Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 500
1.
J Neurosci Res ; 102(4): e25333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656542

Novelty influences hippocampal-dependent memory through metaplasticity. Mismatch novelty detection activates the human hippocampal CA1 area and enhances rat hippocampal-dependent learning and exploration. Remarkably, mismatch novelty training (NT) also enhances rodent hippocampal synaptic plasticity while inhibition of VIP interneurons promotes rodent exploration. Since VIP, acting on VPAC1 receptors (Rs), restrains hippocampal LTP and depotentiation by modulating disinhibition, we now investigated the impact of NT on VPAC1 modulation of hippocampal synaptic plasticity in male Wistar rats. NT enhanced both CA1 hippocampal LTP and depotentiation unlike exploring an empty holeboard (HT) or a fixed configuration of objects (FT). Blocking VIP VPAC1Rs with PG 97269 (100 nM) enhanced both LTP and depotentiation in naïve animals, but this effect was less effective in NT rats. Altered endogenous VIP modulation of LTP was absent in animals exposed to the empty environment (HT). HT and FT animals showed mildly enhanced synaptic VPAC1R levels, but neither VIP nor VPAC1R levels were altered in NT animals. Conversely, NT enhanced the GluA1/GluA2 AMPAR ratio and gephyrin synaptic content but not PSD-95 excitatory synaptic marker. In conclusion, NT influences hippocampal synaptic plasticity by reshaping brain circuits modulating disinhibition and its control by VIP-expressing hippocampal interneurons while upregulation of VIP VPAC1Rs is associated with the maintenance of VIP control of LTP in FT and HT animals. This suggests VIP receptor ligands may be relevant to co-adjuvate cognitive recovery therapies in aging or epilepsy, where LTP/LTD imbalance occurs.


Exploratory Behavior , Hippocampus , Neuronal Plasticity , Receptors, Vasoactive Intestinal Polypeptide, Type I , Vasoactive Intestinal Peptide , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Exploratory Behavior/physiology , Hippocampus/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Rats, Wistar , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/metabolism
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38069018

The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.


Hemostatics , Pituitary Adenylate Cyclase-Activating Polypeptide , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Hemostatics/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
3.
Int J Mol Sci ; 24(20)2023 Oct 12.
Article En | MEDLINE | ID: mdl-37894782

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring neuropeptide found in both the central and peripheral nervous systems of vertebrates. Recent studies have revealed the presence of PACAP and its corresponding receptors, namely, the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R), vasoactive intestinal peptide receptor 1 (VIPR1), and vasoactive intestinal peptide receptor 2 (VIPR2), in various structures implicated in migraine pathophysiology, including sensory trigeminal neurons. Human studies have demonstrated that when infused, PACAP can cause dilation of cranial vessels and result in delayed migraine-like attacks. In light of this, we present a novel ELISA assay that has been validated for quantifying PACAP in tissue extracts and human plasma. Using two well characterized antibodies specifically targeting PACAP, we successfully developed a sandwich ELISA assay, capable of detecting and accurately quantifying PACAP without any cross-reactivity to closely related peptides. The quantification range was between 5.2 pmol/L and 400 pmol/L. The recovery in plasma ranged from 98.2% to 100%. The increasing evidence pointing to the crucial role of PACAP in migraine pathophysiology necessitates the availability of tools capable of detecting changes in the circulatory levels of PACAP and its potential application as a reliable biomarker.


Migraine Disorders , Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Humans , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Vasoactive Intestinal Polypeptide, Type I , Receptors, Vasoactive Intestinal Peptide, Type II , Mammals , Enzyme-Linked Immunosorbent Assay , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide
4.
J Mol Neurosci ; 73(9-10): 724-737, 2023 Oct.
Article En | MEDLINE | ID: mdl-37646964

Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.


Receptors, Pituitary Hormone , Spinal Cord Injuries , Female , Rats , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rats, Sprague-Dawley , Receptors, Pituitary Hormone/genetics , Receptors, Pituitary Hormone/metabolism , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Spinal Cord Injuries/metabolism , Brain/metabolism
5.
Int J Mol Sci ; 24(13)2023 Jul 05.
Article En | MEDLINE | ID: mdl-37446298

Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.


Lupus Erythematosus, Systemic , Vasoactive Intestinal Peptide , Mice , Animals , Vasoactive Intestinal Peptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I , Receptors, Vasoactive Intestinal Peptide, Type II
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166593, 2023 02.
Article En | MEDLINE | ID: mdl-36328148

Pregnancy outcome relies on the maintenance of immune and metabolic homeostasis at the maternal fetal interface. Maternal and perinatal morbidity and mortality is associated with impaired placental development. Multiple regulatory effects of the endogenous-produced vasoactive intestinal peptide (VIP) on vascular, metabolic and immune functions at the maternal-fetal interface have been reported. Here we studied the involvement of the two primary high affinity receptors for VIP (VPAC1 and VPAC2) on maternal immune response, placental homeostasis and pregnancy outcome. Targeted disruption of each receptor gene led to altered placental structure, vascular and trophoblast functional markers and shaped the functional profiles of macrophages and neutrophils towards a proinflammatory state. Several changes in pregnant mice were receptor specific: ROS production elicited by VIP on neutrophils was selectively dependent on the presence of VPAC1 whereas apoptosis rate was associated with the VPAC2 deletion. In peritoneal macrophages from pregnant mice, levels of MHC-II, TLR2, and IL-10 were selectively altered in VPAC2 receptor-deficient mice, whereas IL-6 gene expression was reduced only in mice lacking VPAC1 receptors. Additionally, MMP9 mRNA in isolated TGCs was reduced in VPAC2 receptor deleted mice, while the percentage of IL-12 cells in post-phagocytosis macrophage cultures was selectively reduced in VPAC2 receptor deficient mice. The results indicate that manipulation of VPAC1 and VPAC2 receptor affects immune, vascular and metabolic environment at the maternal fetal interface. These mouse models offer new approaches to study pregnancy complications adding new perspectives to the development of VPAC receptor-selective drugs.


Pregnancy Complications , Pregnancy Outcome , Receptors, Vasoactive Intestinal Peptide, Type II , Trophoblasts , Animals , Female , Mice , Pregnancy , Placenta/metabolism , Pregnancy Outcome/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Trophoblasts/metabolism , Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Gene Deletion , Pregnancy Complications/genetics , Pregnancy Complications/immunology
7.
J Transl Med ; 20(1): 379, 2022 08 29.
Article En | MEDLINE | ID: mdl-36038907

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most malignant tumors to threaten human life, and the survival rate remains low due to delayed diagnosis. Meanwhile, lncRNAs have great potential for application in tumor prognosis, therefore relevant research in hepatocellular carcinoma is indispensable. METHODS: Based on the EZH2 expression, the differentially expressed lncRNAs DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) were identified in hepatocellular carcinoma by using the TCGA database. Bioinformatics technology was utilized to determine the effect of key genes in HCC progression. The methylation and immune infiltration analyses were performed to explore the underlying function of hub genes. Finally, cellular function experiments were performed to investigate the association between identified genes and biological phenotypes in HCC. RESULTS: lncRNA-AC079061.1, hsa-miR-765, and VIPR1 were identified as independent factors that affect the prognosis of hepatocellular carcinoma. The immune infiltration analyses revealed that lncRNA-AC079061.1 can alter the immune microenvironment and thus inhibit the development of HCC by regulating the expression of an immune-related gene (VIPR1). Methylation analyses demonstrated that VIPR1 expression is negatively related to the methylation level in HCC. Experimental results suggested that lncRNA-AC079061.1 and VIPR1 were frequently downregulated in HCC cells, while hsa-miR-765 was significantly upregulated. Moreover, the lncRNA-AC079061.1/VIPR1 axis suppressed the proliferation and invasion of HCC cells. CONCLUSION: The present study identified the lncRNA-AC079061.1/VIPR1 axis as a novel biomarker that inhibited the proliferation and invasion of hepatocellular carcinoma, affecting the ultimate disease outcome.


Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Carcinoma, Hepatocellular/pathology , Computational Biology , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Tumor Microenvironment
8.
Int J Mol Sci ; 23(15)2022 Aug 02.
Article En | MEDLINE | ID: mdl-35955723

Few studies have considered immune-mediated inflammatory disorders (IMID) together, which is necessary to adequately understand them given they share common mechanisms. Our goal was to investigate the expression of vasoactive intestinal peptide (VIP) and its receptors VPAC1 and VPAC2 in selected IMID, analyze the effect of biological therapies on them, and identify miRNA signatures associated with their expression. Serum VIP levels and mRNA of VPAC and miRNA expression in peripheral blood mononuclear cells were analyzed from 52 patients with psoriasis, rheumatoid arthritis, Graves' disease, or spondyloarthritis and from 38 healthy subjects. IMID patients showed higher levels of VIP and increased expression of VPAC2 compared to controls (p < 0.0001 and p < 0.0192, respectively). Receiver operating characteristic curve analysis showed that the levels of VIP or VPAC2 expression were adequate discriminators capable of identifying IMID. Treatment of IMID patients with anti-TNFα and anti-IL12/23 significantly affected serum VIP levels. We identified miRNA signatures associated with levels of serum VIP and VPAC2 expression, which correlated with IMID diagnosis of the patients. The results indicate that the expression of VIP/VPAC2 is able of identify IMIDs and open up a line of research based on the association between the VIP/VPAC axis and miRNA signatures in immune-mediated diseases.


Arthritis, Rheumatoid , MicroRNAs , Arthritis, Rheumatoid/metabolism , Humans , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , RNA, Messenger , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Vasoactive Intestinal Peptide/genetics , Vasoactive Intestinal Peptide/metabolism
9.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article En | MEDLINE | ID: mdl-35897648

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Amino Acid Sequence , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Signal Transduction , Vasoactive Intestinal Peptide/metabolism
10.
Int J Biol Sci ; 18(11): 4341-4356, 2022.
Article En | MEDLINE | ID: mdl-35864952

Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.


Carcinoma, Hepatocellular , Liver Neoplasms , Arginine/therapeutic use , Argininosuccinate Synthase/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Humans , Liver Neoplasms/metabolism , Pyrimidines/therapeutic use , Receptors, Vasoactive Intestinal Polypeptide, Type I , Urea/therapeutic use
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 957-965, 2022 Jul 20.
Article Zh | MEDLINE | ID: mdl-35869757

OBJECTIVE: To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC). METHODS: We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice. RESULTS: Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05). CONCLUSION: VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Luciferases/genetics , Methylation , Mice , Mice, Nude , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism
12.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Article En | MEDLINE | ID: mdl-35322471

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


COVID-19 , Vasoactive Intestinal Peptide , Humans , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , RNA, Viral , Receptors, Vasoactive Intestinal Polypeptide, Type I , SARS-CoV-2 , Transcription Factors/metabolism , Vasoactive Intestinal Peptide/pharmacology
13.
Br J Pharmacol ; 179(3): 435-453, 2022 Feb.
Article En | MEDLINE | ID: mdl-34612509

BACKGROUND AND PURPOSE: The pituitary adenylate cyclase-activating peptide (PACAP) family is of clinical interest for the treatment of migraine. These peptides activate three different PACAP-responsive class B G protein-coupled receptors: the PAC1 , VPAC1 and VPAC2 receptors. The PAC1 receptor may be alternatively spliced, generating variants that can differ in their pharmacological or signalling profiles. To inform drug discovery efforts targeting migraine, we need to better understand how the different PACAP-responsive receptors signal and how effectively these responses can be blocked by antagonists. EXPERIMENTAL APPROACH: The signalling profiles of the human PAC1n , PAC1s , VPAC1 and VPAC2 receptors were examined in transfected Cos7 cells for cAMP, IP1 , pAkt, pERK and pCREB. Biased signalling was then quantified. The ability of antagonists to block PACAP-38, PACAP-27 or VIP stimulated cAMP accumulation at PACAP-responsive receptors was also determined. KEY RESULTS: PACAP-responsive receptors exhibited varied pharmacological profiles but activated signalling in a similar manner. The PAC1n and PAC1s receptors displayed distinct pharmacology. At the PAC1s receptor, VIP and PHM were more potent than at the PAC1n receptor. PACAP-responsive receptors displayed agonist-dependent antagonism where PACAP-38 was less effectively antagonised compared to PACAP-27 and VIP. CONCLUSIONS AND IMPLICATIONS: The distinct pharmacological profile displayed by the PAC1s receptor suggests that it can act as a dual receptor for VIP and PACAP. Furthermore, the effectiveness of blocking a signalling pathway can be influenced by which endogenous PACAP family agonist is present. These effects have potential implications for the development and effectiveness of drugs targeting the PACAP system. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Migraine Disorders , Pituitary Adenylate Cyclase-Activating Polypeptide , Drug Discovery , Humans , Migraine Disorders/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Polypeptide, Type I , Vasoactive Intestinal Peptide
14.
Article Zh | WPRIM | ID: wpr-941028

OBJECTIVE@#To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC).@*METHODS@#We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice.@*RESULTS@#Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05).@*CONCLUSION@#VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Luciferases/genetics , Methylation , Mice, Nude , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Transcription Factor AP-2/metabolism
15.
Front Endocrinol (Lausanne) ; 12: 711906, 2021.
Article En | MEDLINE | ID: mdl-34867774

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two neuropeptides that contribute to the regulation of intestinal motility and secretion, exocrine and endocrine secretions, and homeostasis of the immune system. Their biological effects are mediated by three receptors named VPAC1, VPAC2 and PAC1 that belong to class B GPCRs. VIP and PACAP receptors have been identified as potential therapeutic targets for the treatment of chronic inflammation, neurodegenerative diseases and cancer. However, pharmacological use of endogenous ligands for these receptors is limited by their lack of specificity (PACAP binds with high affinity to VPAC1, VPAC2 and PAC1 receptors while VIP recognizes both VPAC1 and VPAC2 receptors), their poor oral bioavailability (VIP and PACAP are 27- to 38-amino acid peptides) and their short half-life. Therefore, the development of non-peptidic small molecules or specific stabilized peptidic ligands is of high interest. Structural similarities between VIP and PACAP receptors are major causes of difficulties in the design of efficient and selective compounds that could be used as therapeutics. In this study we performed structure-based virtual screening against the subset of the ZINC15 drug library. This drug repositioning screen provided new applications for a known drug: ticagrelor, a P2Y12 purinergic receptor antagonist. Ticagrelor inhibits both VPAC1 and VPAC2 receptors which was confirmed in VIP-binding and calcium mobilization assays. A following analysis of detailed ticagrelor binding modes to all three VIP and PACAP receptors with molecular dynamics revealed its allosteric mechanism of action. Using a validated homology model of inactive VPAC1 and a recently released cryo-EM structure of active VPAC1 we described how ticagrelor could block conformational changes in the region of 'tyrosine toggle switch' required for the receptor activation. We also discuss possible modifications of ticagrelor comparing other P2Y12 antagonist - cangrelor, closely related to ticagrelor but not active for VPAC1/VPAC2. This comparison with inactive cangrelor could lead to further improvement of the ticagrelor activity and selectivity for VIP and PACAP receptor sub-types.


Allosteric Regulation/drug effects , Drug Repositioning/methods , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Vasoactive Intestinal Peptide, Type II/drug effects , Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects , Ticagrelor/pharmacology , Binding Sites , Computer Simulation , Drug Evaluation, Preclinical/methods , Molecular Structure , Protein Conformation/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/chemistry , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Ticagrelor/chemistry
16.
Molecules ; 26(16)2021 Aug 14.
Article En | MEDLINE | ID: mdl-34443519

The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1-23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1-23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1-23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor.


Glycopeptides/chemistry , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Peptide Fragments/chemistry , Brain/drug effects , Brain/metabolism , Glycopeptides/chemical synthesis , Glycopeptides/pharmacology , Humans , Inflammation/pathology , Neurodegenerative Diseases/pathology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Peptide Fragments/chemical synthesis , Peptide Fragments/pharmacology , Peptide Hormones/chemical synthesis , Peptide Hormones/chemistry , Peptide Hormones/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Vasoactive Intestinal Peptide, Type II/antagonists & inhibitors , Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects
17.
Bioorg Med Chem Lett ; 48: 128241, 2021 09 15.
Article En | MEDLINE | ID: mdl-34217827

Receptor-specific peptides labeled with positron emitters play an important role in the clinical imaging of several malignancies by positron emission tomography (PET). Radiolabeled heterobivalent bispecific peptidic ligands (HBPLs) can target more than one receptor type and by this - besides exhibiting other advantages - increase tumor imaging sensitivity. In the present study, we show the initial in vivo evaluation of the most potent heterobivalent gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC1R)-bispecific radiotracer and determined its tumor visualization potential via PET/CT imaging. For this purpose, the most potent described HBPL was synthesized together with its partly scrambled heterobivalent monospecific homologs and its monovalent counterparts. The agents were efficiently labeled with 68Ga3+ and evaluated in an initial PET/CT tumor imaging study in a human prostate carcinoma (PCa) xenograft rat tumor model established for this purpose. None of the three 68Ga-HBPLs enabled a clear tumor visualization and a considerably higher involvement in receptor-mediated uptake was found for the GRPR-binding part of the molecule than for the VPAC1R-binding one. Of the monovalent radiotracers, only [68Ga]Ga-NODA-GA-PESIN could efficiently delineate the tumor, confirming the results. Thus, this work sets the direction for future developments in the field of GRPR- and VPAC1R-bispecific radioligands, which should be based on other VPAC1R-specific peptides than PACAP-27.


Peptides/chemistry , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnostic imaging , Receptors, Bombesin/chemistry , Receptors, Vasoactive Intestinal Polypeptide, Type I/chemistry , Humans , Male , Molecular Structure
18.
Neurogastroenterol Motil ; 33(11): e14130, 2021 11.
Article En | MEDLINE | ID: mdl-33797165

BACKGROUND: Enteric glial cells (EGC) and mast cells (MC) are intimately associated with gastrointestinal physiological functions. We aimed to investigate EGC-MC interaction in irritable bowel syndrome (IBS), a gut-brain disorder linked to increased intestinal permeability, and MC. METHODS: Parallel approaches were used to quantify EGC markers in colonic biopsies from healthy controls (HC) and patients with IBS. Data were correlated with MC, vasoactive intestinal polypeptide (VIP) and VIP receptors (VPAC1/VPAC2) expressions, and bacterial translocation through biopsies mounted in Ussing chambers. In addition, we investigated the effects of EGC mediators on colonic permeability and the pharmacological-induced responses of EGC and MC cell lines. KEY RESULTS: Immunofluorescence of IBS colonic mucosa, as well as Western blotting and ELISA of IBS biopsy lysates, revealed increased glial fibrillary intermediate filament (GFAP) expression, indicating EGC activation. Mucosal GFAP correlated with increased MC and VPAC1+ MC numbers and decreased VIP+ MC, which seemed to control bacterial translocation in HC. In the contrary, EGC activation in IBS correlated with less MC and VPAC1+ MC numbers, and more VIP+ MC. In vitro, MC and EGC cell lines showed intracellular calcium responses to each other's mediators. Furthermore, EGC mediators prevented VIP-induced MC degranulation, while MC mediators induced a reactive EGC phenotype. In Ussing chambers, EGC mediators decreased paracellular passage through healthy colonic biopsies. CONCLUSIONS & INFERENCES: Findings suggest the involvement of EGC and MC in the control of barrier function in the human colon and indicate a potential EGC-MC interaction that seems altered in IBS, with detrimental consequences to colonic permeability. Altogether, results suggest that imbalanced EGC-MC communication contributes to the pathophysiology of IBS.


Colon/metabolism , Enteric Nervous System/metabolism , Irritable Bowel Syndrome/metabolism , Mast Cells/metabolism , Neuroglia/metabolism , Adult , Female , Humans , Intestinal Mucosa/metabolism , Middle Aged , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Young Adult
19.
Neurobiol Learn Mem ; 180: 107423, 2021 04.
Article En | MEDLINE | ID: mdl-33705861

Social recognition memory (SRM) forms the basis of social relationships of animals. It is essential for social interaction and adaptive behavior, reproduction and species survival. Evidence demonstrates that social deficits of psychiatric disorders such as autism and schizophrenia are caused by alterations in SRM processing by the hippocampus and amygdala. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptors PAC1, VPAC1 and VPAC2 are highly expressed in these regions. PACAP is a pleiotropic neuropeptide that modulates synaptic function and plasticity and is thought to be involved in social behavior. PACAP signaling also stimulates the nitric oxide (NO) production and targets outcomes to synapses. In the present work, we investigate the effect of the infusion of PACAP-38 (endogenous neuropeptide and potent stimulator of adenylyl cyclase), PACAP 6-38 (PAC1/VPAC2 receptors antagonist) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP, NO donor) in the CA1 region of the hippocampus and in the basolateral amygdala (BLA) on the consolidation of SRM. For this, male Wistar rats with cannulae implanted in CA1 or in BLA were subjected to a social discrimination paradigm, which is based on the natural ability of rodents to investigate unfamiliar conspecifics more than familiar one. In the sample phase (acquisition), animals were exposed to a juvenile conspecific for 1 h. Immediately, 60 or 150 min after, animals received one of different pharmacological treatments. Twenty-four hours later, they were submitted to a 5 min retention test in the presence of the previously presented juvenile (familiar) and a novel juvenile. Animals that received infusions of PACAP 6-38 (40 pg/side) into CA1 immediately after the sample phase or into BLA immediately or 60 min after the sample phase were unable to recognize the familiar juvenile during the retention test. This impairment was abolished by the coinfusion of PACAP 6-38 plus SNAP (5 µg/side). These results show that the blockade of PACAP/PAC1/VPAC2 signaling in the CA1 and BLA during a restricted post-acquisition time window impairs the consolidation of SRM and that the SNAP is able to abolish this deficit. Findings like this could potentially be used in the future to influence studies of psychiatric disorders involving social behavior.


Basolateral Nuclear Complex/drug effects , CA1 Region, Hippocampal/drug effects , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Recognition, Psychology/drug effects , Social Perception/drug effects , Animals , Basolateral Nuclear Complex/metabolism , CA1 Region, Hippocampal/metabolism , Memory Consolidation/drug effects , Nitric Oxide Donors/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Rats , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Vasoactive Intestinal Peptide, Type II/drug effects , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/drug effects , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Recognition, Psychology/physiology , S-Nitroso-N-Acetylpenicillamine/pharmacology
20.
Curr Opin Endocrinol Diabetes Obes ; 28(2): 206-213, 2021 04 01.
Article En | MEDLINE | ID: mdl-33481421

PURPOSE OF REVIEW: To discuss recent advances of vasoactive intestinal peptide/pituitary adenylate cyclase-activating polypeptide (VIP/PACAP) receptors in the selected central nervous system (CNS) and inflammatory disorders. RECENT FINDINGS: Recent studies provide evidence that PACAP plays an important role in a number of CNS disorders, particularly the pathogenesis of headaches (migraine, etc.) as well as posttraumatic stress disorder and drug/alcohol/smoking addiction. VIP has important therapeutic effects in a number of autoimmune/inflammatory disorder such as rheumatoid arthritis. In some cases, these insights have advanced to therapeutic trials. SUMMARY: Recent insights from studies of VIP/PACAP and their receptors in both CNS disorders (migraine, posttraumatic stress disorder, addiction [drugs, alcohol, smoking]) and inflammatory disorders [such as rheumatoid arthritis] are suggesting new treatment approaches. The elucidation of the importance of VIP/PACAP system in these disorders combined recent development of specific drugs acting on this system (i.e., monoclonal VIP/PACAP antibodies) will likely lead to importance novel treatment approaches in these diseases.


Pituitary Adenylate Cyclase-Activating Polypeptide , Vasoactive Intestinal Peptide , Biology , Central Nervous System , Humans , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Vasoactive Intestinal Peptide, Type II , Receptors, Vasoactive Intestinal Polypeptide, Type I
...