Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
1.
J Neuroinflammation ; 21(1): 179, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044282

ABSTRACT

BACKGROUND: Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS: A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS: TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION: These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.


Subject(s)
Craniotomy , Mice, Inbred C57BL , Mice, Knockout , Staphylococcal Infections , Staphylococcus aureus , Tumor Necrosis Factor-alpha , Animals , Mice , Staphylococcal Infections/metabolism , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Leukocytes/metabolism , Disease Models, Animal , Receptors, Tumor Necrosis Factor, Type II/metabolism
2.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943486

ABSTRACT

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Subject(s)
Dendritic Spines , Dentate Gyrus , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Animals , Dendritic Spines/metabolism , Mice , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Neurons/metabolism , Male , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/deficiency
3.
Sci Immunol ; 6(65): eabf7235, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34739338

ABSTRACT

Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.


Subject(s)
Inflammation/immunology , Intestines/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Toll-Like Receptor 5/immunology , X-Linked Inhibitor of Apoptosis Protein/immunology , Animals , Dendritic Cells/immunology , Dysbiosis/immunology , Humans , Immunity, Innate/immunology , Mice , Mice, Knockout , Paneth Cells/immunology , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type II/deficiency , X-Linked Inhibitor of Apoptosis Protein/deficiency
4.
Physiol Rep ; 9(16): e14990, 2021 08.
Article in English | MEDLINE | ID: mdl-34427402

ABSTRACT

In hypertension induced by angiotensin II (AngII) administration with high salt (HS) intake, intrarenal angiotensinogen (AGT) and tumor necrosis factor-alpha (TNF-α) levels increase. However, TNF-α has been shown to suppress AGT formation in cultured renal proximal tubular cells. We examined the hypothesis that elevated AngII levels during HS intake reduces TNF-α receptor type 1 (TNFR1) activity in the kidneys, thus facilitating increased intrarenal AGT formation. The responses to HS diet (4% NaCl) with chronic infusion of AngII (25 ng/min) via implanted minipump for 4 weeks were assessed in wild-type (WT) and knockout (KO) mice lacking TNFR1 or TNFR2 receptors. Blood pressure was measured by tail-cuff plethysmography, and 24-h urine samples were collected using metabolic cages prior to start (0 day) and at the end of 2nd and 4th week periods. The urinary excretion rate of AGT (uAGT; marker for intrarenal AGT) was measured using ELISA. HS +AngII treatment for 4 weeks increased mean arterial pressure (MAP) in all strains of mice. However, the increase in MAP in TNFR1KO (77 ± 2 to 115 ± 3 mmHg; n = 7) was significantly greater (p < 0.01) than in WT (76 ± 1 to 102 ± 2 mmHg; n = 7) or in TNFR2KO (78 ± 2 to 99 ± 5 mmHg; n = 6). The increase in uAGT at 4th week was also greater (p < 0.05) in TNFR1KO mice (6 ± 2 to 167 ± 75 ng/24 h) than that in WT (6 ± 3 to 46 ± 16 ng/24 h) or in TNFR2KO mice (8 ± 7 to 65 ± 44 ng/24 h). The results indicate that TNFR1 exerts a protective role by mitigating intrarenal AGT formation induced by elevated AngII and HS intake.


Subject(s)
Angiotensinogen/metabolism , Hypertension, Renal/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Angiotensin II/toxicity , Animals , Blood Pressure , Hypertension, Renal/etiology , Kidney/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/metabolism , Sodium Chloride, Dietary/toxicity
5.
Cells ; 9(11)2020 11 13.
Article in English | MEDLINE | ID: mdl-33202705

ABSTRACT

The role of tumor necrosis factor-α (TNF-α) in shaping the tumor microenvironment is ambiguous. Consistent with its uncertain role in melanoma, TNF-α plays a dual role, either acting as a cytotoxic cytokine or favoring a tumorigenic inflammatory microenvironment. TNF-α signals via two cognate receptors, namely TNFR1 (p55) and TNFR2 (p75), which mediate divergent biological activities. Here, we analyzed the impact of TNFR1 deficiency in tumor progression in the B16.F1 melanoma model. Tumors developed in mice lacking TNFR1 (TNFR1 knock-out; KO) were smaller and displayed lower proliferation compared to their wild type (WT) counterpart. Moreover, TNFR1 KO mice showed reduced tumor angiogenesis. Although no evidence of spontaneous metastases was observed, conditioned media obtained from TNFR1 KO tumors increased tumor cell migration. Whereas the analysis of tumor-associated immune cell infiltrates showed similar frequency of total and M2-polarized tumor-associated macrophages (TAMs), the percentage of CD8+ T cells was augmented in TNFR1 KO tumors. Indeed, functional ex vivo assays demonstrated that CD8+ T cells obtained from TNFR1KO mice displayed an increased cytotoxic function. Thus, lack of TNFR1 attenuates melanoma growth by modulating tumor cell proliferation, migration, angiogenesis and CD8+ T cell accumulation and activation, suggesting that interruption of TNF-TNFR1 signaling may contribute to control tumor burden.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/blood supply , Melanoma, Experimental/immunology , Neovascularization, Pathologic/immunology , Receptors, Tumor Necrosis Factor, Type I/deficiency , Animals , Cell Proliferation , Lymphocyte Activation/immunology , Melanins/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Tumor Microenvironment/immunology
6.
Front Immunol ; 10: 2574, 2019.
Article in English | MEDLINE | ID: mdl-31787972

ABSTRACT

Sepsis is a complex syndrome resulting from a dysregulated immune response to an infection. Due to the high prevalence, morbidity, and mortality, there is a lot of interest in understanding pathways that play a role in sepsis, with a focus on the immune system. Tumor necrosis factor (TNF) is a pleiotropic pro-inflammatory cytokine and a master regulator of the immune system but clinical trials with TNF blockers in sepsis have failed to demonstrate significant protection. Since TNF stimulates two different receptors, TNF receptor 1 (TNFR1) and TNFR2, pan-TNF inhibition might be suboptimal since both receptors have opposite functions in polymicrobial sepsis. Therefore, we hypothesized that TNF has a dual role in sepsis, namely a mediating and a protective role, and that protection might be obtained by TNFR1-specific inhibition. We here confirmed that TNFR1-/- mice are protected in the sterile endotoxemia model, whereas TNFR1 deficiency did not protect in the cecal ligation and puncture (CLP)-induced polymicrobial sepsis model. Since whole body TNFR1 blockage might be deleterious because of the antibacterial function of TNF/TNFR1 signaling, we focused on the potential devastating role of TNF/TNFR1 signaling in specific cell types. We were interested in the gut epithelium, the endothelium, and hepatocytes using conditional TNFR1-/- mice, as these cell types have been shown to play a role in sepsis. However, none of these conditional knockout mice showed improved survival in the CLP model. We conclude that cell-specific targeting of TNFR1 to these cell types has no therapeutic future in septic peritonitis.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I/deficiency , Sepsis/immunology , Animals , Cecum/microbiology , Disease Models, Animal , Endotoxemia/etiology , Endotoxemia/immunology , Female , Host Microbial Interactions/immunology , Ligation , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Punctures , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/immunology , Sepsis/etiology , Sepsis/microbiology
7.
PLoS One ; 14(10): e0223989, 2019.
Article in English | MEDLINE | ID: mdl-31618254

ABSTRACT

Compressive force during orthodontic tooth movement induces osteoclast formation in vivo. TNF-α plays an important role in mouse osteoclast formation and bone resorption induced by compressive force during orthodontic tooth movement. Stromal cells, macrophages and T cells take part in TNF-α-induced osteoclast formation in vitro. Root resorption caused by odontoclasts is a major clinical problem during orthodontic tooth movement. In this study, we determined the cell type targeted by TNF-α during compressive-force-induced osteoclast and odontoclast formation to elucidate the mechanism of bone and root resorption in vivo. An orthodontic tooth movement mouse model was prepared with a nickel-titanium closed coil spring inserted between the maxillary incisors and the first molar. Using TNF receptor 1- and 2-deficient (KO) mice, we found that osteoclast and odontoclast formation was mediated by TNF-α in orthodontic tooth movement. We generated four types of chimeric mice: wild-type (WT) bone marrow cells transplanted into lethally irradiated WT mice (WT>WT), KO bone marrow cells transplanted into lethally irradiated WT mice (KO>WT), WT bone marrow cells transplanted into lethally irradiated KO mice (WT>KO), and KO marrow cells transplanted into lethally irradiated KO mice (KO>KO). Using anti-CD4 and anti-CD8 antibodies, T cells were eliminated from these mice. We subjected these chimeric mice to orthodontic tooth movement. Orthodontic tooth movement was evaluated and tartrate-resistant acid phosphatase-positive cells along the alveolar bone (osteoclasts) and along the tooth root (odontoclasts) were counted after 12 days of tooth movement. The amount of orthodontic tooth movement, and the number of osteoclasts and odontoclasts on the compression side were significantly lower in WT>KO and KO>KO mice than in WT>WT and KO>WT mice. According to these results, we concluded that TNF-α-responsive stromal cells are important for osteoclast and odontoclast formation during orthodontic tooth movement.


Subject(s)
Osteoclasts/cytology , Stromal Cells/cytology , Tooth Migration/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Disease Models, Animal , Male , Mice , Osteoclasts/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type II/deficiency , Stromal Cells/metabolism
8.
Mol Hum Reprod ; 25(7): 385-396, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31070761

ABSTRACT

Endometriosis is a chronic gynecological disease, characterized by growth of endometrial tissue in ectopic sites due to alteration of peritoneal homeostasis and deregulation of apoptosis. Here we have examined whether TNFRp55 deficiency modulates the pro-inflammatory state and the reinnervation of endometriotic-like lesions in mice. Two-month-old female C57BL/6 mice, eight wild type (WT) and eight TNFRp55-/- (KO) were used in the study. Endometriotic-like lesions were induced experimentally. The right uterine horn was removed from the animal, divided longitudinally, cut in three square pieces and sutured to the intestine mesentery. After 4 weeks, the lesions and the peritoneal fluid were collected. The level of TNFα in the peritoneal fluid was evaluated by enzyme-linked immunosorbent assay (EIA). The expressions of COX2, GRα and GRß were evaluated in the lesions by western blot and immunohistochemistry. ß-III TUBULIN, BDNF and NGF protein concentrations were evaluated in the lesions by western blot. Gene expression of Pgp 9.5, SP and Th was analyzed by RT-PCR, whereas relative concentrations of TRKA, NTRp75, phosphorylated NFκB (pNFκB) and total NFκB in lesions were measured by EIA. Compared with the WT group, the KO mice showed lower TNFα levels in the peritoneal fluid and lower numbers of COX2 immunoreactive cells along with increased expression of GRα, ß-III TUBULIN, Pgp 9.5, SP, Th, BDNF, NGF, NTRp75 and pNFκB in the lesions. Future histological studies will be necessary to confirm the sensory/sympathetic imbalance in the endometriotic-like lesions of the KO mice. Our results suggest that a reduced inflammatory state promotes reinnervation of endometriotic-like lesions in TNFRp55-/- mice. Chronic deregulation of TNF receptors can have serious consequences for women with advanced endometriosis.


Subject(s)
Endometriosis/immunology , Endometriosis/metabolism , Endometrium/innervation , Endometrium/metabolism , Inflammation/immunology , Inflammation/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor Decoy Receptors/deficiency , Tumor Necrosis Factor Decoy Receptors/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Endometrium/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Sci Rep ; 9(1): 4232, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862875

ABSTRACT

Tumour necrosis factor α receptor 1 (TNFR1) activation is known to induce cell death, inflammation, and fibrosis but also hepatocyte survival and regeneration. The multidrug resistance protein 2 knockout (Mdr2-/) mice are a model for chronic hepatitis and inflammation-associated hepatocellular carcinoma (HCC) development. This study analysed how the absence of TNFR1 mediated signalling shapes cytokine and chemokine production, immune cell recruitment and ultimately influences liver injury and fibrotic tissue remodelling in the Mdr2-/- mouse model. We show that Tnfr1-/-/Mdr2-/- mice displayed increased plasma levels of ALT, ALP, and bilirubin as well as a significantly higher collagen content, and markers of fibrosis than Mdr2-/- mice. The expression profile of inflammatory cytokines (Il1b, Il23, Tgfb1, Il17a), chemokines (Ccl2, Cxcl1, Cx3cl1) and chemokine receptors (Ccr6, Cxcr6, Cx3cr1) in livers of Tnfr1-/-/Mdr2-/- mice indicated TH17 cell infiltration. Flow cytometric analysis confirmed that the aggravated tissue injury in Tnfr1-/-/Mdr2-/- mice strongly correlated with increased hepatic recruitment of TH17 cells and enhanced IL-17 production in the injured liver. Moreover, we observed increased hepatic activation of RIPK3 in Tnfr1-/-/Mdr2-/- mice, which was not related to necroptotic cell death. Rather, frequencies of infiltrating CX3CR1+ monocytes increased over time in livers of Tnfr1-/-/Mdr2-/- mice, which expressed significantly higher levels of Ripk3 than those of Mdr2-/- mice. Overall, we conclude that the absence of TNFR1-mediated signalling did not improve the pathological phenotype of Mdr2-/- mice. It instead caused enhanced infiltration of TH17 cells and CX3CR1+ monocytes into the injured tissue, which was accompanied by increased RIPK3 activation and IL-17 production.


Subject(s)
Carcinoma, Hepatocellular/immunology , Liver Neoplasms/immunology , Liver/immunology , Neoplasm Proteins , Receptors, Tumor Necrosis Factor, Type I/deficiency , Th17 Cells/immunology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Chronic Disease , Gene Deletion , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Signal Transduction/genetics , Signal Transduction/immunology , Th17 Cells/pathology
10.
J Trace Elem Med Biol ; 52: 157-165, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30732877

ABSTRACT

The present study was conducted to investigate whether the deficiency of tumor necrosis factor receptor p55 (TNFRp55) modulates oxidative/nitrosative stress and metallomic profile into the peritoneal cavity during the experimental endometriosis progression in mice. Female C57BL/6 mice, wild-type (WT) and TNFRp55 knockout (KO) of two months were used. Endometriosis was induced experimentally by autotransplanting three pieces of the right uterine horn to the intestinal mesentery. After four weeks, endometriotic-like lesions and peritoneal lavage fluid were collected. The obtained peritoneal fluid was analyzed for nitrite levels using the Griess method and trace elements concentrations by ICP-MS. Both endometriotic-like lesions and cells isolated from peritoneal lavage were analyzed for the following oxidative/nitrosative stress markers: inducible nitric oxide synthase (iNOS) expression by Western Blot; total antioxidant capacity (TAC), the activity of two antioxidant enzymes (CAT and GPX) and thiobarbituric acid-reactive substances (TBARS) concentration, by spectrophotometric method; and protein carbonyl content and nitrotyrosine presence by ELISA. In comparison to WT group, KO mice exhibited larger lesion volume; higher levels of nitrite, copper (Cu) and strontium (Sr) in the peritoneal fluid; increased TAC, CAT, and GPX in peritoneal lavage cells; decreased concentration of TBARS in lesions and protein carbonyl in peritoneal lavage cells. Significant positive correlations between Cu and lesion volume, Sr and lesion volume, and Cu and Sr were obtained. Our results suggest that the TNFRp55 deficiency increases antioxidant protection and promotes high Cu-Sr concentrations in the peritoneal cavity, which favors the progression of experimental endometriosis.


Subject(s)
Copper/metabolism , Endometriosis/metabolism , Nitrites/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Strontium/metabolism , Tumor Necrosis Factor Decoy Receptors/metabolism , Animals , Antioxidants/metabolism , Copper/analysis , Disease Progression , Endometriosis/pathology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Nitrites/analysis , Oxidative Stress , Receptors, Tumor Necrosis Factor, Type I/deficiency , Strontium/analysis , Tumor Necrosis Factor Decoy Receptors/deficiency
11.
Arterioscler Thromb Vasc Biol ; 38(11): 2638-2650, 2018 11.
Article in English | MEDLINE | ID: mdl-30354252

ABSTRACT

Objective- Deep vein thrombosis results from a combination of risk factors including genetic conditions, obesity, drugs, pregnancy, aging, and malignancy. We examined pathophysiological roles of the TNF-α (tumor necrosis factor-α)-TNF-Rp55 (tumor necrosis factor receptor p55) axis in thrombus resolution using Tnfrp55-/- (TNF-Rp55-deficient) mice. Approach and Results- On ligating the inferior vena cava of wild-type (WT) mice, venous thrombi formed and grew progressively until 5 days but shrunk to <50% of the thrombus weight at day 14. Concomitantly, inferior vena cava ligation enhanced intrathrombotic gene expression of Tnfa and Tnfrp55, and intrathrombotic macrophages expressed both TNF-α and TNF-Rp55 proteins. In Tnfrp55-/- mice treated with the same manner, thrombus formed at a similar rate for 5 days, but shrinking was delayed compared with WT mice. Moreover, the blood flow recovery in thrombosed inferior vena cava was suspended in Tnfrp55-/- mice compared with WT mice. Intrathrombotic Plau (urokinase-type plasminogen activator), Mmp2 (matrix metalloproteinase 2), and Mmp9 (matrix metalloproteinase 9) mRNA expression was significantly reduced in Tnfrp55-/- mice, compared with WT ones. Supportingly, the administration of anti-TNF-α antibody or TNF-α inhibitor (etanercept) delayed the thrombus resolution in WT mice. Furthermore, TNF-α treatment enhanced gene expression of Plau, Mmp2, and Mmp9 in WT macrophages but not Tnfrp55-/- macrophages. These effects were significantly suppressed by ERK (extracellular signal regulated kinase) and NF-κB (nuclear factor-kappa B) inhibitors. Therefore, the lack of TNF-Rp55 has detrimental roles in the thrombus resolution by suppressing PLAU, MMP-2, and MMP-9 expression. In contrast, TNF-α administration accelerated thrombus resolution in WT but not Tnfrp55-/- mice. Conclusions- The TNF-α-TNF-Rp55 axis may have essential roles in the resolution of venous thrombus in mice.


Subject(s)
Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vena Cava, Inferior/metabolism , Venous Thrombosis/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Macrophages, Peritoneal/metabolism , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice, Inbred BALB C , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction , Time Factors , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Vena Cava, Inferior/pathology , Venous Thrombosis/blood , Venous Thrombosis/pathology
12.
Article in English | MEDLINE | ID: mdl-30123776

ABSTRACT

Early research on sepsis has focused on the initial hyper-inflammatory, cytokine mediated phase of the disorder whereas the events that govern the concomitant and subsequent anti-inflammatory compensatory response are not completely understood. In this context, the putative participation of TNFR1-mediated signaling in the immunosuppressive phase of Staphylococcus aureus sepsis has not been elucidated. The aim of this study was to determine the role of TNFR1 in directing the immune dysfunction during S. aureus sepsis and the potential contribution of MDSC to this process. Using a model of sepsis of peritoneal origin and tnfr1-/- mice, we demonstrated that during staphylococcal sepsis CD4+ T cell anergy is significantly dependent on TNFR1 expression and that signaling through this receptor has an impact on bacterial clearance in the spleen. MDSC played a major role in the generation of anergic CD4+ T cells and their accumulation in the spleen during S. aureus sepsis correlated with IL-6 induction. Although TNFR1 signaling was not required for MDSC accumulation and expansion in the spleen, it determined the in vivo expression of Arginase 1 and iNOS, enzymes known to participate in the suppressive function of this population. Moreover, our data indicate that TNFR1-mediated IL-10 production may modulate MDSC function during staphylococcal sepsis. Taken together these results indicate that TNFR1 plays a critical role on T cell dysfunction during S. aureus sepsis by regulating immunomodulatory mediators in MDSC. The role of TNFR1-mediated signaling during the immunosuppressive phase of staphylococcal sepsis should be considered when designing novel alternative therapeutic approaches.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunosuppression Therapy , Myeloid-Derived Suppressor Cells/immunology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sepsis/pathology , Signal Transduction , Staphylococcal Infections/pathology , Animals , Arginase/metabolism , Interleukin-6/metabolism , Mice , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Sepsis/immunology , Spleen/pathology , Staphylococcal Infections/immunology
13.
Neurosci Bull ; 34(1): 42-53, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28365861

ABSTRACT

Increasing evidence suggests that cytokines and chemokines play crucial roles in chronic itch. In the present study, we evaluated the roles of tumor necrosis factor-alpha (TNF-α) and its receptors TNF receptor subtype-1 (TNFR1) and TNFR2 in acute and chronic itch in mice. Compared to wild-type (WT) mice, TNFR1-knockout (TNFR1-KO) and TNFR1/R2 double-KO (DKO), but not TNFR2-KO mice, exhibited reduced acute itch induced by compound 48/80 and chloroquine (CQ). Application of the TNF-synthesis inhibitor thalidomide and the TNF-α antagonist etanercept dose-dependently suppressed acute itch. Intradermal injection of TNF-α was not sufficient to evoke scratching, but potentiated itch induced by compound 48/80, but not CQ. In addition, compound 48/80 induced TNF-α mRNA expression in the skin, while CQ induced its expression in the dorsal root ganglia (DRG) and spinal cord. Furthermore, chronic itch induced by dry skin was reduced by administration of thalidomide and etanercept and in TNFR1/R2 DKO mice. Dry skin induced TNF-α expression in the skin, DRG, and spinal cord and TNFR1 expression only in the spinal cord. Thus, our findings suggest that TNF-α/TNFR1 signaling is required for the full expression of acute and chronic itch via peripheral and central mechanisms, and targeting TNFR1 may be beneficial for chronic itch treatment.


Subject(s)
Ganglia, Spinal/metabolism , Pruritus/metabolism , Pruritus/pathology , Receptors, Tumor Necrosis Factor, Type I/deficiency , Skin/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Chloroquine/toxicity , Disease Models, Animal , Dose-Response Relationship, Drug , Etanercept/therapeutic use , Ganglia, Spinal/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pruritus/chemically induced , Pruritus/drug therapy , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/genetics , Signal Transduction/drug effects , Skin/drug effects , Spinal Cord/drug effects , Thalidomide/therapeutic use , Time Factors , Tumor Necrosis Factor-alpha/adverse effects , Tumor Necrosis Factor-alpha/genetics , p-Methoxy-N-methylphenethylamine/toxicity
14.
Virus Res ; 244: 1-5, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29113822

ABSTRACT

TNF-α has been shown to play an important role in pathogenesis and latency of HSV-1 infections. TNF-α signals through TNFR1 (p55) and TNFR2 (p75), and signaling through p55 generally results in gene activation leading to induction of inflammatory responses. Here, we studied the role of TNF-α signaling in latent virus reactivation in p55-knock out (KO) mouse model of ocular HSV-1 infection. We found that KO mice are more susceptible to HSV-1 infection compared to wild type C57Bl/6 mice. While the absence of TNFRI signaling enhanced the ganglion latent DNA content by two folds, there was no difference in the maintenance and reactivation of latent HSV-1. Strikingly, interfering with inflammatory responses through PGE2 synthesis by treating latently infected wild type mice with indomethacin (COX inhibitor) prior to UV-exposure prevented HSV-1 reactivation. These results suggest that reactivation of latent HSV-1 might result from the cumulative effects of a cascade of inflammatory cytokines including TNF-α.


Subject(s)
Herpesvirus 1, Human/immunology , Host-Pathogen Interactions , Keratitis, Herpetic/immunology , Prostaglandin-Endoperoxide Synthases/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Cyclooxygenase Inhibitors/pharmacology , DNA, Viral/genetics , DNA, Viral/immunology , Dinoprostone/immunology , Dinoprostone/metabolism , Disease Models, Animal , Female , Gene Expression Regulation , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/radiation effects , Indomethacin/pharmacology , Keratitis, Herpetic/genetics , Keratitis, Herpetic/therapy , Keratitis, Herpetic/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Prostaglandin-Endoperoxide Synthases/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type II/immunology , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Ultraviolet Rays , Virus Activation/drug effects , Virus Activation/radiation effects , Virus Latency/drug effects , Virus Latency/radiation effects
15.
Sci Rep ; 7(1): 13646, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057962

ABSTRACT

TNF has as detrimental role in multiple sclerosis (MS), however, anti-TNF medication is not working. Selective TNF/TNFR1 inhibition whilst sparing TNFR2 signaling reduces the pro-inflammatory effects of TNF but preserves the important neuroprotective signals via TNFR2. We previously reported the generation of a Nanobody-based selective inhibitor of human TNFR1, TROS that will be tested in experimental autoimmune encephalomyelitis (EAE). We specifically antagonized TNF/TNFR1 signaling using TROS in a murine model of MS, namely MOG35-55-induced EAE. Because TROS does not cross-react with mouse TNFR1, we generated mice expressing human TNFR1 in a mouse TNFR1-knockout background (hTNFR1 Tg), and we determined biodistribution of 99mTc-TROS and effectiveness of TROS in EAE in those mice. Biodistribution analysis demonstrated that intraperitoneally injected TROS is retained more in organs of hTNFR1 Tg mice compared to wild type mice. TROS was also detected in the cerebrospinal fluid (CSF) of hTNFR1 Tg mice. Prophylactic TROS administration significantly delayed disease onset and ameliorated its symptoms. Moreover, treatment initiated early after disease onset prevented further disease development. TROS reduced spinal cord inflammation and neuroinflammation, and preserved myelin and neurons. Collectively, our data illustrate that TNFR1 is a promising therapeutic target in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/prevention & control , Immunologic Factors/pharmacology , Neuroprotective Agents/pharmacology , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Single-Domain Antibodies/pharmacology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Immunologic Factors/pharmacokinetics , Male , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein , Neuroprotective Agents/pharmacokinetics , Peptide Fragments , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Technetium , Tumor Necrosis Factor-alpha/metabolism , Whole Body Imaging
16.
PLoS One ; 12(10): e0186628, 2017.
Article in English | MEDLINE | ID: mdl-29040328

ABSTRACT

SHARPIN (Shank-Associated RH Domain-Interacting Protein) is a component of the linear ubiquitin chain assembly complex (LUBAC), which enhances TNF-induced NF-κB activity. SHARPIN-deficient (Sharpincpdm/cpdm) mice display multi-organ inflammation and chronic proliferative dermatitis (cpdm) due to TNF-induced keratinocyte apoptosis. In cells, SHARPIN also inhibits integrins independently of LUBAC, but it has remained enigmatic whether elevated integrin activity levels in the dermis of Sharpincpdm/cpdm mice is due to increased integrin activity or is secondary to inflammation. In addition, the functional contribution of increased integrin activation to the Sharpincpdm/cpdm phenotype has not been investigated. Here, we find increased integrin activity in keratinocytes from Tnfr1-/- Sharpincpdm/cpdm double knockout mice, which do not display chronic inflammation or proliferative dermatitis, thus suggesting that SHARPIN indeed acts as an integrin inhibitor in vivo. In addition, we present evidence for a functional contribution of integrin activity to the Sharpincpdm/cpdm skin phenotype. Treatment with an integrin beta 1 function blocking antibody reduced epidermal hyperproliferation and epidermal thickness in Sharpincpdm/cpdm mice. Our data indicate that, while TNF-induced cell death triggers the chronic inflammation and proliferative dermatitis, absence of SHARPIN-dependent integrin inhibition exacerbates the epidermal hyperproliferation in Sharpincpdm/cpdm mice.


Subject(s)
Carrier Proteins/genetics , Dermatitis/drug therapy , Epidermis/drug effects , Integrin beta1/genetics , Keratinocytes/drug effects , Receptors, Tumor Necrosis Factor, Type I/genetics , Animals , Antibodies, Neutralizing/pharmacology , Apoptosis , Carrier Proteins/immunology , Cell Proliferation , Chronic Disease , Dermatitis/genetics , Dermatitis/immunology , Dermatitis/pathology , Epidermis/immunology , Epidermis/pathology , Female , Gene Deletion , Gene Expression Regulation , Inflammation , Integrin beta1/immunology , Intracellular Signaling Peptides and Proteins , Keratinocytes/immunology , Keratinocytes/pathology , Male , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/immunology , Phenotype , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/immunology , Signal Transduction , Ubiquitin/genetics , Ubiquitin/immunology
17.
Infect Immun ; 85(11)2017 11.
Article in English | MEDLINE | ID: mdl-28808159

ABSTRACT

The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.


Subject(s)
Brucellosis/immunology , Host-Pathogen Interactions , Interferon-gamma/immunology , Macrophages/immunology , Receptors, Interferon/immunology , Spleen/immunology , Animals , Anti-Bacterial Agents/pharmacology , B-Lymphocytes/immunology , B-Lymphocytes/microbiology , Brucella abortus/drug effects , Brucella abortus/immunology , Brucella abortus/pathogenicity , Brucella melitensis/drug effects , Brucella melitensis/immunology , Brucella melitensis/pathogenicity , Brucella suis/drug effects , Brucella suis/immunology , Brucella suis/pathogenicity , Brucellosis/drug therapy , Brucellosis/genetics , Brucellosis/microbiology , Chemokine CCL19/genetics , Chemokine CCL19/immunology , Chemokine CCL21/genetics , Chemokine CCL21/immunology , Chemokine CXCL13/genetics , Chemokine CXCL13/immunology , Chronic Disease , Gene Expression Regulation , Interferon-gamma/genetics , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Interferon/deficiency , Receptors, Interferon/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Rifampin/pharmacology , Signal Transduction , Spleen/microbiology , Streptomycin/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/microbiology , Interferon gamma Receptor
18.
J Endocrinol ; 234(3): 269-278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28676525

ABSTRACT

Endometriosis is an inflammatory disease depending on estradiol, with TNF-α being one of the most representative cytokines involved in its pathogenesis. TNF-α acts through its bond to the TNFRp55 and TNFRp75 membrane receptors. The aim of this study was to analyze the effect of the TNFRp55 deficiency on the development of ectopic endometriotic-like lesions. Endometriosis was induced surgically in mice of the C57BL/6 strain, wild type (WT) and TNFRp55-/- (KO). After four weeks, the peritoneal fluid was collected and the lesions were counted, measured with a caliper, removed, weighed, fixed or kept at -80°C. We evaluated the cell proliferation by proliferating cell nuclear antigen (PCNA) immunohistochemistry and apoptosis by TUNEL technique in the ectopic lesions. MMP-2 and MMP-9 activities (factors involved in invasiveness) were measured by zymography in the peritoneal fluid; estradiol and progesterone levels were measured by radioimmunoassay in the lesions and in the peritoneal fluid. We found that in KO animals the mean number of lesions established per mouse, the lesion volume, weight and cell proliferation increased and apoptosis decreased. In addition, the activity of MMP-2 and the estradiol level increased, whereas the progesterone level was not significantly modified. In conclusion, the deficiency of TNFRp55 promoted the establishment and development of endometriosis through an increase in the lesion size and high levels of estradiol which correlate with an increase in the MMP-2 activity. This is evidence of the possible association of the deregulation of the TNFRp55 expression and the survival of the endometriotic tissue in ectopic sites.


Subject(s)
Endometriosis/metabolism , Endometrium/growth & development , Receptors, Tumor Necrosis Factor, Type I/deficiency , Tumor Necrosis Factor Decoy Receptors/deficiency , Animals , Cell Proliferation , Disease Models, Animal , Endometriosis/genetics , Endometriosis/pathology , Endometriosis/physiopathology , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Tumor Necrosis Factor Decoy Receptors/genetics
19.
Am J Pathol ; 187(6): 1327-1342, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28412300

ABSTRACT

Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection.


Subject(s)
Burns, Chemical/metabolism , Eye Burns/metabolism , Retina/injuries , Alkalies , Animals , Apoptosis/drug effects , Apoptosis/physiology , Burns, Chemical/drug therapy , Burns, Chemical/etiology , Burns, Chemical/pathology , Cornea/immunology , Corneal Injuries/drug therapy , Corneal Injuries/etiology , Corneal Injuries/metabolism , Corneal Injuries/pathology , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Eye Burns/drug therapy , Eye Burns/etiology , Eye Burns/pathology , Hydrogen-Ion Concentration , Infliximab/pharmacology , Infliximab/therapeutic use , Mice, Inbred C57BL , Mice, Knockout , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidation-Reduction , Rabbits , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/genetics , Retina/immunology , Retina/metabolism , Retina/pathology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Sodium Hydroxide , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Uvea/metabolism , Uveitis, Anterior/chemically induced , Uveitis, Anterior/metabolism , Uveitis, Anterior/pathology , Uveitis, Anterior/prevention & control
20.
Cell Death Differ ; 24(3): 481-491, 2017 03.
Article in English | MEDLINE | ID: mdl-28106882

ABSTRACT

Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-γ (IFNγ) synergises with SMs to kill cancer cells independently of TNF- and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9 HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNγ/SM-induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were resistant to IFNγ/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNγ/SM-induced cell death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as chemotherapeutic agents.


Subject(s)
Apoptosis/drug effects , Caspase 10/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Interferon-gamma/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , CRISPR-Cas Systems/genetics , Caspase 10/chemistry , Caspase 10/genetics , Caspase 8/chemistry , Caspase 8/genetics , Caspase 8/metabolism , Caspase Inhibitors/pharmacology , Cell Line , Cytokine TWEAK/pharmacology , Drug Synergism , HT29 Cells , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mice , Mice, Knockout , Pentanoic Acids/pharmacology , Protein Kinases/deficiency , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL