Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.714
Filter
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125971

ABSTRACT

We have previously demonstrated that the vasopressin type 2 receptor (AVPR2) antagonist tolvaptan reduces cell proliferation and invasion and triggers apoptosis in different human cancer cell lines. To study this effect in vivo, a xenograft model of small cell lung cancer was developed in Fox1nu/nu nude mice through the subcutaneous inoculation of H69 cells, which express AVPR2. One group of mice (n = 5) was treated with tolvaptan for 60 days, whereas one group (n = 5) served as the control. A reduced growth was observed in the tolvaptan group in which the mean tumor volume was significantly smaller on day 60 compared to the control group. In the latter group, a significantly lower survival was observed. The analysis of excised tumors revealed that tolvaptan effectively inhibited the cAMP/PKA and PI3K/AKT signaling pathways. The expression of the proliferative marker proliferating cell nuclear antigen (PCNA) was significantly lower in tumors excised from tolvaptan-treated mice, whereas the expression levels of the apoptotic marker caspase-3 were higher than those in control animals. Furthermore, tumor vascularization was significantly lower in the tolvaptan group. Overall, these findings suggest that tolvaptan counteracts tumor progression in vivo and, if confirmed, might indicate a possible role of this molecule as an adjuvant in anticancer strategies.


Subject(s)
Antidiuretic Hormone Receptor Antagonists , Cell Proliferation , Lung Neoplasms , Mice, Nude , Receptors, Vasopressin , Small Cell Lung Carcinoma , Tolvaptan , Xenograft Model Antitumor Assays , Animals , Tolvaptan/pharmacology , Tolvaptan/therapeutic use , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Receptors, Vasopressin/metabolism , Apoptosis/drug effects , Signal Transduction/drug effects
2.
Eur J Pharmacol ; 981: 176904, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39153649

ABSTRACT

Urolithiasis, characterized by the formation of solid crystalline structures within the urinary tract, presents a significant global health burden with high recurrence rates and limited treatment efficacy. Recent research has identified various protein receptors and enzymes implicated in the pathogenesis of urolithiasis, offering potential targets for therapeutic intervention. Protein receptors such as the calcium-sensing receptor and vasopressin V2 receptor play crucial roles in regulating urinary calcium excretion and water reabsorption, respectively, influencing stone formation. Additionally, modulation of receptors like the angiotensin II receptor and aldosterone receptor can impact renal function and electrolyte balance, contributing to stone prevention. Furthermore, enzymes such as urease inhibitors and xanthine oxidase inhibitors offer targeted approaches to prevent the formation of specific stone types. This review discusses the potential of targeting these receptors and enzymes for the treatment of urolithiasis, exploring associated drugs and their mechanisms of action. Despite promising avenues for personalized and precision medicine approaches, challenges such as the need for robust clinical evidence and ensuring cost-effectiveness must be addressed for the translation of these interventions into clinical practice. By overcoming these challenges, receptor-targeted therapies and enzyme inhibitors hold promise for revolutionizing the management of urolithiasis and reducing its global burden.


Subject(s)
Molecular Targeted Therapy , Precision Medicine , Urolithiasis , Humans , Urolithiasis/drug therapy , Urolithiasis/metabolism , Precision Medicine/methods , Animals , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/pharmacology , Urease/antagonists & inhibitors , Urease/metabolism , Receptors, Calcium-Sensing/metabolism , Receptors, Calcium-Sensing/antagonists & inhibitors , Xanthine Oxidase/antagonists & inhibitors , Xanthine Oxidase/metabolism , Receptors, Vasopressin/metabolism
3.
Neuropharmacology ; 258: 110068, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38996832

ABSTRACT

Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.


Subject(s)
Animals, Newborn , Arginine Vasopressin , Dorsal Raphe Nucleus , Serotonergic Neurons , Animals , Arginine Vasopressin/metabolism , Arginine Vasopressin/pharmacology , Female , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Male , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/physiology , Rats , Action Potentials/drug effects , Action Potentials/physiology , Rats, Sprague-Dawley , Serotonin/metabolism , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, Vasopressin/metabolism , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
4.
Am J Physiol Renal Physiol ; 327(4): F591-F598, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39024358

ABSTRACT

Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified. Here, we use large-scale Bayesian data integration to predict the responsible kinases for 51 phosphoproteomically identified vasopressin-regulated phosphorylation sites in the renal collecting duct. To do this, we applied Bayes' rule to rank the 515 known mammalian protein kinases for each site. Bayes' rule was applied recursively to integrate each of the seven independent datasets, each time using the posterior probability vector of a given step as the prior probability vector of the next step. In total, 30 of the 33 phosphorylation sites that increase with vasopressin were predicted to be phosphorylated by protein kinase A (PKA) catalytic subunit-α, consistent with prior studies implicating PKA in vasopressin signaling. Eighteen of the vasopressin-regulated phosphorylation sites were decreased in response to vasopressin and all but three of these sites were predicted to be targets of extracellular signal-regulated kinases, ERK1 and ERK2. This result implies that ERK1 and ERK2 are inhibited in response to vasopressin V2 receptor occupation, secondary to PKA activation. The six phosphorylation sites not predicted to be phosphorylated by PKA or ERK1/2 are potential targets of other protein kinases previously implicated in aquaporin-2 regulation, including cyclin-dependent kinase 18 (CDK18), calmodulin-dependent kinase 2δ (CAMK2D), AMP-activated kinase catalytic subunit-α-1 (PRKAA1) and CDC42 binding protein kinase ß (CDC42BPB).NEW & NOTEWORTHY Vasopressin regulates water transport in the renal collecting duct in part through phosphorylation or dephosphorylation of proteins that regulate aquaporin-2. Prior studies have identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. This study uses Bayesian data integration techniques to combine information from multiple prior proteomics and transcriptomics studies to predict the protein kinases that phosphorylate the 51 sites. Most of the regulated sites were predicted to be phosphorylated by protein kinase A or ERK1/ERK2.


Subject(s)
Aquaporin 2 , Bayes Theorem , Kidney Tubules, Collecting , Vasopressins , Phosphorylation , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Animals , Vasopressins/pharmacology , Vasopressins/metabolism , Aquaporin 2/metabolism , Aquaporin 2/genetics , Signal Transduction , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Proteomics/methods , Protein Kinases/metabolism , Protein Kinases/genetics
5.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972875

ABSTRACT

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Subject(s)
Endosomes , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Protein Transport , Receptors, Vasopressin , beta-Arrestins , Humans , beta-Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Signal Transduction
6.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000398

ABSTRACT

The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.


Subject(s)
Immunohistochemistry , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Foxes/genetics , Foxes/metabolism , Mice , Wolves/genetics , Wolves/metabolism , Dogs , Canidae/genetics
7.
Hypertens Res ; 47(9): 2393-2404, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39039283

ABSTRACT

Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).


Subject(s)
Baroreflex , Blood Pressure , Heart Rate , Vasopressins , Animals , Female , Pregnancy , Rats , Autonomic Nervous System/physiopathology , Baroreflex/physiology , Blood Pressure/physiology , Heart Rate/physiology , Hypertension, Pregnancy-Induced/physiopathology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/physiopathology , Rats, Inbred SHR , Rats, Wistar , Receptors, Vasopressin/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/blood , Vasopressins/metabolism
8.
Structure ; 32(9): 1358-1366.e3, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38889722

ABSTRACT

Arrestins interact with phosphorylated G protein-coupled receptors (GPCRs) and regulate the homologous desensitization and internalization of GPCRs. The gate loop in arrestins is a critical region for both stabilization of the basal state and interaction with phosphorylated receptors. We investigated the roles of specific residues in the gate loop (K292, K294, and H295) using ß-arrestin-1 and phosphorylated C-tail peptide of vasopressin receptor type 2 (V2Rpp) as a model system. We measured the binding affinity of V2Rpp and analyzed conformational dynamics of ß-arrestin-1. Our results suggest that K294 plays a critical role in the interaction with V2Rpp without influencing the overall conformation of the V2Rpp-bound state. The residues K292 and H295 contribute to the stability of the polar core in the basal state and form a specific conformation of the finger loop in the V2Rpp-bound state.


Subject(s)
Protein Binding , Receptors, Vasopressin , beta-Arrestin 1 , Humans , beta-Arrestin 1/metabolism , beta-Arrestin 1/chemistry , Binding Sites , Models, Molecular , Molecular Dynamics Simulation , Phosphorylation , Protein Conformation , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/chemistry
9.
Mol Cell Neurosci ; 130: 103951, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942186

ABSTRACT

The axons containing arginine vasopressin (AVP) from the hypothalamus innervate a variety of structures including the cerebral cortex, thalamus, hippocampus and amygdala. A plethora amount of evidence indicates that activation of the V1a subtype of the vasopressin receptors facilitates anxiety-like and fear responses. As an essential structure involved in fear and anxiety responses, the amygdala, especially the lateral nucleus of amygdala (LA), receives glutamatergic innervations from the auditory cortex and auditory thalamus where high density of V1a receptors have been detected. However, the roles and mechanisms of AVP in these two important areas have not been determined, which prevents the understanding of the mechanisms whereby V1a activation augments anxiety and fear responses. Here, we used coronal brain slices and studied the effects of AVP on neuronal activities of the auditory cortical and thalamic neurons. Our results indicate that activation of V1a receptors excited both auditory cortical and thalamic neurons. In the auditory cortical neurons, AVP increased neuronal excitability by depressing multiple subtypes of inwardly rectifying K+ (Kir) channels including the Kir2 subfamily, the ATP-sensitive K+ channels and the G protein-gated inwardly rectifying K+ (GIRK) channels, whereas activation of V1a receptors excited the auditory thalamic neurons by depressing the Kir2 subfamily of the Kir channels as well as activating the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a persistent Na+ channel. Our results may help explain the roles of V1a receptors in facilitating fear and anxiety responses. Categories: Cell Physiology.


Subject(s)
Arginine Vasopressin , Auditory Cortex , Neurons , Receptors, Vasopressin , Thalamus , Animals , Female , Male , Rats , Arginine Vasopressin/metabolism , Arginine Vasopressin/pharmacology , Auditory Cortex/metabolism , Auditory Cortex/physiology , Auditory Cortex/drug effects , Neurons/metabolism , Neurons/physiology , Neurons/drug effects , Potassium Channels, Inwardly Rectifying/metabolism , Rats, Sprague-Dawley , Receptors, Vasopressin/metabolism , Thalamus/metabolism , Thalamus/physiology
10.
Sci Signal ; 17(842): eadi0934, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917219

ABSTRACT

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of ß-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the ß-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine ß-arrestin recruitment. The ligand-dependent variance in ß-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the ß-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-ß-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-ß-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained ß-arrestin binding: the V2 vasopressin receptor and a mutant ß2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in ß-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.


Subject(s)
Endocytosis , Receptor, Angiotensin, Type 1 , Signal Transduction , beta-Arrestins , Endocytosis/physiology , Humans , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , beta-Arrestins/metabolism , beta-Arrestins/genetics , HEK293 Cells , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/genetics , Endosomes/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Animals , Ligands , Protein Binding , Protein Transport
11.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928267

ABSTRACT

The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.


Subject(s)
Receptors, Vasopressin , Spermatogenesis , Testis , Vasotocin , Zebrafish , Animals , Zebrafish/metabolism , Male , Vasotocin/metabolism , Vasotocin/pharmacology , Testis/metabolism , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Spermatozoa/metabolism , Cell Proliferation , Spermatogonia/metabolism , Spermatogonia/cytology
12.
PLoS One ; 19(6): e0304703, 2024.
Article in English | MEDLINE | ID: mdl-38900750

ABSTRACT

Arginine vasopressin (AVP) and oxytocin (OT) are well-known as neuropeptides that regulate various social behaviors in mammals. However, little is known about their role in mouse female sexual behavior. Thus, we investigated the role of AVP (v1a and v1b) and OT receptors on female sexual behavior. First, we devised a new apparatus, the bilevel chamber, to accurately observe female mouse sexual behavior. This apparatus allowed for a more precisely measurement of lordosis as receptivity and rejection-like behavior (newly defined in this study), a reversed expression of proceptivity. To address our research question, we evaluated female sexual behavior in mice lacking v1a (aKO), v1b (bKO), both v1a and v1b (dKO), and OT (OTRKO) receptors. aKO females showed decreased rejection-like behavior but a normal level of lordosis, whereas bKO females showed almost no lordosis and no change in rejection-like behavior. In addition, dKO females showed normal lordosis levels, suggesting that the v1b receptor promotes lordosis, but not necessarily, while the v1a receptor latently suppresses it. In contrast, although OTRKO did not influence lordosis, it significantly increased rejection-like behavior. In summary, the present results demonstrated that the v1a receptor inhibits proceptivity and receptivity, whereas the v1b and OT receptors facilitate receptivity and proceptivity, respectively.


Subject(s)
Mice, Knockout , Receptors, Oxytocin , Receptors, Vasopressin , Sexual Behavior, Animal , Animals , Female , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/genetics , Sexual Behavior, Animal/physiology , Mice , Male , Oxytocin/metabolism , Mice, Inbred C57BL , Arginine Vasopressin/metabolism
13.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695074

ABSTRACT

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Subject(s)
Deamino Arginine Vasopressin , Kidney Tubules, Collecting , Mice, Knockout , Animals , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Collecting/drug effects , Deamino Arginine Vasopressin/pharmacology , Kidney Concentrating Ability/drug effects , Arginine Vasopressin/metabolism , Male , Antidiuretic Hormone Receptor Antagonists/pharmacology , Mice , Aquaporin 2/metabolism , Aquaporin 2/genetics , Antidiuretic Agents/pharmacology , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Mice, Inbred C57BL , Water Deprivation , Osmolar Concentration , Sodium/urine , Sodium/metabolism , Vasopressins/metabolism , Benzazepines
14.
J Pain ; 25(9): 104572, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38768798

ABSTRACT

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.


Subject(s)
Chronic Pain , Mice, Inbred C57BL , Receptors, Vasopressin , Visceral Pain , Animals , Male , Mice , Chronic Pain/genetics , Colon , Disease Models, Animal , Enteric Nervous System/metabolism , Hyperalgesia/genetics , Irritable Bowel Syndrome/genetics , Neurons/metabolism , Polymorphism, Single Nucleotide , Receptors, Vasopressin/genetics , Visceral Pain/genetics
15.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Article in English | MEDLINE | ID: mdl-38803478

ABSTRACT

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Subject(s)
Brain , Receptors, Oxytocin , Receptors, Vasopressin , Animals , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Male , Brain/metabolism , Rodentia/metabolism , Rats , Species Specificity , Autoradiography , Arvicolinae/metabolism , Oxytocin/metabolism , Cricetinae , Social Behavior , Female
16.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38782603

ABSTRACT

It is known that stress influences immune cell function. The underlying molecular mechanisms are unclear. We recently reported that many chemokine receptors (CRs) heteromerize with α1-adrenoceptors (α1-ARs) through which CRs are regulated. Here, we show that arginine vasopressin receptor 1A (AVPR1A) heteromerizes with all human CRs, except chemokine (C-X-C motif) receptor (CXCR)1, in recombinant systems and that such heteromers are detectable in THP-1 cells and human monocytes. We demonstrate that ligand-free AVPR1A differentially regulates the efficacy of CR partners to mediate chemotaxis and that AVPR1A ligands disrupt AVPR1A:CR heteromers, which enhances chemokine (C-C motif) receptor (CCR)1-mediated chemotaxis and inhibits CCR2-, CCR8-, and CXCR4-mediated chemotaxis. Using bioluminescence resonance energy transfer to monitor G protein activation and CRISPR/Cas9 gene-edited THP-1 cells lacking AVPR1A or α1B-AR, we show that CRs that share the propensity to heteromerize with α1B/D-ARs and AVPR1A exist and function within interdependent hetero-oligomeric complexes through which the efficacy of CRs to mediate chemotaxis is controlled. Our findings suggest that hetero-oligomers composed of CRs, α1B/D-ARs, and AVPR1A may enable stress hormones to regulate immune cell trafficking.


Subject(s)
Chemotaxis , Monocytes , Receptors, Chemokine , Receptors, Vasopressin , Humans , Monocytes/metabolism , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , THP-1 Cells , Protein Multimerization , HEK293 Cells , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , CRISPR-Cas Systems , Signal Transduction , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-1/genetics , Ligands
17.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709918

ABSTRACT

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Subject(s)
Anxiety , Arginine Vasopressin , Social Behavior , Animals , Female , Male , Mice , Anxiety/metabolism , Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Optogenetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Septal Nuclei/metabolism , Septal Nuclei/physiology
18.
Horm Behav ; 163: 105563, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772158

ABSTRACT

Vasopressin (AVP) regulates various social behaviors, often in sex-specific ways, including social play behavior, a rewarding behavior displayed primarily by juveniles. Here, we examined whether and how AVP acting in the brain's reward system regulates social play behavior in juvenile rats. Specifically, we focused on AVP signaling in the ventral pallidum (VP), a brain region that is a part of the reward system. First, we examined the organization of the VP-AVP system in juvenile rats and found sex differences, with higher density of both AVP-immunoreactive fibers and AVP V1a receptor (V1aR) binding in males compared to females while females show a greater number of V1aR-expressing cells compared to males. We further found that, in both sexes, V1aR-expressing cells co-express a GABA marker to a much greater extent (approx. 10 times) than a marker for glutamate. Next, we examined the functional involvement of V1aR-expressing VP cells in social play behavior. We found that exposure to social play enhanced the proportion of activated V1aR-expressing VP cells in males only. Finally, we showed that infusion of a specific V1aR antagonist into the VP increased social play behaviors in juvenile male rats while decreasing these behaviors in juvenile female rats. Overall, these findings reveal structural and functional sex differences in the AVP-V1aR system in the VP that are associated with the sex-specific regulation of social play behavior.


Subject(s)
Basal Forebrain , Receptors, Vasopressin , Sex Characteristics , Social Behavior , Vasopressins , Animals , Male , Female , Rats , Receptors, Vasopressin/metabolism , Basal Forebrain/metabolism , Basal Forebrain/physiology , Vasopressins/metabolism , Play and Playthings , Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Rats, Long-Evans , Antidiuretic Hormone Receptor Antagonists/pharmacology
19.
Peptides ; 178: 171239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723948

ABSTRACT

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Subject(s)
Receptors, Vasopressin , Signal Transduction , Vasotocin , Animals , Vasotocin/pharmacology , Vasotocin/metabolism , Receptors, Vasopressin/metabolism , Signal Transduction/drug effects , Takifugu/metabolism , Injections, Intraperitoneal , Brain/metabolism , Brain/drug effects , Eating/drug effects , Anxiety/metabolism , Anxiety/chemically induced , Telencephalon/metabolism , Telencephalon/drug effects
20.
PLoS One ; 19(5): e0303507, 2024.
Article in English | MEDLINE | ID: mdl-38748623

ABSTRACT

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Subject(s)
Diabetes Insipidus, Nephrogenic , Receptors, Vasopressin , Animals , Humans , beta-Arrestins/metabolism , Cyclic AMP/metabolism , Deamino Arginine Vasopressin/pharmacology , Diabetes Insipidus, Nephrogenic/drug therapy , Diabetes Insipidus, Nephrogenic/genetics , Diabetes Insipidus, Nephrogenic/metabolism , HEK293 Cells , Mutation , Receptors, Vasopressin/genetics , Receptors, Vasopressin/agonists , Receptors, Vasopressin/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL