Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 146
1.
Poult Sci ; 102(10): 102965, 2023 Oct.
Article En | MEDLINE | ID: mdl-37562135

Interleukin-9 receptor alpha chain (IL-9Rα) is the ligand-binding subunit of IL-9R that plays roles in IL-9-mediated allergy, inflammation, infection, and tumor immunity. While mammalian IL-9Rαs have been extensively investigated, avian IL-9Rα has not yet been identified and characterized. In this study, we cloned chicken IL-9Rα (chIL-9Rα) and performed a phylogenetic analysis, analyzed its tissue distribution, characterized the expression form of natural chIL-9Rα. Phylogenetic analysis showed that chIL-9Rα has less than 25% amino acid homology with mammalian IL-9Rαs. The chIL-9Rα mRNA was abundantly detected only in heart and mitogen-activated peripheral blood mononuclear cells. Furthermore, 4 monoclonal antibodies (mAbs) against chIL-9Rα were generated using prokaryotic recombinant chIL-9Rα (rchIL-9Rα). Using anti-chIL-9Rα mAbs, natural chIL-9Rα expressed on the splenocytes of chickens was observed by indirect immunofluorescence assay (IFA), and its molecular weight of 51 kDa was identified by Western blotting. Overall, our study reveals for the first time the presence of IL-9Rα in birds, and provides immunological tools for further investigating the roles of chIL-9 in diseases and immunity.


Chickens , Leukocytes, Mononuclear , Animals , Chickens/genetics , Receptors, Interleukin-9/genetics , Phylogeny , Antibodies, Monoclonal , Interleukin-2 , Mammals
2.
J Immunol ; 210(8): 1059-1073, 2023 04 15.
Article En | MEDLINE | ID: mdl-36883978

The pleiotropic cytokine IL-9 signals to target cells by binding to a heterodimeric receptor consisting of the unique subunit IL-9R and the common subunit γ-chain shared by multiple cytokines of the γ-chain family. In the current study, we found that the expression of IL-9R was strikingly upregulated in mouse naive follicular B cells genetically deficient in TNFR-associated factor 3 (TRAF3), a critical regulator of B cell survival and function. The highly upregulated IL-9R on Traf3-/- follicular B cells conferred responsiveness to IL-9, including IgM production and STAT3 phosphorylation. Interestingly, IL-9 significantly enhanced class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells, which was not observed in littermate control B cells. We further demonstrated that blocking the JAK-STAT3 signaling pathway abrogated the enhancing effect of IL-9 on class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells. Our study thus revealed, to our knowledge, a novel pathway that TRAF3 suppresses B cell activation and Ig isotype switching by inhibiting IL-9R-JAK-STAT3 signaling. Taken together, our findings provide (to our knowledge) new insights into the TRAF3-IL-9R axis in B cell function and have significant implications for the understanding and treatment of a variety of human diseases involving aberrant B cell activation such as autoimmune disorders.


B-Lymphocytes , Immunoglobulin Class Switching , Interleukin-4 , Receptors, Interleukin-9 , TNF Receptor-Associated Factor 3 , Animals , Humans , Mice , B-Lymphocytes/cytology , Cells, Cultured , Immunoglobulin Class Switching/genetics , Immunoglobulin G , Interleukin-4/pharmacology , Interleukin-9 , Receptors, Antigen , Receptors, Interleukin-9/genetics , TNF Receptor-Associated Factor 3/genetics
3.
FEBS J ; 290(11): 2993-3005, 2023 06.
Article En | MEDLINE | ID: mdl-36637991

We combined cell-free ribosome display and cell-based yeast display selection to build specific protein binders to the extracellular domain of the human interleukin 9 receptor alpha (IL-9Rα). The target, IL-9Rα, is the receptor involved in the signalling pathway of IL-9, a pro-inflammatory cytokine medically important for its involvement in respiratory diseases. The successive use of modified protocols of ribosome and yeast displays allowed us to combine their strengths-the virtually infinite selection power of ribosome display and the production of (mostly) properly folded and soluble proteins in yeast display. The described experimental protocol is optimized to produce binders highly specific to the target, including selectivity to common proteins such as BSA, and proteins potentially competing for the binder such as receptors of other cytokines. The binders were trained from DNA libraries of two protein scaffolds called 57aBi and 57bBi developed in our laboratory. We show that the described unconventional combination of ribosome and yeast displays is effective in developing selective small protein binders to the medically relevant molecular target.


Carrier Proteins , Saccharomyces cerevisiae , Humans , Protein Binding , Saccharomyces cerevisiae/genetics , Cytokines , Receptors, Interleukin-9 , Peptide Library
4.
An Bras Dermatol ; 97(6): 716-728, 2022.
Article En | MEDLINE | ID: mdl-36117047

BACKGROUND: To evaluate the effect of T-helper 17 (Th17) cells and Th9 cells on the activation of dermal vascular smooth muscle cells (DVSMCs) in systemic scleroderma (SSc) and regulation of tanshinone IIA. METHODS: The expression of interleukin 17 receptor (IL-17R) and interleukin 9 receptor (IL-9R) in the skin of SSc patients was assessed by immunofluorescence. The expression of IL-9 and IL-9R mRNA in peripheral blood mononuclear cells (PBMCs) of SSc patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proportion of Th9 cells in PBMCs of SSc patients was sorted by flow cytometry. The effect of IL-9 on the differentiation of Th17 and IL-17 on that of Th9 was detected by flow cytometry. The proportion of Th9 and Th17 cells in SSc patients was detected by flow cytometry. The level of collagen I, III, α-SMA, IL-9R, IL-17R, JNK, P38, and ERK were analyzed using western blot (WB). RESULTS: Th9 cells were highly expressed in SSc. IL-9 stimulated the differentiation of immature T cells into Th17 cells. IL-17 induced the differentiation of immature T cells into Th9 cells. Tanshinone IIA inhibited the differentiation of immature T lymphocytes into Th17 and Th9. WB showed that the combined action of IL-17 and IL-9 upregulated the inflammation and proliferation of DVSMCs. Anti-IL17, anti-IL9, and tanshinone IIA inhibited the functional activation of DVSMCs. STUDY LIMITATIONS: For Th17, Th9 and vascular smooth muscle cells, the study on the signal pathway of their interaction is not thorough enough. More detailed studies are needed to explore the mechanism of cell-cell interaction. CONCLUSIONS: The current results suggested that Th17 and Th9 cells induced the activation of DVSMCs in SSc through crosstalk in vitro, and tanshinone IIA inhibited the process.


Abietanes , Myocytes, Smooth Muscle , Scleroderma, Systemic , Th17 Cells , Abietanes/pharmacology , Collagen Type I/metabolism , Humans , Interleukin-17/metabolism , Interleukin-9/metabolism , Leukocytes, Mononuclear/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , RNA, Messenger , Receptors, Interleukin-17 , Receptors, Interleukin-9 , Scleroderma, Systemic/drug therapy , Th17 Cells/immunology
5.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Article En | MEDLINE | ID: mdl-36037361

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Aortic Valve Stenosis , Calcinosis , Interleukins , Animals , Anti-Inflammatory Agents/pharmacology , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/drug therapy , Calcium/metabolism , Caspases/metabolism , Cells, Cultured , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukins/genetics , Interleukins/metabolism , Interleukins/pharmacology , Matrilin Proteins/pharmacology , Mice , Mice, Inbred NOD , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Osteogenesis , Receptors, Interleukin-9/genetics , Recombinant Proteins/pharmacology
6.
Immunobiology ; 227(5): 152258, 2022 09.
Article En | MEDLINE | ID: mdl-35998415

INTRODUCTION: IL-9, mainly produced by T helper 9 (Th9) cells, promotes allergic airway inflammation and remodeling through the interaction with its receptor (IL-9R). Th9 cells and IL-9 have also been implicated in tissue fibrosis and autoimmunity pathways. However, the role of IL-9/IL-9R in the pathogenesis of interstitial lung disease (ILD) is unknown. AIM: To evaluate IL-9/IL-9R expression in bronchoalveolar lavage fluid (BALF) lymphocytes of patients with various ILDs. METHODS: Consecutive patients with ILD, who underwent BAL for diagnostic purposes, were studied. As control group, consecutive patients without evidence of ILD were included. Immunocytochemical staining of BALF lymphocytes for IL-9 and IL-9R was performed and evaluated by two independent readers. RESULTS: 45 patients, of them 8 had idiopathic pulmonary fibrosis (IPF), 12 nonspecific interstitial pneumonia (NSIP), 10 sarcoidosis, 9 hypersensitivity pneumonitis (HP), 6 cryptogenic organizing pneumonia (COP), and 24 controls were studied. In the ILD group, the highest BALF lymphocyte count was seen in HP followed by NSIP, COP, sarcoidosis, and IPF (p < 0.05 for HP vs IPF). The highest percentages of IL-9 and IL-9R positive lymphocytes were seen in COP. Conversely, NSIP showed the lowest rate of IL-9, and sarcoidosis the lowest rate of IL-9R positive lymphocytes. Only in NSIP, a direct correlation between IL and 9 and IL-9R positive lymphocytes was seen (r = 0.639, p = 0.025). CONCLUSION: BALF lymphocytes IL-9 and IL-9R expression differs between various ILDs and could reflect different pathogenetic mechanisms.


Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Sarcoidosis , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Humans , Interleukin-9 , Lung Diseases, Interstitial/diagnosis , Lymphocytes/metabolism , Receptors, Interleukin-9
7.
Nature ; 607(7918): 360-365, 2022 07.
Article En | MEDLINE | ID: mdl-35676488

Synthetic receptor signalling has the potential to endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumours, including the need for conditioning chemotherapy1,2. Here we designed chimeric receptors that have an orthogonal IL-2 receptor extracellular domain (ECD) fused with the intracellular domain (ICD) of receptors for common γ-chain (γc) cytokines IL-4, IL-7, IL-9 and IL-21 such that the orthogonal IL-2 cytokine elicits the corresponding γc cytokine signal. Of these, T cells that signal through the chimeric orthogonal IL-2Rß-ECD-IL-9R-ICD (o9R) are distinguished by the concomitant activation of STAT1, STAT3 and STAT5 and assume characteristics of stem cell memory and effector T cells. Compared to o2R T cells, o9R T cells have superior anti-tumour efficacy in two recalcitrant syngeneic mouse solid tumour models of melanoma and pancreatic cancer and are effective even in the absence of conditioning lymphodepletion. Therefore, by repurposing IL-9R signalling using a chimeric orthogonal cytokine receptor, T cells gain new functions, and this results in improved anti-tumour activity for hard-to-treat solid tumours.


Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Interleukin Receptor Common gamma Subunit , Neoplasms , Receptors, Interleukin-9 , Recombinant Fusion Proteins , T-Lymphocytes , Animals , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/genetics , Interleukins/immunology , Melanoma/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Pancreatic Neoplasms/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , STAT Transcription Factors/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
8.
Sci Immunol ; 7(68): eabi9768, 2022 02 18.
Article En | MEDLINE | ID: mdl-35179949

Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.


Asthma/immunology , Interleukin-9/immunology , Macrophages, Alveolar/immunology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arginase/genetics , Arginase/immunology , Chemokine CCL5/immunology , Child, Preschool , Female , Humans , Infant , Inflammation/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology
9.
J Immunother Cancer ; 9(7)2021 07.
Article En | MEDLINE | ID: mdl-34272310

BACKGROUND: Casitas B lymphoma-b (Cbl-b) is a central negative regulator of cytotoxic T and natural killer (NK) cells and functions as an intracellular checkpoint in cancer. In particular, Th9 cells support mast cell activation, promote dendritic cell recruitment, enhance the cytolytic function of cytotoxic T lymphocytes and NK cells, and directly kill tumor cells, thereby contributing to tumor immunity. However, the role of Cbl-b in the differentiation and antitumor function of Th9 cells is not sufficiently resolved. METHODS: Using Cblb-/- mice, we investigated the effect of knocking out Cblb on the differentiation process and function of different T helper cell subsets, focusing on regulatory T cell (Treg) and Th9 cells. We applied single-cell RNA (scRNA) sequencing of in vitro differentiated Th9 cells to understand how Cbl-b shapes the transcriptome and regulates the differentiation and function of Th9 cells. We transferred tumor-model antigen-specific Cblb-/- Th9 cells into melanoma-bearing mice and assessed tumor control in vivo. In addition, we blocked interleukin (IL)-9 in melanoma cell-exposed Cblb-/- mice to investigate the role of IL-9 in tumor immunity. RESULTS: Here, we provide experimental evidence that Cbl-b acts as a rheostat favoring Tregs at the expense of Th9 cell differentiation. Cblb-/- Th9 cells exert superior antitumor activity leading to improved melanoma control in vivo. Accordingly, blocking IL-9 in melanoma cell-exposed Cblb-/- mice reversed their tumor rejection phenotype. Furthermore, scRNA sequencing of in vitro differentiated Th9 cells from naïve T cells isolated from wildtype and Cblb-/- animals revealed a transcriptomic basis for increased Th9 cell differentiation. CONCLUSION: We established IL-9 and Th9 cells as key antitumor executers in Cblb-/- animals. This knowledge may be helpful for the future improvement of adoptive T cell therapies in cancer.


Adaptor Proteins, Signal Transducing/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , Receptors, Interleukin-9/metabolism , Animals , Disease Models, Animal , Mice
10.
Genome ; 64(12): 1029-1040, 2021 Dec.
Article En | MEDLINE | ID: mdl-34139142

China has the largest pork consumption worldwide. However, the high incidence of piglet fetal mummification (3%-5%) is an important factor that causes the slow improvement of pig reproductive capacity, and the genetic mechanism is still unclear. This study aimed to identify candidate genes associated with piglet fetal mummification. RNA-seq technology was used to compare transcriptome profiling of blood from healthy and mummified piglets at different stages of pregnancy (35, 56, 77, and 98 days). A total of 137-420 differentially expressed genes (DEGs) were detected at each stage. Seven DEGs were significantly differentially expressed at various stages. IL-9R, TLR8, ABLIM3, FSH-α, ASCC1, PRKCZ, and GCK may play important roles in the course of piglet fetal mummification. The differential genes we identified between the groups were mainly enriched in immune and inflammation regulation, while others were mainly enriched in reproduction. Considering the function of candidate genes, IL-9R and TLR8 were suggested as the most promising candidate genes involved in mummified piglet traits. We speculate that during pregnancy, it may be the combined effects of the above-mentioned inflammation, immune response, and reproduction-related signaling pathways that affect the occurrence of mummified piglets and further affect pig reproduction.


Fetal Death , Receptors, Interleukin-9/genetics , Toll-Like Receptor 8 , Transcriptome , Animals , Female , Gene Expression Profiling , Inflammation , Pregnancy , Swine/genetics , Toll-Like Receptor 8/genetics
11.
Biofactors ; 47(4): 674-685, 2021 Jul.
Article En | MEDLINE | ID: mdl-33979459

Previous studies showed that interleukin-9 (IL-9) is involved in cardiovascular diseases, including hypertension and cardiac fibrosis. This study aimed to investigate the role of IL-9 in lipopolysaccharide (LPS)-induced myocardial cell (MC) apoptosis. Mice were treated with LPS, and IL-9 expression was measured and the results showed that compared with WT mice, LPS-treated mice exhibited increased cardiac Mø-derived IL-9. Additionally, the effects of IL-9 deficiency (IL-9-/-) on macrophage (Mø)-related oxidative stress and MC apoptosis were evaluated, the results showed that IL-9 knockout significantly exacerbated cardiac dysfunction, inhibited Nrf2 nuclear transfer, promoted an imbalance in M1 and M2 Møs, and exacerbated oxidative stress and MC apoptosis in LPS-treated mice. Treatment with ML385, a specific nuclear factor erythroid-2 related factor 2 (Nrf2) pathway inhibitor significantly alleviated the above effects in LPS-treated IL-9-/- mice. Bone marrow-derived Møs from wild-type (WT) mice and IL-9-/- mice were treated with LPS, and the differentiation and oxidative stress levels of Møs were measured. The effect of Mø differentiation on mouse MC apoptosis was also analyzed in vitro. The results showed that LPS-induced M1 Mø/M2 Mø imbalance and Mø-related oxidative stress were alleviated by IL-9 knockout but were exacerbated by ML385 treatment. The protective effects of IL-9 deficiency on the MC apoptosis mediated by LPS-treated Møs were reversed by ML-385. Our results suggest that deletion of IL-9 decreased the nuclear translocation of Nrf2 in Møs, which further aggravated Mø-related oxidative stress and MC apoptosis. IL-9 may be a target for the prevention of LPS-induced cardiac injury.


Apoptosis/genetics , Interleukin-9/genetics , Macrophages/pathology , Myocarditis/genetics , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/genetics , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Apoptosis/immunology , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation , Interleukin-9/deficiency , Interleukin-9/immunology , Lipopolysaccharides/administration & dosage , Macrophages/immunology , Male , Mice , Mice, Knockout , Myocarditis/chemically induced , Myocarditis/immunology , Myocarditis/pathology , Myocytes, Cardiac/immunology , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/immunology , Oxidative Stress , Primary Cell Culture , Protein Transport , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Receptors, Atrial Natriuretic Factor/genetics , Receptors, Atrial Natriuretic Factor/immunology , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Signal Transduction , Thiazoles/pharmacology , Ventricular Function, Left/physiology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/immunology
12.
Pigment Cell Melanoma Res ; 34(5): 966-972, 2021 09.
Article En | MEDLINE | ID: mdl-33834624

Immune dysregulation is critical in vitiligo pathogenesis. Although the presence and roles of numerous CD4+ T-cell subsets have been described, the presence of Th9 cells and more importantly, roles of IL-9 on melanocyte functions are not explored yet. Here, we quantified the T helper cell subsets including Th9 cells in vitiligo patients by multicolor flowcytometry. There was an increased frequency of skin-homing (CLA+ ) and systemic (CLA- ) Th9 cells in vitiligo patients compared to healthy donors. However, there was no difference in Th9 cell frequency in vitiligo patients with early and chronic disease. There was negligible IL-9 receptor (IL-9R) expression on human primary melanocytes (HPMs); however, IFNγ upregulated IL-9R expression on HPMs. Functionally, IL-9/IL-9R signaling reduced the production of IFNγ-induced toxic reactive oxygen species (ROS) in HPMs. There was no effect of IL-9 on expression of genes responsible for melanosome formation (MART1, TYRP1, and DCT), melanin synthesis (TYR), and melanocyte-inducing transcription factor (MITF) in HPMs. In conclusion, this study identifies the presence of Th9 cells in vitiligo and their roles in reducing the oxidative stress of melanocytes, which might be useful in designing effective therapeutics.


Gene Expression Regulation/immunology , Interleukin-9/immunology , Melanocytes/immunology , Skin/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vitiligo/immunology , Adult , Humans , Male , Melanocytes/pathology , Middle Aged , Receptors, Interleukin-9/immunology , Skin/pathology , T-Lymphocytes, Helper-Inducer/pathology , Vitiligo/pathology
13.
J Neuroinflammation ; 17(1): 149, 2020 May 06.
Article En | MEDLINE | ID: mdl-32375811

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated, chronic inflammatory, and demyelinating disease of the central nervous system (CNS). Several cytokines are thought to be involved in the regulation of MS pathogenesis. We recently identified interleukin (IL)-9 as a cytokine reducing inflammation and protecting from neurodegeneration in relapsing-remitting MS patients. However, the expression of IL-9 in CNS, and the mechanisms underlying the effect of IL-9 on CNS infiltrating immune cells have never been investigated. METHODS: To address this question, we first analyzed the expression levels of IL-9 in post-mortem cerebrospinal fluid of MS patients and the in situ expression of IL-9 in post-mortem MS brain samples by immunohistochemistry. A complementary investigation focused on identifying which immune cells express IL-9 receptor (IL-9R) by flow cytometry, western blot, and immunohistochemistry. Finally, we explored the effect of IL-9 on IL-9-responsive cells, analyzing the induced signaling pathways and functional properties. RESULTS: We found that macrophages, microglia, and CD4 T lymphocytes were the cells expressing the highest levels of IL-9 in the MS brain. Of the immune cells circulating in the blood, monocytes/macrophages were the most responsive to IL-9. We validated the expression of IL-9R by macrophages/microglia in post-mortem brain sections of MS patients. IL-9 induced activation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 and reduced the expression of activation markers, such as CD45, CD14, CD68, and CD11b in inflammatory macrophages stimulated in vitro with lipopolysaccharide and interferon (IFN)-γ. Similarly, in situ the number of activated CD68+ macrophages was significantly reduced in areas with high levels of IL-9. Moreover, in the same conditions, IL-9 increased the secretion of the anti-inflammatory cytokine, transforming growth factor (TGF)-ß. CONCLUSIONS: These results reveal a new cytokine expressed in the CNS, with a role in the context of MS. We have demonstrated that IL-9 and its receptor are both expressed in CNS. Moreover, we found that IL-9 decreases the activation state and promotes the anti-inflammatory properties of human macrophages. This mechanism may contribute to the beneficial effects of IL-9 that are observed in MS, and may be therapeutically potentiated by modulating IL-9 expression in MS.


Interleukin-9/immunology , Interleukin-9/metabolism , Macrophage Activation/immunology , Multiple Sclerosis, Chronic Progressive/immunology , Multiple Sclerosis, Chronic Progressive/metabolism , Adult , Aged , Female , Humans , Macrophages/immunology , Macrophages/metabolism , Male , Middle Aged , Receptors, Interleukin-9/immunology , Receptors, Interleukin-9/metabolism
14.
Mucosal Immunol ; 13(6): 919-930, 2020 11.
Article En | MEDLINE | ID: mdl-32358573

This study was to explore a novel IL-33/ST2/IL-9/IL-9R signaling pathway that disrupts ocular surface barrier and amplifies allergic inflammation. Two murine models of experimental allergic conjunctivitis (EAC) and IL-9 topical challenge in wild type Balb/c and ST2-/- mice, and two culture models of primarily human corneal epithelial cells (HCECs) and mouse CD4+ T cells were performed. Clinical manifestations, Oregon-Green Dextran (OGD) staining, the apical junction complexes (AJCs), IL-33/ST2 and IL-9/IL-9R signaling molecules were evaluated in ocular surface and its draining cervical lymph nodes (CLNs) by RT-qPCR, immunostaining and ELISA. The typical allergic signs, enhanced OGD staining intensity, disrupted morphology of AJCs, including ZO-1, claudin 1, occludin, and E-cadherin, and the stimulated signaling of IL-33/ST2 and IL-9/IL-9R were observed in ocular mucosa and draining CLNs in EAC-Balb/c mice, but significantly reduced or eliminated in EAC-ST2-/- mice. Topical challenge of IL-9 resulted in the obvious OGD staining and disrupted ocular surface AJCs in Balb/c mice and in HCECs in vitro. IL-9 production was found to be stimulated by IL-33 in CD4+ cells from Balb/c mice in vitro. Our findings uncovered a novel phenomenon and mechanism by which ocular surface barrier integrity is disrupted in allergic conjunctivitis by IL-33/ST2/IL-9/IL-9R signaling pathway, which may amplify the allergic inflammation.


CD4-Positive T-Lymphocytes/immunology , Conjunctivitis, Allergic/immunology , Epithelium, Corneal/metabolism , Eye/metabolism , Inflammation/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Interleukin-9/metabolism , Receptors, Interleukin-9/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Epithelium, Corneal/pathology , Eye/pathology , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Signal Transduction , Tight Junction Proteins/metabolism
15.
Immunohorizons ; 4(5): 282-291, 2020 05 21.
Article En | MEDLINE | ID: mdl-32439753

Generation of allelic gene reporter mice has provided a powerful tool to study gene function in vivo. In conjunction with imaging technologies, reporter mouse models facilitate studies of cell lineage tracing, live cell imaging, and gene expression in the context of diseases. Although there are several advantages to using reporter mice, caution is important to ensure the fidelity of the reporter protein representing the gene of interest. In this study, we compared the efficiency of two Il9 reporter strains Il9citrine and Il9GFP in representing IL-9-producing CD4+ TH9 cells. Although both alleles show high specificity in IL-9-expressing populations, we observed that the Il9GFP allele visualized a much larger proportion of the IL-9-producing cells in culture than the Il9citrine reporter allele. In defining the mechanistic basis for these differences, chromatin immunoprecipitation and chromatin accessibility assay showed that the Il9citrine allele was transcriptionally less active in TH9 cells compared with the wild-type allele. The Il9citrine allele also only captured a fraction of IL-9-expressing bone marrow-derived mast cells. In contrast, the Il9 citrine reporter detected Il9 expression in type 2 innate lymphoid cells at a greater percentage than could be identified by IL-9 intracellular cytokine staining. Taken together, our findings demonstrate that the accuracy of IL-9 reporter mouse models may vary with the cell type being examined. These studies demonstrate the importance of choosing appropriate reporter mouse models that are optimal for detecting the cell type of interest as well as the accuracy of conclusions.


Alleles , Cell Lineage , Receptors, Interleukin-9/biosynthesis , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Differentiation , Chromatin Immunoprecipitation , Fluorescent Antibody Technique , Immunity, Innate , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics , T-Lymphocytes, Helper-Inducer/cytology
16.
Cell Immunol ; 352: 104098, 2020 06.
Article En | MEDLINE | ID: mdl-32241531

Asthma is an inflammatory disease of the airways and numerous cytokines contribute to this pathogenesis. It is shown that challenge of airways with IL-33 induces asthma-like pathological changes in mice, but the possible downstream cytokines in this process remain to be characterised. To explore this, we compared changes in the airways of wildtype (WT) and IL-9 deficient mice challenged with IL-33. In line with previous report, per-nasal challenge of WT mice with IL-33 significantly increased the responsiveness of the airways along with infiltration of inflammatory cells, goblet cell hyperplasia, collagen deposition and smooth muscle hypertrophy, and the expression of cytokines compared with control group. Surprisingly, all of these pathological changes were significantly attenuated in IL-9 deficient mice following identical IL-33 challenge. These data suggest that IL-9 is one downstream cytokine relevant to the effects of IL-33 in asthmatic airways and consequently a potential therapeutic target for the treatment of asthma.


Asthma/metabolism , Interleukin-33/metabolism , Interleukin-9/metabolism , Animals , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Cytokines/metabolism , Female , Inflammation/immunology , Inflammation/metabolism , Interleukin-33/immunology , Interleukin-9/immunology , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred BALB C , Receptors, Interleukin-9/immunology , Receptors, Interleukin-9/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
17.
Hypertens Pregnancy ; 39(3): 228-235, 2020 Aug.
Article En | MEDLINE | ID: mdl-32329646

OBJECTIVE: Our study aimed to investigate IL9 and IL9R expression in preeclampsia and assess their effects on trophoblast biological behaviors. METHODS: IL9 and IL9R expression of placenta tissue were evaluated by immunochemistry and q-PCR. Using transwell, CCK-8, and tubule formation assays measured invasion, proliferation and angiogenesis of trophoblast with adding IL9 or anti-IL9R antibody. RESULTS: IL9 and IL9R levels were significantly decreased in preeclampsia. IL9 improved trophoblast activities. Blocking IL9/IL9R resulted in decreased proliferation, invasion, and tube-formation capability of trophoblast. CONCLUSIONS: IL9 and IL9R contribute to the pathogenesis of preeclampsia. IL9/IL9R signaling provides a new potential therapeutic target for preventing preeclampsia.


Cell Proliferation/physiology , Interleukin-9/metabolism , Neovascularization, Physiologic/physiology , Placenta/metabolism , Pre-Eclampsia/metabolism , Receptors, Interleukin-9/metabolism , Trophoblasts/metabolism , Adult , Cell Movement/physiology , Female , Humans , Pregnancy , Signal Transduction/physiology
18.
Eur J Immunol ; 50(7): 1034-1043, 2020 07.
Article En | MEDLINE | ID: mdl-32130733

IL-9 is involved in various T cell-dependent inflammatory models including colitis, encepahlitis, and asthma. However, the regulation and specificity of IL-9 responsiveness by T cells during immune responses remains poorly understood. Here, we addressed this question using two different models: experimental colitis induced by transfer of naive CD4+ CD45RBhigh T cells into immunodeficient mice, and OVA-specific T cell activation. In the colitis model, constitutive IL-9 expression exacerbated inflammation upon transfer of CD4+ CD45RBhigh T cells from WT but not from Il9r-/- mice, indicating that IL-9 acts directly on T cells. Suprisingly, such naïve CD4+ CD45RBhigh T cells failed to express the Il9r or respond to IL-9 in vitro, in contrast with CD4+ CD45RBlow T cells. By using OVA-specific T cells, we observed that T cells acquired the capacity to respond to IL-9 along with CD44 upregulation, after long-lasting (5 to 12 days) in vivo antigenic stimulation. Il9r expression was associated with Th2 and Th17 phenotypes. Interestingly, in contrast to the IL-2 response, antigen restimulation downregulated IL-9 responsiveness. Taken together, our results demonstrate that IL-9 does not act on naïve T cells but that IL-9 responsiveness is acquired by CD4+ T cells after in vivo activation and acquisition of memory markers such as CD44.


Adoptive Transfer/adverse effects , Colitis/immunology , Interleukin-9/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Colitis/etiology , Colitis/genetics , Colitis/pathology , Disease Models, Animal , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-9/genetics , Mice , Mice, Knockout , Mice, SCID , Receptors, Interleukin-9/genetics , Receptors, Interleukin-9/immunology , Th17 Cells/pathology , Th17 Cells/transplantation , Th2 Cells/pathology , Th2 Cells/transplantation
19.
J Immunol ; 204(3): 531-539, 2020 02 01.
Article En | MEDLINE | ID: mdl-31852750

Multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) are inflammatory diseases of the CNS in which Th17 cells play a major role in the disease pathogenesis. Th17 cells that secrete GM-CSF are pathogenic and drive inflammation of the CNS. IL-9 is a cytokine with pleiotropic functions, and it has been suggested that it controls the pathogenic inflammation mediated by Th17 cells, and IL-9R-/- mice develop more severe EAE compared with wild-type counterparts. However, the underlying mechanism by which IL-9 suppresses EAE has not been clearly defined. In this study, we investigated how IL-9 modulates EAE development. By using mice knockout for IL-9R, we show that more severe EAE in IL-9R-/- mice correlates with increased numbers of GM-CSF+ CD4+ T cells and inflammatory dendritic cells (DCs) in the CNS. Furthermore, DCs from IL-9R-/- mice induced more GM-CSF production by T cells and exacerbated EAE upon adoptive transfer than did wild-type DCs. Our results suggest that IL-9 reduces autoimmune neuroinflammation by suppressing GM-CSF production by CD4+ T cells through the modulation of DCs.


Central Nervous System/physiology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-9/metabolism , Multiple Sclerosis/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , Autoimmunity , Cells, Cultured , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-9/genetics
20.
Int Immunopharmacol ; 78: 106019, 2020 Jan.
Article En | MEDLINE | ID: mdl-31776089

Th9 cells are named after their expression of IL-9. Studies in recent years demonstrated that Th9 cells could contribute to antitumor immunity by enhancing the recruitment and activation of mast cells, natural killer cells, CD8 T cells, and dendritic cells in the tumor microenvironment. To determine whether Th9 cells participate in colorectal cancer (CRC), we collected resected tumor samples from 20 CRC patients. In the tumor-infiltrating lymphocytes (TILs), IL-9+IL-4- CD4+ T cells could be observed and were present at higher frequencies than the IL-9+IL-4+ and the IL-9-IL-4+ cells, suggesting that the majority of IL-9-producing TILs were bona fide Th9 cells. IL-9-secreting TILs presented particularly high PD-1 expression directly ex vivo. The expression of IL-9 was significantly reduced with PD-L1-mediated inhibition, which in turn was suppressed by anti-PD-1 blocking. Interestingly, the circulating CD4+ T cell compartment in CRC patients also presented Th9 enrichment, characterized by higher IL-9+IL-4- and IL-9+IL-4+ cell frequencies in the CXCR3-CCR6- compartment as compared to that in non-cancer controls. Using exogenous TGF-ß and IL-4, we were capable of enriching Th9 cells without concurrent enrichment of Th2 cells. Th9-enriched CD4+ T cells, but not Th9-non-enriched cells, significantly increased the expansion of activated CD8+ T cells, in a manner that was dependent on the expression of IL-9R. In addition, the frequencies of Th9 cells in the tumor were positively correlated with the frequencies of CD8+ TILs. Together, we demonstrated that Th9 cells infiltrated CRC tumor, could be regulated via the PD-1/PD-L1 pathway, and could contribute the CD8+ T cell expansion.


CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , T-Lymphocyte Subsets/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Humans , Interleukin-9/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Interleukin-9/metabolism , T-Lymphocyte Subsets/metabolism
...