer cells to secret chemokine CXCL5 and then recruits CXCR2+ MDSCs to promote the growth of CRLM. CRLM with NAFLD background is refractory to the anti-PD-1 monoclonal antibody treatment, but when combined with Reparixin, an inhibitor of CXCR1/2, dual therapy cures the established CRLM in mice with NAFLD. Our clinical studies also indicate that fatty liver diseases increase the infiltration of CXCR2+ MDSCs, as well as the hazard of liver metastases in CRC patients. CONCLUSIONS: Collectively, our findings highlight the significance of selective CXCR2+/CD11b+/Gr-1+ subset myeloid cells in favoring the development of CRLM with NAFLD background and identify a pharmaceutical medicine that is already available for the clinical trials and potential treatment.


Subject(s)
Chemokine CXCL5 , Colorectal Neoplasms , Disease Models, Animal , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Non-alcoholic Fatty Liver Disease , Programmed Cell Death 1 Receptor , Receptors, Interleukin-8B , Animals , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Mice , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/antagonists & inhibitors , Humans , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/pathology , Myeloid-Derived Suppressor Cells/immunology , Chemokine CXCL5/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Male , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Female , Kupffer Cells/metabolism , Kupffer Cells/pathology , Mice, Inbred C57BL , Sulfonamides
13.
J Immunother Cancer ; 12(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38724465

ABSTRACT

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Subject(s)
B7 Antigens , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Extracellular Traps , Animals , Female , Humans , Male , Mice , B7 Antigens/metabolism , Chemokine CXCL1/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Extracellular Traps/metabolism , Mice, Knockout , Receptors, Interleukin-8B/metabolism , Tumor Escape , Tumor Microenvironment
14.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38820662

ABSTRACT

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Subject(s)
Arthritis, Gouty , Extracellular Traps , Flavonols , Interleukin-8 , Neutrophils , Receptors, Purinergic P2 , Extracellular Traps/drug effects , Humans , Interleukin-8/metabolism , Receptors, Purinergic P2/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Arthritis, Gouty/drug therapy , HL-60 Cells , Flavonols/pharmacology , Animals , Uric Acid/pharmacology , Receptors, Interleukin-8B/metabolism , Male , Histones/metabolism , Anti-Inflammatory Agents/pharmacology , Mice
15.
Cancer Lett ; 592: 216903, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38670307

ABSTRACT

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.


Subject(s)
Acetyl Coenzyme A , Carcinoma, Hepatocellular , Chemokine CXCL1 , Liver Neoplasms , Neutrophils , Tumor Microenvironment , Animals , Female , Humans , Male , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Chemokine CXCL1/metabolism , Chemokine CXCL1/genetics , Extracellular Traps/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Mice, Nude , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Adult , Middle Aged , Aged , Mice, Inbred BALB C
16.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672477

ABSTRACT

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Subject(s)
Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
17.
Biomed Pharmacother ; 174: 116529, 2024 May.
Article in English | MEDLINE | ID: mdl-38569275

ABSTRACT

Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.


Subject(s)
Myocardial Infarction , Oleanolic Acid/analogs & derivatives , Receptors, Interleukin-8B , Saponins , Animals , Saponins/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/prevention & control , Male , Mice , Receptors, Interleukin-8B/antagonists & inhibitors , Receptors, Interleukin-8B/metabolism , Oxidative Stress/drug effects , Molecular Docking Simulation , Mice, Inbred C57BL , Oleanolic Acid/pharmacology , Cardiotonic Agents/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Disease Models, Animal , Membrane Potential, Mitochondrial/drug effects , Anti-Inflammatory Agents/pharmacology
18.
Int Immunopharmacol ; 133: 112044, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38648716

ABSTRACT

BACKGROUND: The prevalence of type 2 diabetic nephropathy (T2DN) ranges from 20 % to 40 % among individuals with type 2 diabetes. Multiple immune pathways play a pivotal role in the pathogenesis of T2DN. This study aimed to investigate the immunomodulatory effects of active ingredients derived from 14 traditional Chinese medicines (TCMs) on T2DN. METHODS: By removing batch effect on the GSE30528 and GSE96804 datasets, we employed a combination of weighted gene co-expression network analysis, least absolute shrinkage and selection operator analysis, protein-protein interaction network analysis, and the CIBERSORT algorithm to identify the active ingredients of TCMs as well as potential hub biomarkers associated with immune cells. Functional analysis was conducted using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and gene set variation analysis (GSVA). Additionally, molecular docking was employed to evaluate interactions between active ingredients and potential immunotherapy targets. RESULTS: A total of 638 differentially expressed genes (DEGs) were identified in this study, comprising 5 hub genes along with 4 potential biomarkers. Notably, CXCR1, CXCR2, and FOS exhibit significant associations with immune cells while displaying robust or favorable affinities towards the active ingredients kaempferol, quercetin, and luteolin. Furthermore, functional analysis unveiled intricate involvement of DEGs, hub genes and potential biomarkers in pathways closely linked to immunity and diabetes. CONCLUSION: The potential hub biomarkers and immunotherapy targets associated with immune cells of T2DN comprise CXCR1, CXCR2, and FOS. Furthermore, kaempferol, quercetin, and luteolin demonstrate potential immunomodulatory effects in modulating T2DN through the regulation of CXCR1, CXCR2, and FOS expression.


Subject(s)
Computational Biology , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Receptors, Interleukin-8B , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/genetics , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Gene Regulatory Networks/drug effects
19.
Cancer Lett ; 590: 216866, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38589005

ABSTRACT

Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.


Subject(s)
Bone Neoplasms , Cell Movement , Chemokine CXCL5 , Melanoma , Osteocytes , Receptors, Interleukin-8B , Osteocytes/metabolism , Osteocytes/pathology , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Chemokine CXCL5/metabolism , Chemokine CXCL5/genetics , Animals , Melanoma/metabolism , Melanoma/pathology , Melanoma/secondary , Melanoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Mice , Cell Line, Tumor , Humans , Signal Transduction , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL
20.
J Med Chem ; 67(8): 6327-6343, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38570909

ABSTRACT

The interleukin-8 receptor beta (CXCR2) is a highly promising target for molecular imaging of inflammation and inflammatory diseases. This is due to its almost exclusive expression on neutrophils. Modified fluorinated ligands were designed based on a squaramide template, with different modification sites and synthetic strategies explored. Promising candidates were then tested for affinity to CXCR2 in a NanoBRET competition assay, resulting in tracer candidate 16b. As direct 18F-labeling using established tosyl chemistry did not yield the expected radiotracer, an indirect labeling approach was developed. The radiotracer [18F]16b was obtained with a radiochemical yield of 15% using tert-butyl (S)-3-(tosyloxy)pyrrolidine carboxylate and a pentafluorophenol ester. The subsequent time-dependent uptake of [18F]16b in CXCR2-negative and CXCR2-overexpressing human embryonic kidney cells confirmed the radiotracer's specificity. Further studies with human neutrophils revealed its diagnostic potential for functional imaging of neutrophils.


Subject(s)
Fluorine Radioisotopes , Neutrophils , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, Interleukin-8B , Receptors, Interleukin-8B/metabolism , Humans , Fluorine Radioisotopes/chemistry , Neutrophils/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL